1
|
Cherewyk JE, Blakley BR, Al-Dissi AN. The C-8-S-isomers of ergot alkaloids - a review of biological and analytical aspects. Mycotoxin Res 2024; 40:1-17. [PMID: 37953416 PMCID: PMC10834577 DOI: 10.1007/s12550-023-00507-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/03/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Ergot alkaloids are secondary metabolites that are produced by fungi and contaminate cereal crops and grasses. The ergot alkaloids produced by Claviceps purpurea are the most abundant worldwide. The metabolites exist in two configurations, the C-8-R-isomer (R-epimer) and the C-8-S-isomer (S-epimer). These two configurations can interconvert to one another. Ergot alkaloids cause toxic effects after consumption of ergot-contaminated food and feed at various concentrations. For bioactivity reasons, the C-8-R-isomers have been studied to a greater extent than the C-8-S-isomer since the C-8-S-isomers were considered biologically inactive. However, recent studies suggest the contrary. Analytical assessment of ergot alkaloids now includes the C-8-S-isomers and high concentrations of specific C-8-S-isomers have been identified. The inclusion of the C-8-S-isomer in regulatory standards is reviewed. This review has identified that further research into the C-8-S-isomers of ergot alkaloids is warranted. In addition, the inclusion of the C-8-S-isomers into regulatory recommendations worldwide for food and feed should be implemented. The objectives of this review are to provide an overview of historic and current studies that have assessed the C-8-S-isomers. Specifically, this review will compare the C-8-R-isomers to the C-8-S-isomers with an emphasis on the biological activity and analytical assessment.
Collapse
Affiliation(s)
- Jensen E Cherewyk
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
| | - Barry R Blakley
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Ahmad N Al-Dissi
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| |
Collapse
|
2
|
Silva Â, Mateus ARS, Barros SC, Silva AS. Ergot Alkaloids on Cereals and Seeds: Analytical Methods, Occurrence, and Future Perspectives. Molecules 2023; 28:7233. [PMID: 37894711 PMCID: PMC10609535 DOI: 10.3390/molecules28207233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Ergot alkaloids are secondary metabolites resulting from fungi of the genus Claviceps that have proven to be highly toxic. These mycotoxins commonly infect cereal crops such as wheat, rye, barley, and oats. Due to the increase worldwide consumption of cereal and cereal-based products, the presence of ergot alkaloids in food presents a concern for human safety. For this reason, it is essential to develop several analytical methods that allow the detection of these toxic compounds. This review compiles and discusses the most relevant studies and methods used in the detection and quantification of ergot alkaloids. Moreover, the decontamination techniques are also addressed, with special attention to sorting, cleaning, frying, baking, peeling, and ammonization methods, as they are the only ones already applied to ergot alkaloids.
Collapse
Affiliation(s)
- Ângela Silva
- University of Coimbra, Faculty of Pharmacy, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (Â.S.); (A.R.S.M.)
| | - Ana Rita Soares Mateus
- University of Coimbra, Faculty of Pharmacy, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (Â.S.); (A.R.S.M.)
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., 4485-655 Vila do Conde, Portugal;
| | - Sílvia Cruz Barros
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., 4485-655 Vila do Conde, Portugal;
| | - Ana Sanches Silva
- University of Coimbra, Faculty of Pharmacy, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (Â.S.); (A.R.S.M.)
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, 4501-401 Oporto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
3
|
Electrochemistry Applied to Mycotoxin Determination in Food and Beverages. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Cherewyk JE, Grusie-Ogilvie TJ, Parker SE, Blakley BR, Al-Dissi AN. Ammonization of the R- and S-Epimers of Ergot Alkaloids to Assess Detoxification Potential. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8931-8941. [PMID: 35830571 PMCID: PMC9335869 DOI: 10.1021/acs.jafc.2c01583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Detoxification of ergot-contaminated feed by ammonia would be a practical application, given that ammonia is routinely used in the agriculture industry. To assess the effects of ammonia on ergot alkaloids, natural ergot-contaminated wheat was ammoniated. The total concentration of ergot alkaloids (R- and S-epimers) decreased after exposure to ammonia (8-29%). Separately, the total R-epimers decreased in concentration (40-66%), whereas the total S-epimers increased (21-81%). Specific ergot alkaloids demonstrated degradation and/or epimerization after exposure to ammonia, potentially associated with structural differences, and influenced the total concentrations observed. Ammonization of ergot standards resulted in potential degradation products and epimerization, supporting the above results. The use of ultrahigh-performance liquid chromatography-tandem mass spectrometry provides an updated assessment of the detoxification potential of ammonia for ergot alkaloids and the quantification of the S-epimers. Ammonia alters the R- and S-epimers of ergot alkaloids, which may lead to a potential practical detoxification process of ergot-contaminated feed.
Collapse
Affiliation(s)
- Jensen E. Cherewyk
- Department
of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | | | - Sarah E. Parker
- Centre
for Applied Epidemiology, Large Animal Clinical Sciences, Western
College of Veterinary Medicine, University
of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Barry R. Blakley
- Department
of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Ahmad N. Al-Dissi
- Department
of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| |
Collapse
|
5
|
Covariation of Ergot Severity and Alkaloid Content Measured by HPLC and One ELISA Method in Inoculated Winter Rye across Three Isolates and Three European Countries. Toxins (Basel) 2020; 12:toxins12110676. [PMID: 33114663 PMCID: PMC7692364 DOI: 10.3390/toxins12110676] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022] Open
Abstract
Ergot caused by Claviceps purpurea is a problem for food and feed security in rye due to the occurrence of toxic ergot alkaloids (EAs). For grain elevators and breeders, a quick, easy-to-handle, and cheap screening assay would have a high economic impact. The study was performed to reveal (1) the covariation of ergot severity (= percentage of sclerotia in harvested grain) and the content of 12 EAs determined by high performance liquid chromatography (HPLC) and (2) the covariation between these traits and results of one commercial enzyme linked immunosorbent assays (ELISA). In total, 372 winter rye samples consisting of a diverse set of genotypes, locations from Germany, Austria, and Poland over two years, and three isolates were analyzed. Ergocornine and α-ergocryptine were detected as major EAs. Ergocristinine occurred as a minor component. Claviceps isolates from different countries showed a similar EA spectrum, but different quantities of individual EAs. A moderate, positive covariation between ergot severity and EA content determined by HPLC was observed across two years (r = 0.53, p < 0.01), but large deviation from the regression was detected. ELISA values did neither correlate with the HPLC results nor with ergot severity. In conclusion, a reliable prediction of the EA content based on ergot severity is, at present, not possible.
Collapse
|
6
|
Sari EF, Prayogo GP, Loo YT, Zhang P, McCullough MJ, Cirillo N. Distinct phenolic, alkaloid and antioxidant profile in betel quids from four regions of Indonesia. Sci Rep 2020; 10:16254. [PMID: 33004929 PMCID: PMC7529777 DOI: 10.1038/s41598-020-73337-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 08/21/2020] [Indexed: 11/09/2022] Open
Abstract
Betel quid (BQ) is a chewing mixed package that mainly contains areca nut (AN), betel leaf (Leaf) or betel stem inflorescence (SI), and slaked lime, and is consumed with or without tobacco BQ chewing is common in South East Asia and has been strongly associated with malignant and potentially malignant diseases of the oral cavity. Alkaloids such as arecoline are often accounted for the carcinogenic potential of BQ, however the chemical composition of BQ has not been studied in detail. In the current study, we investigated the total phenolic content (TPC), antioxidant activity (by mean of ferric reducing antioxidant power, FRAP), radical scavenging activity (DPPH test), polyphenolic profile and arecoline content in different components of BQ, namely AN, Leaf or SI, Husk, and blended BQ (BQ mix, containing AN, Leaf or SI and slaked lime). Samples were imported from 4 major regions of Indonesia, namely: Banda Aceh (BA), North Sumatra (NS), West Kalimantan (WK) and West Papua (WP). The highest TPC, FRAP, and DPPH values were detected in AN samples compared to other BQ components, while samples from WP region were of higher values compared to the other regions. High performance liquid chromatography—Mass Spectrometry (LC–MS) analysis showed that Husk contains the widest range of polyphenols, including hydroxybenzoic acids, hydroxycinnamic acids, flavanols, flavonols and stilbenes. Catechin and epicatechin were the main polyphenols detected in BQ, and they were present at the highest concentrations in WP–AN sample. Arecoline was detected in all AN and BQ mix samples and was significantly correlated with catechin and epicatechin, and significantly negatively correlated with p-hydroxybenzoic acid. Notably, arecoline concentration changed significantly when AN was blended in BQ mixtures. The current study is the first to extensively characterise the chemical composition of BQ and provides insight for a better understanding of the interactions of BQ alkaloids and phenolics in the development of oral submucous fibrosis and oral cancer.
Collapse
Affiliation(s)
- Elizabeth Fitriana Sari
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia. .,Faculty of Dentistry, Universitas Padjadjaran, Jl. Raya Sumedang KM 21, Jatinangor, 45363, Indonesia. .,Dentistry and Oral Health, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, 3550, Australia.
| | - Grace Puspita Prayogo
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Yit Tao Loo
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Michael John McCullough
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia.
| |
Collapse
|
7
|
Abstract
Fungi produce mycotoxins in the presence of appropriate temperature, humidity, sufficient nutrients and if the density of the mushroom mass is favorable. Although all mycotoxins are of fungal origin, all toxic compounds produced by fungi are not called mycotoxins. The interest in mycotoxins first started in the 1960s, and today the interest in mycotoxin-induced diseases has increased. To date, 400 mycotoxins have been identified and the most important species producing mycotoxins belongs to Aspergillus, Penicillium, Alternaria and Fusarium genera. Mycotoxins are classified as hepatotoxins, nephrotoxins, neurotoxins, immunotoxins etc. In this review genotoxic and also other health effects of some major mycotoxin groups like Aflatoxins, Ochratoxins, Patulin, Fumonisins, Zearalenone, Trichothecenes and Ergot alkaloids were deeply analyzed.
Collapse
|