1
|
Wu S, Wang C, Liu C, He Q, Zhang Z, Ma T. Synergistic effects of xanthan gum and β-cyclodextrin on properties and stability of vegetable oil-based whipped cream. Int J Biol Macromol 2024; 279:135379. [PMID: 39244122 DOI: 10.1016/j.ijbiomac.2024.135379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/27/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
The synergistic effects between xanthan gum (XG) and β-cyclodextrin (β-CD) on the properties and stability of vegetable oil-based whipped cream stabilized by kidney bean protein aggregates was investigated. The visual appearance, SEM, TEM, CLSM, FT-IR and LF-NMR results showed that when the ratio of XG to β-CD in the XG-β-CD complex was appropriate, the hydrogen bonding effect between β-CD and XG was significant enhanced, the three-dimensional network structure has the highest density, the emulsion droplets were the smallest and evenly distributed. The unique tapered microstructure of β-CD acted as a bridge between the hydrophilic and hydrophobic components, effectively preventing the aggregation of oil droplets and establishing a flexible support system between oil droplets; while the flexible molecular structure of XG could support Pickering emulsion system. The XG-β-CD complex had a synergistic effect with protein aggregates, making it ideal for use in whipped cream products. This study explored the stability mechanism of β-CD in the Pickering emulsion-based whipped cream system, providing valuable insights into producing whole plant-based whipped cream by texturizing highly unsaturated oils. This effectively solves the problem of inadequate intake of unsaturated oil for individuals who consume excessive amounts of animal-derived fats.
Collapse
Affiliation(s)
- Sisi Wu
- School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
| | - Chenqiang Wang
- Technology Center, Xinjiang Guannong Share Group Co., Ltd, Korla City, Xinjiang 841000, China
| | - Chunxiu Liu
- School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
| | - Qiuqiu He
- School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
| | - Zifan Zhang
- School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
| | - Tiezheng Ma
- School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Cai Z, Zhou W, Zhang R, Tang Y, Hu K, Wu F, Huang C, Hu Y, Yang T, Chen Y. Fabrication and characterization of oxidized starch-xanthan gum composite nanoparticles with efficient emulsifying properties. Food Chem 2024; 455:139679. [PMID: 38823125 DOI: 10.1016/j.foodchem.2024.139679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
This study involved the preparation of nanoparticles by combining oxidized starch (OS) with xanthan gum (XG), and emulsions were prepared from this nanoparticle. The physical and chemical characteristics, as well as the emulsification properties of oxidized starch-xanthan gum composite nanoparticles (OGNP), were analyzed. The findings revealed that the OGNP retained spherical shape after the addition of XG, although their diameter increased from approximately 50-150 to 200-400 nm. Zeta potential decreased with XG content. Moreover, emulsions prepared from OGNP exhibited outstanding thermal stability, also showing enhanced storage stability. In addition, emulsions had different rheological properties at different pH values. The apparent viscosity and shear stress of emulsions under alkaline conditions were lower than that of neutral conditions. NaCl increased the apparent viscosity of OGNP-stabilized emulsions while reducing their thermal stability. The nanoparticles prepared in this study have efficient emulsification properties and can extend the application of OS.
Collapse
Affiliation(s)
- Zheng Cai
- Food Science School, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China
| | - Wei Zhou
- Food Science School, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China
| | - Rui Zhang
- Food Science School, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China
| | - Yuqi Tang
- Food Science School, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China
| | - Kun Hu
- Food Science School, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China
| | - Fangfang Wu
- Food Science School, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China
| | - Chao Huang
- Food Science School, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China
| | - Yong Hu
- Food Science School, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China
| | - Tao Yang
- School of Pharmacy, Hainan Medical University, Haikou, Hainan Province 571199, China.
| | - Yun Chen
- Food Science School, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China.
| |
Collapse
|
3
|
Guo X, Qiao Y, Huang Z, Gong Z, Wang Q, Li J, Wu Y, Liu X, Liu J. Enhanced emulsification properties of microalgae protein through gellan gum conjugation: Mechanistic insights and applications in curcumin encapsulation and delivery. Int J Biol Macromol 2024; 281:136275. [PMID: 39368591 DOI: 10.1016/j.ijbiomac.2024.136275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
The emulsification properties of microalgae protein (MP) are poor, especially under acidic and neutral conditions, which may limit the broad applications of MP in food processing. This study aims to explore the effects of gellan gum (GG) on the emulsification properties of MP. Firstly, MP-GG complexes were prepared and their structures characterized. Subsequently, MP-GG complexes stabilized emulsions were prepared and their stability evaluated. Finally, these emulsions were employed for the encapsulation and delivery of curcumin to evaluate their potential as an efficient nutrient delivery medium. Results indicated that MP-GG complexes were formed under various pH conditions, with pH 6 identified as optimal for complexes stability (zeta-potential value was -31 mV). UV-vis and fluorescence spectroscopy demonstrated that GG did not significantly alter the MP's structure but induced slight conformational changes, leading to the burial of some amino acid residues. Zeta potential measurements confirmed that MP-GG complexes were stabilized by strong electrostatic repulsions. The increase of GG content was conducive to providing more negative charge and promoting the dissolution and dispersion of the MP-GG complexes (MP: GG = 1: 1). Emulsions stabilized by MP-GG complexes exhibited smaller droplet sizes and improved stability compared to those stabilized by MP alone, especially at oil phase volume fractions of 60 % and 70 %. Rheological analysis indicated that GG enhanced emulsion stability by increasing viscosity, and higher oil phase volume fractions facilitated better MP-GG complexes adsorption on oil droplets, strengthening network structures of emulsions. During in vitro simulated gastrointestinal digestion, emulsions with a 70 % oil phase exhibited higher curcumin retention rate (31.09 %) and lower curcumin bioaccessibility (13.23 %) compared to those with a 60 % oil phase. This suggests that emulsions with higher oil phase volume fractions may be more suitable for colon-targeted curcumin delivery, with potential applications in promoting colon health. These findings confirm that the complexation of MP and GG was an effective way to improve the emulsification properties of MP. Emulsions stabilized by MP-GG complexes can serve as stable nutritional delivery systems for fat-soluble bioactive compounds.
Collapse
Affiliation(s)
- Xiao Guo
- Key Laboratory for Deep Processing of Major Grain and Oil, The Chinese Ministry of Education, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Yuqian Qiao
- Key Laboratory for Deep Processing of Major Grain and Oil, The Chinese Ministry of Education, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Zhicheng Huang
- Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil, The Chinese Ministry of Education, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Qian Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, The Chinese Ministry of Education, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Jinjie Li
- Systems Engineering Institute, AMS, PLA, Bejing 100010, China
| | - Yongning Wu
- Key Laboratory for Deep Processing of Major Grain and Oil, The Chinese Ministry of Education, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China; Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Xin Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, The Chinese Ministry of Education, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China.
| | - Jin Liu
- Systems Engineering Institute, AMS, PLA, Bejing 100010, China.
| |
Collapse
|
4
|
Geng T, Pan L, Liu X, Dong D, Cui B, Guo L, Yuan C, Zhao M, Zhao H. Novel a-linolenic acid emulsions stabilized by octenyl succinylated starch -soy protein-epigallocatechin-3-gallate complexes: Characterization and antioxidant analysis. Food Chem 2024; 446:138878. [PMID: 38432138 DOI: 10.1016/j.foodchem.2024.138878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
In this study, octenyl succinylated starch (OSAS)-soy protein (SP)-epigallocatechin-3-gallate (EGCG) complexes were designed to enhance the physical and oxidative stability of α-linolenic acid emulsions. Formations of OSAS-SP-EGCG complexes were confirmed via particle size, ξ-potential, together with fourier transform infrared (FTIR). A mixing ratio of 1:2 for OSAS to SP-EGCG resulted in ternary complexes with the highest contact angle (59.69°), indicating the hydrophobicity. Furthermore, the characteristics of α-linolenic acid emulsions (oil phase volume fractions (φ) of 10% and 20%) stabilized by OSAS-SP-EGCG complexes were investigated, including particle size, ξ-potential, emulsion stability, oxidative stability, and microstructure. These results revealed exceptional physical stability together with enhanced oxidative stability for these emulsions. Particularly, emulsions utilizing complexes having a 1:2 OSAS to SP-EGCG ratio exhibited superior emulsion stability. These findings provide theoretical support to the development of emulsions containing high levels of α-linolenic acid and for the broader application of α-linolenic acid in food products.
Collapse
Affiliation(s)
- Tenglong Geng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Lidan Pan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiaorui Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Die Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Meng Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Haibo Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
5
|
Igartúa DE, Dichano MC, Morales Huanca MN, Palazolo GG, Cabezas DM. Rice proteins - Gum arabic coacervates: Effect of pH and polysaccharide concentration in oil-in-water emulsion stability. Food Res Int 2024; 188:114399. [PMID: 38823854 DOI: 10.1016/j.foodres.2024.114399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 06/03/2024]
Abstract
In the context of replacing animal proteins in food matrices, rice proteins (RP) become promised because they come from an abundant plant source, are hypoallergenic, and have high digestibility and nutritional value. However, commercial protein isolates obtained by spray drying have low solubility and poor functionality, especially in their isoelectric point. One way to modify these properties is through interaction with polysaccharides, such as gum arabic (GA). Therefore, this work aims to evaluate the effects of pH and GA concentration on the interaction and emulsifying activity of RP:GA coacervates. First, the effects of pH (2.5 to 7.0) and GA concentrations (0.2 to 1.0 wt%, giving rise to RP:GA mass ratios of 1:0.2 to 1:1.0) in RP:GA blends were evaluated. The results demonstrated that biopolymers present opposite net charges at pH between 2.5 and 4.0. At pH 3.0, insoluble coacervates with complete charge neutralization were formed by electrostatic interactions, while at pH 5.0 it was observed that the presence of GA prevented the RP massive aggregation. Second, selected blends with 0.4 or 1.0 wt% of GA (RP:GA mass ratios of 1:0.4 or 1:1.0) at pH 3.0 or 5.0 were tested for their ability to stabilize oil-in-water emulsions. The emulsions were characterized for 21 days. It was observed that the GA increased the stability of RP emulsions, regardless of the pH and polysaccharide concentration. Taken together, our results show that it is possible to combine RP and GA to improve the emulsifying properties of these plant proteins at pH conditions close to their isoelectric point, expanding the possibility of implementation in food systems.
Collapse
Affiliation(s)
- Daniela E Igartúa
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos (LIFTA), Roque Sáenz Peña 352, B1876BXD Bernal, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB Ciudad Autónoma de Buenos Aires, Argentina
| | - María Celeste Dichano
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos (LIFTA), Roque Sáenz Peña 352, B1876BXD Bernal, Buenos Aires, Argentina
| | - Maxwell N Morales Huanca
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos (LIFTA), Roque Sáenz Peña 352, B1876BXD Bernal, Buenos Aires, Argentina; Universidad Católica de Santa María, Urb. San José s/n, 04011 Arequipa, Peru
| | - Gonzalo G Palazolo
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos (LIFTA), Roque Sáenz Peña 352, B1876BXD Bernal, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB Ciudad Autónoma de Buenos Aires, Argentina
| | - Dario M Cabezas
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos (LIFTA), Roque Sáenz Peña 352, B1876BXD Bernal, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
6
|
Geng T, Pan L, Liu X, Li Z, Liu J, Dong D, Cui B, Liu H. Characterization of modified starch-based complexes-stabilized linolenic acid emulsions and their enhanced oxidative stability in vitro gastrointestinal digestion. Int J Biol Macromol 2024; 271:132548. [PMID: 38782323 DOI: 10.1016/j.ijbiomac.2024.132548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
A new approach of fabricating α-linolenic acid emulsions with enhanced oxidative stability in vitro digestion was established, using covalent octenyl succinic anhydride starch (OSAS)-soy protein (SP)-epigallocatechin-3-gallate (EGCG) complexes as emulsifiers. The physicochemical characteristics and surface morphology of emulsions were mainly characterized by rheological measurements, laser scanning microscope (CLSM) and cryo-scanning electron microscopy (Cryo-SEM). Results indicated that emulsions had dense interfacial layers and strong network structures. As a result, the stability and antioxidant ability of emulsions were improved significantly. In addition, the oxidative stability of emulsions in vitro gastrointestinal digestion was explored. Results showed that emulsions could maintain better oxidative stability owing to antioxidant activity of covalent OSAS-SP-EGCG complexes under gastrointestinal conditions. In particular, lipid hydroperoxide and malondialdehyde contents of emulsions prepared by 1:4 complexes were lower than 0.35 mmol/L and 20.5 nmol/mL, respectively, approximately half those of emulsions stabilized by OSAS (0.65 mmol/L and 39.5 nmol/mL). It was indicated that covalent OSAS-SP-EGCG complexes could effectively inhibit α-linolenic acid oxidation in emulsions during vitro gastrointestinal digestion. This work will provide a theoretical basis for the development of α-linolenic acid emulsions, which will help to broaden application of α-linolenic acid in food industry.
Collapse
Affiliation(s)
- Tenglong Geng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Lidan Pan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiaorui Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zimei Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jiayi Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Die Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Haiyan Liu
- Qingdao Bright Moon Seaweed Bio-Health Technology Group Co., Ltd, Qingdao 266400, China
| |
Collapse
|
7
|
Fernandes Almeida R, Gouveia Gomes MH, Kurozawa LE. Enzymatic hydrolysis improves the encapsulation properties of rice bran protein by increasing retention of anthocyanins in microparticles of grape juice. Food Res Int 2024; 180:114090. [PMID: 38395563 DOI: 10.1016/j.foodres.2024.114090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
There is a growing demand for the food industry to find appealing matrices that display a clean and sustainable label capable of replacing animal proteins in the encapsulation market for natural pigments. Therefore, this study evaluated the impact of enzymatic hydrolysis by Flavourzyme protease on the encapsulation properties of rice bran proteins, aiming to protect anthocyanins in grape juice microparticles. To achieve this, rice bran protein hydrolysates (RPH) with low (5%, LRPH), medium (10%, MRPH), and high (15%, HRPH) degrees of hydrolysis (DH) were used combined with maltodextrin as carrier agents for the microencapsulation of grape juice by spray drying. The feed solutions contained 1 g of carrier agents (CA)/g of soluble solids from the juice (SS) and protein: a 15% CA ratio. Non-hydrolyzed rice protein was used as a carrier agent to obtain a control sample to evaluate the effect of enzymatic hydrolysis on the microencapsulation of grape juice. Protein modification increased the surface activity of the protein and its ability to migrate to the surface of the microparticles, forming a protective film, as observed by X-ray photoelectron spectroscopy. Using HRPH as a carrier agent combined with maltodextrin improved the internal and total anthocyanin retention, antioxidant capacity measured by DPPH and ABTS+ assays, and powder recovery compared to the control sample, and increased DH reduced particle size and powder stickiness. These particles were more homogeneous, rough, and without cracks. The microencapsulation efficiency was above 70%. All powders exhibited low values of hygroscopicity and degree of caking. Therefore, enzymatic hydrolysis proves to be a promising alternative for improving rice bran protein's encapsulating properties since using RPH as an encapsulating agent conferred greater protection of anthocyanins in microparticles. Moreover, the HRPH sample exhibited the most favorable outcomes overall, indicating its potential for prospective utilization in the market, supported by its elevated Tg.
Collapse
Affiliation(s)
- Rafael Fernandes Almeida
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil
| | - Matheus Henrique Gouveia Gomes
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil
| | - Louise Emy Kurozawa
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
8
|
Choi Y, Lee H, Song JY, Baek M, Mun S. Development of polysaccharide-complexed nano-sized rice protein dispersion. Food Sci Biotechnol 2024; 33:431-439. [PMID: 38222904 PMCID: PMC10786790 DOI: 10.1007/s10068-023-01350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 01/16/2024] Open
Abstract
The objective of this study was to improve water solubility of the rice protein (RP) by forming complexes with anionic polysaccharides, such as sodium alginate (SA) and xanthan gum (XG). In addition, utilization of the RP complexes as an emulsifier was evaluated. The prepared RP-SA or RP-XG complexes were analyzed by measuring their particle size, ζ-potential, and water solubility as well as by confocal laser scanning microscopy. The formation of a complex between RP-SA and RP-XG improved the water solubility and dispersibility of RP over a wide range of pH values (3, 5, 7, and 9). Confocal fluorescence images showed that the aggregation of RP molecules was prevented by the formation of complexes between RP and polysaccharides. When soybean oil-in-water emulsions were prepared with complexes, RP-SA (ratio 4:1) and RP-XG(ratio 4:1) complex-stabilized emulsions were stable for 4 weeks of storage.
Collapse
Affiliation(s)
- Yongdoo Choi
- Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi 10408 Republic of Korea
| | - Hyeri Lee
- Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi 10408 Republic of Korea
| | - Ji-Young Song
- Department of R and D, Berry and Biofood Reaserch Institute, Gochang County, Jeonbuk 56417 Republic of Korea
| | - Manhee Baek
- Research Institute for Basic Sciences, Soonchunhyang University, Asan, Chungnam 31538 Republic of Korea
| | - Saehun Mun
- Department of Food Science and Nutrition, Soonchunhyang University, Asan, Chungnam 31538 Republic of Korea
| |
Collapse
|
9
|
Almeida RF, Gomes MHG, Kurozawa LE. Rice bran protein increases the retention of anthocyanins by acting as an encapsulating agent in the spray drying of grape juice. Food Res Int 2023; 172:113237. [PMID: 37689965 DOI: 10.1016/j.foodres.2023.113237] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 09/11/2023]
Abstract
Rice bran protein concentrate (RPC), an industrial by-product, may emerge as a green alternative for substituting animal proteins in microencapsulating compounds of interest. This study applied RPC, combined with maltodextrin (MD) as carrier agents, in the spray drying of grape juice, a product rich in these bioactive compounds, seeking to protect anthocyanins from degradation. The effects of carrier agent concentration [C: 0.75, 1.00, and 1.25 g of carrier agents (CA)/g of soluble solids of the juice (SS)] and RPC:CA ratio (P: 0%, as a control sample, 5%, 10%, 15%, and 20%) on anthocyanin retention and powder properties were evaluated. At 1.00 g CA/g SS, the internal and total retentions of anthocyanins improved by 2.4 and 3.2 times, respectively, when the RPC:CA ratio increased from 0% to 20%. The protein also exhibited excellent surface activity on the grape juice and positively influenced the physicochemical properties of the microparticles. There was a reduction in stickiness, degree of caking, and hygroscopicity, in addition to an increased antioxidant capacity when protein was used in combination with MD, especially at 1.00 and 1.25 g CA/g SS. Therefore, this study demonstrated that RPC could enhance the protection of anthocyanins during the spray drying of grape juice.
Collapse
Affiliation(s)
- Rafael Fernandes Almeida
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil
| | - Matheus Henrique Gouveia Gomes
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil
| | - Louise Emy Kurozawa
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
10
|
Wu C, Wu F, Ju Q, Zhang Y, Yuan Y, Kang S, Hu Y, Luan G. The role of β-subunit in emulsifying performance of β-conglycinin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
11
|
Huang H, Tian Y, Bai X, Cao Y, Fu Z. Influence of the Emulsifier Sodium Caseinate-Xanthan Gum Complex on Emulsions: Stability and Digestive Properties. Molecules 2023; 28:5460. [PMID: 37513332 PMCID: PMC10384958 DOI: 10.3390/molecules28145460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, virgin coconut oil (VCO) nanoemulsions were prepared by ultrasonication using a sodium caseinate (SC) and xanthan gum (XG) complex as an emulsifier. The stability and digestion characteristics of SC/XG-VCO emulsions formed by co-adsorption and SC-VCO-XG emulsions formed by layer adsorption were compared. The stability of the two emulsions was studied under different pH, ionic strength, heat treatment, freeze-thaw cycles, and storage conditions, and the droplet size and zeta potential were used as indicators to assess the stability. In addition, the stability of oxidation and the digestive properties of both emulsions were studied. It was found that the SC-VCO-XG emulsions had better environmental stability, oxidative stability, storage stability, and digestibility compared to SC/XG-VCO emulsions. This study has shown that the formation method of protein-polysaccharide stabilized emulsions has an impact on the stability and digestibility properties of the emulsions, and that the emulsion carriers constructed by layer adsorption are more suitable for subsequent industrial production and development.
Collapse
Affiliation(s)
- Huan Huang
- School of Food Science and Engineering, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China
| | - Yan Tian
- School of Food Science and Engineering, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China
| | - Xinpeng Bai
- School of Food Science and Engineering, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China
- Haikou Zhisu Biological Resources Research Institute Co., Ltd., Haikou 570203, China
| | - Yumiao Cao
- School of Food Science and Engineering, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China
| | - Zihuan Fu
- School of Food Science and Engineering, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China
| |
Collapse
|
12
|
Synergistic effect of lecithin and alginate, CMC, or PVP in stabilizing curcumin and its potential mechanism. Food Chem 2023; 413:135634. [PMID: 36780858 DOI: 10.1016/j.foodchem.2023.135634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/05/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
This work aims to advance the understanding of the synergistic mechanism of lecithin and polymers (alginate, CMC, and PVP) in stabilizing curcumin, with a major focus on understanding the nanocomplex formation process and the main binding energy between molecules. It is demonstrated that lecithin and polymers have a synergistic effect in increasing the thermal acid, light, and digestion stability of curcumin. The potential mechanism is that the hydrophobic parts of curcumin molecules are first anchored at the region of the hydrophobic cavity of lecithin by van der Waals, while the hydrophilic parts are outward and are further encapsulated by hydrophilic polymers by van der Waals and electrostatic interaction to form a protective shell. This study contributes to our understanding of the synergistic mechanism of lecithin, polymers, and hydrophobic compounds, which can promote the synergistic use of lecithin and polymers to prepare nanocomplexes as an important tool for delivering bioactive compounds.
Collapse
|
13
|
Wang K, Li Y, Sun J, Zhang Y. The physicochemical properties and stability of myofibrillar protein oil-in-water emulsions as affected by the structure of sugar. Food Chem X 2023; 18:100677. [PMID: 37077582 PMCID: PMC10106513 DOI: 10.1016/j.fochx.2023.100677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/21/2023] Open
Abstract
Different sugars (glucose, GL; fructose, FR; hyaluronic acid, HA; cellulose, CE) were added to a myofibrillar protein (MP) emulsion (MP: 1.2 w/v%, sugar: 0.1% w/v) to study the effect of sugar structure on the physicochemical properties and stability of the MP emulsions. The emulsifying properties of MP-HA were significantly (P < 0.05) higher than those of the other groups. The monosaccharide (GL/FR) exerted negligible effects on the emulsifying performance of the MP emulsions. The ζ-potential and particle size implied that HA introduced stronger negative charges, significantly reducing the final particle size (190-396 nm). Rheological examinations indicated that the introduction of polysaccharides considerably increased the viscosity and network entanglement; confocal laser scanning microscopy and creaming index revealed that MP-HA was stable during storage, whereas MP-GL/FR/CE exhibited severe delamination after long-term storage. HA, a heteropolysaccharide, is most suitable for improving MP emulsion quality.
Collapse
Affiliation(s)
- Ke Wang
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
- College of Food Science & Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Yan Li
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jingxin Sun
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Research Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, China
- Corresponding authors at: College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China (J. Sun).
| | - Yimin Zhang
- College of Food Science & Engineering, Shandong Agricultural University, Tai’an 271018, China
- Corresponding authors at: College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China (J. Sun).
| |
Collapse
|
14
|
Zhou L, Jiang J, Feng F, Wang J, Cai J, Xing L, Zhou G, Zhang W. Effects of carboxymethyl cellulose on the emulsifying, gel and digestive properties of myofibrillar protein-soybean oil emulsion. Carbohydr Polym 2023; 309:120679. [PMID: 36906362 DOI: 10.1016/j.carbpol.2023.120679] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/13/2023]
Abstract
Improving the qualities of vegetable oil replaced animal fat meat products is particularly fascinating for the development of healthy meat products. This work was designed to investigate the effects of different carboxymethyl cellulose (CMC) concentrations (0.01 %, 0.05 %, 0.1 %, 0.2 %, and 0.5 %) on the emulsifying, gelation, and digestive properties of myofibrillar protein (MP)-soybean oil emulsions. The changes in MP emulsion characteristics, gelation properties, protein digestibility, and oil release rate were determined. Results demonstrated that CMC addition decreased the average droplet size and increased the apparent viscosity, storage modulus, and loss modulus of MP emulsions, and a 0.5 % CMC addition significantly increased the storage stability during 6 weeks. Lower CMC addition (0.01 % to 0.1 %) increased the hardness, chewiness, and gumminess of emulsion gel especially for the 0.1 % CMC addition, while higher CMC (0.5 %) content decreased the texture properties and water holding capacity of emulsion gels. The addition of CMC decreased protein digestibility during the gastric stage, and 0.01 % and 0.05 % CMC addition significantly decreased the free fatty acid release rate. In summary, the addition of CMC could improve the stability of MP emulsion and the texture properties of the emulsion gels, and decrease protein digestibility during the gastric stage.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China..
| | - Jinyuan Jiang
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China..
| | - Fan Feng
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China..
| | - Jingyu Wang
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China..
| | - Jiaming Cai
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China..
| | - Lujuan Xing
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China..
| | - Guanghong Zhou
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China..
| | - Wangang Zhang
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China..
| |
Collapse
|
15
|
Zhang X, Huang Y, Ma R, Tang Y, Li Y, Zhang S. Structural properties and antioxidant activities of soybean protein hydrolysates produced by Lactobacillus delbrueckii subsp. bulgaricus cell envelope proteinase. Food Chem 2023; 410:135392. [PMID: 36623464 DOI: 10.1016/j.foodchem.2023.135392] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
In this work, we investigated the structural and biological properties of soybean protein isolate (SPI) after 0-8 h hydrolyzation with cell envelope proteinase (CEP) extracted from Lactobacillus delbrueckii subsp. bulgaricus. CEP hydrolysis increased the β-sheet and red-shifted the fluorescence peak, while decreasing the α-helix, indicating the unfolding of soybean proteins. Increased surface hydrophobicity and fluorescence of the soybean protein hydrolysates were correlated with the increased hydrophobic amino acid (from 209.67 to 217.6 mg/100 g). CEP tended to hydrolyze the N- and C-terminal regions of sequences dominated by Gly and Leu, which enhanced the antioxidant activity of the SPHs (lowest IC50s value of ABTS•+ and hydroxyl radical scavenging activity were 0.324 ± 0.006 mg/mL and 0.365 ± 0.001 mg/mL after 4 h hydrolysis). Comparison with the database of bioactive peptides suggested various potential biological activities, including antioxidant activity, angiotensin-converting enzyme inhibitory activity and dipeptidyl peptidase-IV inhibitory activity. The study findings have theoretical significance for the development of CEP hydrolysis and novel bioactive soybean peptides.
Collapse
Affiliation(s)
- Xiaoying Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuyang Huang
- College of Food Engineering, Harbin University of Commerce, Harbin 150006, China
| | - Ruxin Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuqing Tang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
16
|
Zhou W, Cai Z, Zhang R, Hu K, Wu F, Hu Y, Huang C, Chen Y. Preparation and emulsification properties of cationic starch-xanthan gum composite nanoparticles. Food Chem 2023; 421:136143. [PMID: 37094403 DOI: 10.1016/j.foodchem.2023.136143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/26/2023]
Abstract
In this work, nanoparticles were prepared by the composite of cationic starch (CS) and xanthan gum (XG) through gelatinization and alcohol precipitation for the first time. Physicochemical properties, micromorphology, and emulsification properties of CS/XG nanoparticles were measured. SEM showed that after compositing with XG, the diameter size of the CS/XG nanoparticles was increased from about 50 nm to 150-300 nm. FT-IR, XRD and 13C CP/MAS NMR confirmed that XG was successfully complexed with CS. Besides, the visual observation indicated emulsions stabilized by CS/XG nanoparticles had excellent storage and thermal properties. Additionally, the rheological and stability results of emulsions show that pH and NaCl had effects on the rheological and stability properties of emulsions, which means that the prepared emulsions had environmental responsiveness. Thus, this work provides an efficient method to prepare CS and GX composite nanoparticles with efficient emulsifying properties.
Collapse
Affiliation(s)
- Wei Zhou
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China
| | - Zhen Cai
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China
| | - Rui Zhang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China
| | - Kun Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China
| | - Fangfang Wu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China
| | - Yong Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China
| | - Chao Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China.
| | - Yun Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China.
| |
Collapse
|
17
|
Zolqadri R, Heidari Damani M, Malekjani N, Saeed Kharazmi M, Mahdi Jafari S. Rice bran protein-based delivery systems as green carriers for bioactive compounds. Food Chem 2023; 420:136121. [PMID: 37086611 DOI: 10.1016/j.foodchem.2023.136121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/24/2023]
Abstract
Natural protein-based delivery systems have received special interest over the last few years. Different carriers are already developed in the food industry to protect, encapsulate and deliver bioactive compounds. Rice bran protein (RBP) is currently used as a carrier in encapsulating bioactives due to its excellent functional properties, great natural value, low price, good biodegradability, and biocompatibility. Recently, RBP-based carriers including emulsions, microparticles, nanoparticles, nanoemulsions, liposomes, and core-shell structures have been studied extensively in the literature. This study reviews the important characteristics of RBP in developing bioactive delivery systems. The recent progress in various modification approaches for improving RBP properties as carriers along with different types of RBP-based bioactive delivery systems is discussed. In the final part, the bioavailability and release profiles of bioactives from RBP-based carriers and the recent developments are described.
Collapse
Affiliation(s)
- Roshanak Zolqadri
- Department of Food Science and Technology, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Maryam Heidari Damani
- Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
18
|
He X, Wang B, Xue Y, Li Y, Hu M, He X, Chen J, Meng Y. Effects of high acyl gellan gum on the rheological properties, stability, and salt ion stress of sodium caseinate emulsion. Int J Biol Macromol 2023; 234:123675. [PMID: 36801230 DOI: 10.1016/j.ijbiomac.2023.123675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Sodium caseinate (SC) is widely used as a biological macromolecular emulsifier in oil-in-water (O/W) emulsions. However, the SC-stabilized emulsions were unstable. High-acyl gellan gum (HA) is an anionic macromolecular polysaccharide that improves emulsion stability. This study aimed to investigate the effects of HA addition on the stability and rheological properties of SC-stabilized emulsions. Study results revealed that HA concentrations >0.1 % could increase Turbiscan stability, reduce the volume average particle size, and increase the zeta-potential absolute value of the SC-stabilized emulsions. In addition, HA increased the triple-phase contact angle of SC, transformed SC-stabilized emulsions into non-Newtonian fluids, and effectively inhibited the movement of emulsion droplets. The effect of 0.125 % HA concentration was the most effective, allowing SC-stabilized emulsions to maintain good kinetic stability over a 30-d period. NaCl destabilized SC-stabilized emulsions but had no significant effect on HA-SC emulsions. In summary, HA concentration had a significant effect on the stability of SC-stabilized emulsions. HA altered the rheological properties and reduced creaming and coalescence by forming a three-dimensional network structure, increasing the electrostatic repulsion of the emulsion and the adsorption capacity of SC at the oil-water interface, and thereby improving the stability of SC-stabilized emulsions during storage and in the presence of NaCl.
Collapse
Affiliation(s)
- Xingfen He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Bin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Yuhang Xue
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Yanhua Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Mingxiang Hu
- Zhejiang Tech-way Biotechnology Co., Ltd., Shaoxing 311811, People's Republic of China
| | - Xingwang He
- Zhejiang Tech-way Biotechnology Co., Ltd., Shaoxing 311811, People's Republic of China
| | - Jie Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| | - Yuecheng Meng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
19
|
Tu Y, Zhang X, Wang L. Effect of salt treatment on the stabilization of Pickering emulsions prepared with rice bran protein. Food Res Int 2023; 166:112537. [PMID: 36914309 DOI: 10.1016/j.foodres.2023.112537] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023]
Abstract
In this study, salt addition (NaCl and CaCl2) was utilized to improve the stability of emulsions formed by rice bran protein (RBP). The result showed that salt addition improved the adsorption of protein on the oil-water interface and enhanced the physical stability of emulsions. Compared to NaCl condition, emulsions with CaCl2 (especially 200 mM) addition exhibited more significant storage stability, as microscopy images showed emulsion structure unchanged and droplet size increasing slightly from 12.02 µm to 16.04 µm in 7 days. It was attributed to the strengthened particle complexation with CaCl2 and the increased hydrophobic interactions, which is explained by the improved particle size (260.93 nm), surface hydrophobicity (1890.10) and fluorescence intensity, thus inducing dense and hardly destroyed interfacial layers. Rheological behavior analyses suggested that salt-induced emulsions had higher viscoelasticity and maintained a stable gel-like structure. The result of study explored the mechanism of salt treated protein particles, developed a further understanding of Pickering emulsion, and was beneficial to the application of RBP.
Collapse
Affiliation(s)
- Yi Tu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Xinxia Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Li Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| |
Collapse
|
20
|
Wang N, Zhao X, Jiang Y, Ban Q, Wang X. Enhancing the stability of oil-in-water emulsions by non-covalent interaction between whey protein isolate and hyaluronic acid. Int J Biol Macromol 2023; 225:1085-1095. [PMID: 36414080 DOI: 10.1016/j.ijbiomac.2022.11.170] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
This study aimed to investigate the effect of non-covalent interactions between different concentrations (0.1-1.2 %, w/v) of hyaluronic acid (HA) and 3 % (w/v) whey protein isolate (WPI) on the stability of oil-in-water emulsions. Non-covalent interactions between WPI and HA were detected using Fourier-transform infrared spectroscopy. The addition of HA increased the electrostatic repulsion between molecules and reduced the particle size of WPI. Circular dichroism spectroscopy results indicated that the addition of HA caused an increase in β-sheet content and a decrease in α-helix and random coil content in WPI. Moreover, HA increased the emulsion viscosity and strength of the interfacial network structure. Micrographs obtained using confocal laser scanning microscopy indicated that the emulsion with 0.8 % (w/v) HA exhibited good dispersion and homogeneity after storage for 14 d. Complexation with HA significantly altered the rheological and emulsifying properties of WPI, providing an emulsion with excellent stability under heating treatment, freeze-thawing treatment and centrifugation. The results provide a potential for HA application in emulsified foods.
Collapse
Affiliation(s)
- Ningzhe Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiao Zhao
- College of Equipment Management and Support, Engineering University of People's Armed Police, Xi'an 710086, China
| | - Yunqing Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qingfeng Ban
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xibo Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
21
|
Shi F, Chang Y, Shen J, Chen G, Xue C. A comparative investigation of anionic polysaccharides (sulfated fucan, ι-carrageenan, κ-carrageenan, and alginate) on the fabrication, stability, rheology, and digestion of multilayer emulsion. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
22
|
Frosi I, Ferron L, Colombo R, Papetti A. Natural carriers: Recent advances in their use to improve the stability and bioaccessibility of food active compounds. Crit Rev Food Sci Nutr 2022; 64:5700-5718. [PMID: 36533404 DOI: 10.1080/10408398.2022.2157371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the last decades, the incorporation of bioactive compounds in food supplements aroused the attention of scientists. However, these ingredients often exhibit both low solubility and stability and their poor bioaccessibility within the gastrointestinal tract limits their effectiveness. To overcome these drawbacks, many carriers have been investigated for encapsulating nutraceuticals and enhancing their bioavailability. It is note that several different vegetable wall materials have been applied to build delivery systems. Considering their encapsulation mechanism, lipid and protein-based carriers display specific interaction patterns with bioactives, whereas polysaccharidic-based carriers can entrap them by creating porous highly stable networks. To maximize the encapsulation efficiency, mixed systems are very promising. Following the current goal of using natural and sustainable ingredients, only a limited number of studies about the isolation of new ingredients from agro-food waste are available. In this review, a comprehensive overview of the state of art in the development of innovative natural lipid-, protein- and polysaccharide-based plant carriers is presented, focusing on their application as food active compounds. Different aspects to be considered in the design of delivery systems are discussed, including the carrier structure and chemical features, the interaction between the encapsulating and the core material, and the parameters affecting bioactives entrapment.
Collapse
Affiliation(s)
- Ilaria Frosi
- Drug Sciences Department, University of Pavia, Pavia, Italy
| | - Lucia Ferron
- Drug Sciences Department, University of Pavia, Pavia, Italy
| | | | - Adele Papetti
- Drug Sciences Department, University of Pavia, Pavia, Italy
| |
Collapse
|
23
|
Wang Y, Li Z, Li H, Selomulya C. Effect of hydrolysis on the emulsification and antioxidant properties of plant-sourced proteins. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Enhancing the interfacial stability of O/W emulsion by adjusting interactions of chitosan and rice protein hydrolysate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Tirgarian B, Farmani J, Farahmandfar R, Milani JM, Van Bockstaele F. Ultra-stable high internal phase emulsions stabilized by protein-anionic polysaccharide Maillard conjugates. Food Chem 2022; 393:133427. [PMID: 35696957 DOI: 10.1016/j.foodchem.2022.133427] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
This paper reports the production of O/W high internal phase emulsions (HIPEs) using protein-anionic polysaccharide Maillard conjugates. First, Maillard conjugates were prepared from soy protein isolate (SPI) or sodium caseinate (SC) proteins and Alyssum homolocarpum seed gum (AHSG) or kappa-carrageenan (kC) polysaccharides. The conjugation process was confirmed and monitored by UV spectrophotometry, Fourier transform infrared, circular dichroism, fluorescence spectroscopies, and differential scanning calorimetry. Under the optimized reaction conditions, SC-AHSG conjugates exhibited the highest glycation degree and emulsifying properties. Next, HIPEs were made using the optimized conjugates, and their microstructure, droplet size, and physical stability were evaluated. The emulsion stabilized by SC-AHSG conjugate had the lowest mean droplet size (363.07 ± 34.56 nm), orderly-packed oil droplets with monomodal distribution, the highest zeta potential (-27.70 ± 0.70 mV), high storage stability (no creaming or oil-off) and was ultra-stable against environmental stresses. Results of this research are helpful for development of emulsion-based foods with novel functionality.
Collapse
Affiliation(s)
- Behraad Tirgarian
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran
| | - Jamshid Farmani
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran.
| | - Reza Farahmandfar
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran
| | - Jafar M Milani
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran
| | - Filip Van Bockstaele
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Vandemoortele Centre 'Lipid Science and Technology', Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
26
|
Zhang S, Li X, Yan X, Julian McClements D, Ma C, Liu X, Liu F. Ultrasound-assisted preparation of lactoferrin-EGCG conjugates and their application in forming and stabilizing algae oil emulsions. ULTRASONICS SONOCHEMISTRY 2022; 89:106110. [PMID: 35961190 PMCID: PMC9382344 DOI: 10.1016/j.ultsonch.2022.106110] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 05/09/2023]
Abstract
The aim of this study was to prepare lactoferrin-epigallocatechin-3-gallate (LF-EGCG) conjugates and to determine their ability to protect emulsified algal oil against aggregation and oxidation. LF-EGCG conjugates were formed using an ultrasound-assisted alkaline treatment. The ultrasonic treatment significantly improved the grafting efficiency of LF and EGCG and shortened the reaction time from 24 h to 40 min. Fourier transform infrared spectroscopy and circular dichroism spectroscopy analyses showed that the covalent/non-covalent complexes could be formed between LF and EGCG, with the CO and CN groups playing an important role. The formation of the conjugates reduced the α-helix content and increased the random coil content of the LF. Moreover, the antioxidant activity of LF was significantly enhanced after conjugation with EGCG. LF-EGCG conjugates as emulsifiers were better at inhibiting oil droplet aggregation and oxidation than LF alone. This study demonstrates that ultrasound-assisted formation of protein-polyphenol conjugates can enhance the functional properties of the proteins, thereby extending their application as functional ingredients in nutritionally fortified foods.
Collapse
Affiliation(s)
- Sairui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xueqi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaojia Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | | | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
27
|
Lin D, Sun LC, Chen YL, Liu GM, Miao S, Cao MJ. Peptide/protein hydrolysate and their derivatives: Their role as emulsifying agents for enhancement physical and oxidative stability of emulsions. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Yan S, Zhang S, Zhu H, Qi B, Li Y. Recent Advances in Protein-Based Multilayer Emulsions: Fabrication, Characterization, and Applications: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2090576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Huaping Zhu
- China Rural Technology Development Center, Beijing, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
- National Research Center of Soybean Engineering and Technology, Harbin, Heilongjiang, China
| |
Collapse
|
29
|
Effect of pectin on the properties of nanoemulsions stabilized by sodium caseinate at neutral pH. Int J Biol Macromol 2022; 209:1858-1866. [PMID: 35489623 DOI: 10.1016/j.ijbiomac.2022.04.160] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 12/25/2022]
Abstract
The effect of different concentrations of low methoxyl pectin (LMP) on lipid oxidation and physical stability of sodium caseinate (CAS) stabilized nanoemulsions under neutral pH was investigated. The addition of pectin at low concentration (≤ 0.10 wt%) had no significant effect on the average size of nanoemulsions, but a slight size increase and phase separation were observed at higher concentrations of pectin (≥ 0.25 wt%). This result suggests that LMP can not adsorb at the oil/water interfacial CAS membrane at neutral pH. However, in the presence of LMP, the physical stability of nanoemulsions against high salt concentrations and freeze-thaw cycles was significantly enhanced. Moreover, nanoemulsions containing pectin have a better ability to inhibit lipid and protein oxidation than nanoemulsions without pectin after 3 weeks, and the lowest lipid hydroperoxide content was observed for nanoemulsions containing 0.25 wt% pectin.
Collapse
|
30
|
Cao W, Gao R, Wan X, He Z, Chen J, Wang Y, Hu W, Li J, Li W. Effects of globular and flexible structures on the emulsifying and interfacial properties of mixed soy proteins. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
31
|
Shi F, Tian X, Chang Y, Shen J, Xue C. Structure-function relationships between the primary structural properties and multilayer emulsion-fabricating function of an anionic polysaccharide (sulfated fucan). Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Du F, Qi Y, Huang H, Wang P, Xu X, Yang Z. Stabilization of O/W emulsions via interfacial protein concentrating induced by thermodynamic incompatibility between sarcoplasmic proteins and xanthan gum. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107242] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
33
|
Zhi Z, Liu R, Wang W, Dewettinck K, Van Bockstaele F. Recent progress in oil-in-water-in-oil (O/W/O) double emulsions. Crit Rev Food Sci Nutr 2022; 63:6196-6207. [PMID: 35081829 DOI: 10.1080/10408398.2022.2029346] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Oil-in-water-in-oil (O/W/O) double emulsions are recognized as an advanced design route for oil structuring that shows promising applications in the pharmaceutical, cosmetic, and food fields. This review summarizes the main research advances of O/W/O double emulsions over the past two decades. It mainly focuses on understanding the preparation strategies, stabilization mechanism, and potential applications of O/W/O double emulsions. Several emulsification strategies are discussed, including traditional two-step emulsification method, phase-inversion approach, membrane emulsification, and microfluidic emulsification. Further, the role of interfacial stabilizers and viscosity in the stability of O/W/O double emulsions will be discussed with a focus on synthetic emulsifiers, natural biopolymer sand solid particles for achieving this purpose. Additionally, analytical methods for evaluating the stability of O/W/O double emulsions, such as advanced microscopy, rheology, and labeling assay are reviewed taking into account potential limitations of these characterization techniques. Moreover, possible innovative food applications are highlighted, such as simulating fat substitutes to decrease the trans- or saturated fatty acid content and developing novel delivery and encapsulation systems. This review paves a solid way for the exploration of O/W/O double emulsions toward large-scale implementation within the food industry.
Collapse
Affiliation(s)
- Zijian Zhi
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Rui Liu
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Koen Dewettinck
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Filip Van Bockstaele
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
34
|
Einhorn-Stoll U, Archut A, Eichhorn M, Kastner H. Pectin - Plant protein systems and their application. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Bonifacino C, Palazolo GG, Panizzolo LA, Abirached C. Study of emulsifying properties of soluble proteins obtained from defatted rice bran concentrate. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Carla Bonifacino
- Laboratorio de Propiedades Funcionales de Alimentos, Departamento de Ciencia y Tecnología de los Alimentos Facultad de Química, Universidad de la República Montevideo Uruguay
- Graduate Program in Chemistry Facultad de Química, Universidad de la República Montevideo Uruguay
| | - Gonzalo G. Palazolo
- Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos, Departamento de Ciencia y Tecnología Universidad Nacional de Quilmes, CONICET Bernal Argentina
| | - Luis A. Panizzolo
- Laboratorio de Propiedades Funcionales de Alimentos, Departamento de Ciencia y Tecnología de los Alimentos Facultad de Química, Universidad de la República Montevideo Uruguay
| | - Cecilia Abirached
- Laboratorio de Propiedades Funcionales de Alimentos, Departamento de Ciencia y Tecnología de los Alimentos Facultad de Química, Universidad de la República Montevideo Uruguay
| |
Collapse
|
36
|
Effect of pH and xanthan gum on emulsifying property of ovalbumin stabilized oil-in water emulsions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111621] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Cai Y, Huang L, Tao X, Su J, Xiao C, Zhao M, Zhao Q, Van der Meeren P. Enhanced acidic stability of O/W emulsions by synergistic interactions between okara protein and carboxymethyl cellulose. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Jiménez-Rodríguez A, Heredia-Olea E, Barba-Dávila BA, Gutiérrez-Uribe JA, Antunes-Ricardo M. Polysaccharides from Agave salmiana bagasse improves the storage stability and the cellular uptake of indomethacin nanoemulsions. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Characterization of interactions between whey protein isolate and hyaluronic acid in aqueous solution: Effects of pH and mixing ratio. Colloids Surf B Biointerfaces 2021; 203:111758. [PMID: 33865090 DOI: 10.1016/j.colsurfb.2021.111758] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/03/2023]
Abstract
Interactions between whey protein isolate (WPI) and hyaluronic acid (HA) were characterized as functions of pH (6.0-1.0) and protein to polysaccharide ratio (R, 1:4-10:1). Intramolecular soluble complexes formed at pHc of 5.6-5.8, followed by intermolecular insoluble complexes formed at pHΦ1 of 4.4-4.6. Complexes at ratios below 4:1 reached maximum optical value at pH 2.4 while samples above 4:1 peaked at pH 3-3.4 then precipitated. WPI/HA coacervates completely dissociated into soluble complex at pH 1.6-1.8 (pHΦ2). WPI/HA mixtures showed shear thinning behavior and elastic property. Whey protein underwent significant α-helix structure change when interacting with HA in range of pHΦ1>pH > pHΦ2 and at low R values (1:4 and 1:2). Scanning electronic microscope (SEM) pictures showed pH and mixing ratio dependent microstructural changes corresponding with phase transition. Data may provide helpful information for further application of WPI/HA complexes in medical, food and cosmetic fields.
Collapse
|
40
|
Ghobadi M, Varidi MJ, Koocheki A, Varidi M. Effect of heat treatment on the structure and stability of Grass pea (Lathyrus sativus) protein isolate/Alyssum homolocarpum seed gum nanoparticles. Int J Biol Macromol 2021; 182:26-36. [PMID: 33798584 DOI: 10.1016/j.ijbiomac.2021.03.170] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/03/2021] [Accepted: 03/28/2021] [Indexed: 11/26/2022]
Abstract
In the present study, Grass pea protein isolate (GPPI)- Alyssum homolocarpum seed gum (AHSG) complex nanoparticles were formed through two fabrication methods and their physicochemical properties, structure and stability against sodium chloride and different pHs were investigated. Type 1 particles were formed by creating GPPI nanoparticles, and then coating them with AHSG; while Type 2 particles were fabricated through the heat treatment of GPPI-AHSG complexes at 85 °C for 15 min. The preparation methods did not influence the magnitude of electrical charges on biopolymer particles. The particle size analysis revealed that Type 2 particles had lower mean diameter (d = 360.20 nm) compared to Type 1 particles (d = 463.22 nm). Structural properties of Type 1 and Type 2 particles were determined using Fourier transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD), Differential scanning calorimetry (DSC), Atomic force microscopy (AFM), and transmission electron microscopy (TEM). Hydrogen bonding, electrostatic and hydrophobic interactions were the main driving forces contributed to the formation of both GPPI-AHSG complex particles. Assessments of morphological and structural properties also indicated that both Type 1 and 2 particles had spherical shapes and heat treatment increased the ordered intermolecular structures in biopolymer particles. Type 2 particles had higher denaturation temperature and better pH and salt stability when compared to Type 1 particles. These results indicate that thermal treatment was effective for the fabrication of stable GPPI-AHSG complex nanoparticles.
Collapse
Affiliation(s)
- Mohammad Ghobadi
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Javad Varidi
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arash Koocheki
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mehdi Varidi
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
41
|
Li Z, Lin Q, McClements DJ, Fu Y, Xie H, Li T, Chen G. Curcumin-loaded core-shell biopolymer nanoparticles produced by the pH-driven method: Physicochemical and release properties. Food Chem 2021; 355:129686. [PMID: 33799264 DOI: 10.1016/j.foodchem.2021.129686] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/29/2022]
Abstract
In this study, core-shell biopolymer nanoparticles were fabricated for the encapsulation and delivery of curcumin using a pH-driven method. The influences of the coating composition on the physicochemical properties and curcumin release characteristics of the core-shell nanoparticles were studied. Fourier transform infrared spectroscopy and X-ray diffraction analyses indicated that curcumin was encapsulated in an amorphous state inside the nanoparticles. Particle size and ζ-potential measurements indicated that the biopolymer nanoparticles were relatively stable under different environmental conditions: long term storage, heating, pH changes and salt. The DPPH radical scavenging activity of the curcumin was increased after encapsulation within the nanoparticles, whereas the gastrointestinal release of curcumin was prolonged. These results were attributed to the ability of alginate and NaCas to form a thick layer around the nanoparticles, which increased the steric and electrostatic repulsion between them, as well as inhibiting the release of curcumin.
Collapse
Affiliation(s)
- Zhenpeng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Quanquan Lin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - David Julian McClements
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Yuying Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Teng Li
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, TN 37996, USA
| | - Guowen Chen
- Hangzhou College of Commerce, Zhejiang Gongshang University, Hangzhou, 311508, China
| |
Collapse
|
42
|
Yang J, Gu Z, Cheng L, Li Z, Li C, Ban X, Hong Y. Preparation and stability mechanisms of double emulsions stabilized by gelatinized native starch. Carbohydr Polym 2021; 262:117926. [PMID: 33838805 DOI: 10.1016/j.carbpol.2021.117926] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 01/11/2023]
Abstract
Double emulsions are promising carrier systems for foods, pharmaceuticals, and cosmetics. However, their limited stability hinders their practical applications. We used gelatinized starch to develop stable double emulsions as carrier materials. The oil/water/water (O/W/W) double emulsions were formed by 5 wt% native corn starch, while oil/water/oil (O/W/O) double emulsions were formed by 7 wt% native corn starch and high-amylose starch with 60 % and 75 % amylose contents investigated by optical microscopy. Furthermore, the storage stability of double emulsions was revealed by droplet size distribution, microstructure, backscattering, rheological profiles, and low-field nuclear magnetic resonance (LF-NMR) imaging. Results confirmed that the O/W/O double emulsions stabilized by 7 wt% native corn starch had a smaller mean droplet size (11.400 ± 0.424 μm) and excellent storage stability (14 days) than O/W/W and O/W/O double emulsions prepared with high-amylose starch. Such unique double emulsions prepared with gelatinized native corn starch are good candidates of carrier materials.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao, 266109, Shandong Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Zhengbiao Gu
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao, 266109, Shandong Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Li Cheng
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao, 266109, Shandong Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Zhaofeng Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao, 266109, Shandong Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Caiming Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao, 266109, Shandong Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Xiaofeng Ban
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao, 266109, Shandong Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Yan Hong
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao, 266109, Shandong Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
43
|
Yan S, Xie F, Zhang S, Jiang L, Qi B, Li Y. Effects of soybean protein isolate − polyphenol conjugate formation on the protein structure and emulsifying properties: Protein − polyphenol emulsification performance in the presence of chitosan. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125641] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Yalçinöz Ş, Erçelebi E. Influence of hydrocolloid addition on physical properties and rheology of olive oil in bitter orange juice (O/W) nano-emulsions prepared with blends of different surfactants. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1847662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Şelale Yalçinöz
- Faculty of Engineering, Department of Food Engineering, The University of Gaziantep, Gaziantep, Turkey
| | - Emine Erçelebi
- Faculty of Engineering, Department of Food Engineering, The University of Gaziantep, Gaziantep, Turkey
| |
Collapse
|
45
|
Tian Y, Zhang Z, Taha A, Chen Y, Hu H, Pan S. Interfacial and emulsifying properties of β-conglycinin/pectin mixtures at the oil/water interface: Effect of pH. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
46
|
Tang Y, Wang X, Yu J, Song L, Lin S. Fish skin gelatin-based emulsion as a delivery system to protect lipophilic bioactive compounds during in vitro and in vivo digestion: The case of benzyl isothiocyanate. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Mundo JLM, Zhou H, Tan Y, Liu J, McClements DJ. Enhancing emulsion functionality using multilayer technology: Coating lipid droplets with saponin-polypeptide-polysaccharide layers by electrostatic deposition. Food Res Int 2020; 140:109864. [PMID: 33648182 DOI: 10.1016/j.foodres.2020.109864] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022]
Abstract
Electrically charged food-grade biopolymers can be used to form multilayer coatings around the lipid droplets in oil-in-water emulsions using a sequential layer-by-layer electrostatic deposition approach. In principle, this approach can be used to improve the stability and enhance the functionality of food emulsions. In this study, multilayer coatings were formed from saponins, polypeptides, and polysaccharides using medium chain triglyceride (MCT) lipid droplets as templates (pH 4.0). First, an emulsion containing negatively charged lipid droplets was created using quillaja saponin (QS) as an anionic emulsifier. Second, these anionic droplets were coated with a cationic polypeptide (poly-L-lysine, PLL) to form positively-charged droplets. Finally, these cationic droplets were coated with a negatively-charged polysaccharide, either pectin (PE) or κ-carrageenan (KC), to form anionic droplets. Overall, the 1-layer emulsions had the best resistance to salt, pH, and heat, indicating that quillaja saponins were effective emulsifiers. The 2-layer emulsions had better pH-stability than the 3-layer emulsions, which tended to strongly aggregate under acidic conditions. Conversely, the 3-layer emulsions had better salt-stability than the 2-layer emulsions, which tended to aggregate strongly even at low salt levels (50-100 mM NaCl). All the emulsions were relatively stable to heating (90 °C, 30 min). Overall, our results provide useful insights into the formulation of stable multilayer emulsions from food-grade emulsifiers and biopolymers. There appears to be little advantage to using the multilayer technology to enhance the physical stability of saponin-coated lipid droplets, but there may be advantages in terms of extending their functional properties, which will be explored in future studies.
Collapse
Affiliation(s)
| | - Hualu Zhou
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yunbing Tan
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Jinning Liu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
48
|
Chen W, Ju X, Aluko RE, Zou Y, Wang Z, Liu M, He R. Rice bran protein-based nanoemulsion carrier for improving stability and bioavailability of quercetin. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106042] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Feng H, Jin H, Gao Y, Yan S, Zhang Y, Zhao Q, Xu J. Effects of freeze-thaw cycles on the structure and emulsifying properties of peanut protein isolates. Food Chem 2020; 330:127215. [DOI: 10.1016/j.foodchem.2020.127215] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/20/2020] [Accepted: 05/31/2020] [Indexed: 01/30/2023]
|
50
|
Cai X, Du X, Zhu G, Cao C. Induction effect of NaCl on the formation and stability of emulsions stabilized by carboxymethyl starch/xanthan gum combinations. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|