1
|
Pereira NIA, Oliveira MDS, Reis BCC, Nascimento BL, Carneiro CR, Arruda TR, Vieira ENR, Leite Junior BRDC. Unconventional sourced proteins in 3D and 4D food printing: Is it the future of food processing? Food Res Int 2024; 192:114849. [PMID: 39147528 DOI: 10.1016/j.foodres.2024.114849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Following consumer trends and market needs, the food industry has expanded the use of unconventional sources to obtain proteins. In parallel, 3D and 4D food printing have emerged with the potential to enhance food processing. While 3D and 4D printing technologies show promising prospects for improving the performance and applicability of unconventional sourced proteins (USP) in food, this combination remains relatively unexplored. This review aims to provide an overview of the application of USP in 3D and 4D printing, focusing on their primary sources, composition, rheological, and technical-functional properties. The drawbacks, challenges, potentialities, and prospects of these technologies in food processing are also examined. This review underscores the current necessity for greater regulation of food products processed by 3D and 4D printing. The data presented here indicate that 3D and 4D printing represent viable, sustainable, and innovative alternatives for the food industry, emphasizing the potential for further exploration of 4D printing in food processing. Additional studies are warranted to explore their application with unconventional proteins.
Collapse
Affiliation(s)
| | | | | | - Bruno Leão Nascimento
- Department of Food Technology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
2
|
Castaño-Ángel CC, Tarapues-Cuasapud JA, Bravo-Gómez JE, Solanilla-Duque JF, Roa-Acosta DF. Preliminary study of physicochemical, thermal, rheological, and interfacial properties of quinoa oil. F1000Res 2023; 12:1477. [PMID: 38854700 PMCID: PMC11162528 DOI: 10.12688/f1000research.134134.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 06/11/2024] Open
Abstract
Background: The growing popularity of nutrient-rich foods, among which is quinoa, is due to the increasing demand for healthier choices. Oils and hydrolyzed proteins from these foods may help prevent various health issues. The objective of this work was to perform extraction from the endosperm of the grain from high-protein quinoa flour by physical means via a differential abrasive milling process and extracting the oil using an automatic auger extractor at 160°C, as well as characterizing extracted oil. Methods: Quinoa oil extraction and physicochemical characterization were carried out. Chemical and physical quality indexes of quinoa oil were established, and both characterizations were conducted based on international and Columbian standards. Thermal properties were evaluated by differential scanning calorimetry, and rheological and interfacial properties of the oil were evaluated using hybrid rheometers and Drop Tensiometers, respectively, to determine its potential for obtaining functional foods. Results: The result was 10.5 g of oil/ 100 g of endosperm, with a moisture content of 0.12%, insoluble impurities of 0.017%, peroxide index of 18.5 meq O 2/kg of oil, saponification index of 189.6 mg potassium hydroxide/g of oil, refractive index of 1.401, and a density of 0.9179 g/cm 3 at 20°C. Regarding contaminating metals, it presented 7 mg of iron/kg of oil, a value higher than previously established limits of 5 mg of iron/kg of oil. The oil contained 24.9% oleic acid, 55.3% linoleic acid, and 4% linolenic acid, demonstrating antioxidant capacity. Quinoa oil showed thermal properties similar to other commercial oils. Conclusions: The interfacial and rheological properties were suitable for the stabilization of emulsions, gels, and foams, which are important in various industrial applications and could facilitate the development of new products. The extracted quinoa oil presented similar characteristics to other commercial oils, which could make it a potential product for commercialization and application in different industries.
Collapse
Affiliation(s)
| | | | - Jesús Eduardo Bravo-Gómez
- Departamento de Agroindustria, Facultad de Ciencias Agrarias, Universidad del Cauca, Comuna 1, Cauca, 190001, Colombia
| | - Jose Fernando Solanilla-Duque
- Departamento de Agroindustria, Facultad de Ciencias Agrarias, Universidad del Cauca, Comuna 1, Cauca, 190001, Colombia
| | - Diego Fernando Roa-Acosta
- Departamento de Agroindustria, Facultad de Ciencias Agrarias, Universidad del Cauca, Comuna 1, Cauca, 190001, Colombia
| |
Collapse
|
3
|
Córdoba-Cerón DM, Bravo-Gómez JE, Agudelo-Laverde LM, Roa-Acosta DF, Nieto-Calvache JE. Techno-functional properties of gluten-free pasta from hyperprotein quinoa flour. Heliyon 2023; 9:e18539. [PMID: 37560662 PMCID: PMC10407035 DOI: 10.1016/j.heliyon.2023.e18539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023] Open
Abstract
Many consumers who are aware of the importance of good nutrition demand quality food alternatives. In particular, many of them are looking for quality, plant-based protein sources such as quinoa. The objective of this work was to evaluate the techno-functional properties of gluten-free pasta from hyperprotein quinoa flour. Pasta mixes were made from gluten-free flours, corn, rice, cassava starch, hyperprotein quinoa flour and defatted high protein quinoa flour, which were subsequently extruded. The flow rheological properties of aqueous dispersions of flour mixtures were analyzed before and after the pasting test. In addition, thermal properties were analyzed by differential scanning calorimetry and structural properties by Fourier transform infrared spectroscopy. The results showed a change of flow from dilatant (n > 1) to pseudoplastic (n < 1) after the pasting test. In addition, a positive correlation was observed between hyperprotein defatted quinoa flour and viscosity, and a negative correlation with hyperprotein quinoa flour. Regarding thermal properties, it was found that all blends showed low gelatinization enthalpy values, attributed to the high proportions of HQF and HDQF. Spectroscopic analysis showed that the extrusion did not significantly affect the native structure of the protein, by monitoring the intensities of the 1648 cm-1, 1656 cm-1 and 1667 cm-1 bands associated with the Random coil, α-helix, β-turns secondary structures, respectively. It was possible to conclude that both hyperprotein quinoa flour and defatted hyperprotein quinoa flours have a differential influence on the techno-functional properties of pasta. The first one, tends to reduce viscosity and consistency while the second one tends to increase it. Finally, moderate temperatures during extrusion did not cause significant changes in starch and protein structures as determined by spectroscopic study.
Collapse
Affiliation(s)
- Deiny Maryeli Córdoba-Cerón
- Departamento de Agroindustria, Facultad de Ciencias Agrarias, Universidad del Cauca, Popayán, 190001, Colombia
| | - Jesús Eduardo Bravo-Gómez
- Departamento de Agroindustria, Facultad de Ciencias Agrarias, Universidad del Cauca, Popayán, 190001, Colombia
| | - Lina Marcela Agudelo-Laverde
- Programa de Ingeniería de Alimentos, Facultad de Ciencias Agroindustriales, Universidad del Quindío, Armenia, 630003, Colombia
| | - Diego Fernando Roa-Acosta
- Departamento de Agroindustria, Facultad de Ciencias Agrarias, Universidad del Cauca, Popayán, 190001, Colombia
| | - Jhon Edinson Nieto-Calvache
- Departamento de Agroindustria, Facultad de Ciencias Agrarias, Universidad del Cauca, Popayán, 190001, Colombia
- Programa de Ingeniería Agroindustrial, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de Los Llanos, Villavicencio, 50001022, Colombia
| |
Collapse
|
4
|
Córdoba-Cerón DM, Carranza-Saavedra D, Roa-Acosta DF, Hoyos-Concha JL, Solanilla-Duque JF. Physical and culinary analysis of long gluten-free extruded pasta based on high protein quinoa flour. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1017324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The consumption of foods with high protein content from pseudocereals is of great industrial interest. Pasta has a high gluten content; consequently, obtaining these gluten-free products is a technological challenge. The products obtained from quinoa show excellent results in protein and fiber with low glycemic index. This work focused on studying the effect of quinoa fat on the production of long pasta by extrusion in different mixtures of hyperprotein quinoa (HHP). It was observed that formulations with high percentages of starch showed a higher expansion rate, due to a higher fat content. Likewise, extruded pastes showed higher values of brightness than those containing lower percentages of starch and crude fat. The fracturability results were associated with the resistance of the paste to the pressure exerted for its deformation, which does not exceed 3.73 mm. The formulations with lower fat content presented high values in fracture stress due to the low diffusion of water and lipids. It was shown that fat has an indirect influence with a strong correlation with the expansion index and fracture stress and a moderate correlation (p > 0.05) with Young's modulus, indicating that increasing the added fat content increases the percentage of mass loss by baking. The melting and cohesiveness of all components improved during extrusion due to the pregelatinization of cassava starch, the addition of defatted HHP and the availability of quinoa starch granules.
Collapse
|
5
|
García-Parra M, Polo-Muñoz MP, Nieto Calvache JE, Agudelo-Laverde LM, Roa-Acosta DF. Physicochemical, rheological and structural properties of flours from six quinoa cultivars grown in Colombia. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.936962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BackgroundInclusion of quinoa in the diet of consumers has generated a challenge for quinoa producers and food processors, which involves the study of new cultivars and the functional properties of their flours.MethodsSix quinoa cultivars (Titicaca, Blanca real, Soracá, Pasankalla, Puno and Nariño) were analyzed for their proximate composition using the methodologies proposed by the Association of Official Analytical Collaboration, AOAC. A rheological analysis was carried out with flours from each cultivar. A sequential test including a flow test, a pasting test and another flow test was programmed to evaluate the flow behavior before and after a heating process. In addition, the structural properties of the cultivar flours were evaluated by Fourier Transform Infrared spectroscopy (FTIR).ResultsIt was found that the Pasankalla, Titicaca and Soracá cultivars had a higher (p < 0.05) protein content, while the Puno, Pansakalla and Blanca real cultivars stood out for their higher (p < 0.05) lipid content. On the other hand, it was found that before heating, all quinoa flour dispersions had a dilatant flow (n > 1), but after heating, all of them showed a decrease of index values, where the flours of the Titicaca and Pasankalla cultivars were more affected with a tendency toward a Newtonian flow (n ≈ 1). The pasting test showed that the viscosity varied according to the cultivar tested. It is noteworthy that both Titicaca and Soracá presented a high peak viscosity (0.16 ± 0.01 and 0.13 ± 0.02 Pa·s respectively) and different setback values on cooling (0.100 ± 0.028 and 0.01 ± 0.01 Pa·s respectively). Spectroscopic analysis showed a direct relationship between the intensity of the peaks and the nutritional content of the flours. In addition, secondary protein structures such as β-sheet, β-Turn, α-Helix and Random Coil were identified after deconvolution of the spectra. The differences in the protein structures of each cultivar could allow their identification by this methodology.ConclusionIt can be concluded that quinoa flours from the six cultivars could be used for the formulation of different food products, such as beverages, baked goods, snacks, pasta and others, acting as nutritional improvers and modifiers of rheological, textural and functional properties.
Collapse
|
6
|
Garcia-Parra MÁ, Roa-Acosta DF, Bravo-Gomez JE, Hernández-Criado JC, Villada-Castillo HS. Effects of Altitudinal Gradient on Physicochemical and Rheological Potential of Quinoa Cultivars. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.862238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The protein, carbohydrate, and fat characteristics of quinoa grains reflect in their techno-functional potential. This aspect has been little studied in quinoa, while some physicochemical and rheological characteristics have been generalized for all cultivars under all primary production conditions. The aim of this research is to determine the agro-industrial potential of different quinoa cultivars evaluated under different environments through physicochemical and rheological responses. This study has a factorial design with a first level corresponding to cultivars and a second level to production zones. The results showed that the cultivars present high compositional variability. It was also found that the altitudinal gradient changes protein and starch composition, protein secondary structure, and starch structural conformation. In addition, significant variations were found in viscosity, breakdown, and dispersion setback for all treatments. However, there were no differences between treatments before heating/cooling and after heat treatment.
Collapse
|
7
|
Ortiz-Gómez V, Nieto-Calvache JE, Roa-Acosta DF, Solanilla-Duque JF, Bravo-Gómez JE. Preliminary Characterization of Structural and Rheological Behavior of the Quinoa Hyperprotein-Defatted Flour. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.852332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protein functional properties are related to physical and chemical parameters that influence protein behavior in food systems during processing, storage and consumption. The structural and rheological properties of three quinoa hyperprotein flours (without defatting, WD, chemically defatted, CD, and mechanically defatted, MD) were evaluated. The values of the fluidity index (n) were significantly different (p < 0.05), which was associated with changes in protein or starch structures due to solvent treatments or heating of the flour during pressing. In addition, a strong dependence of the consistency index (k) on the shear rate was observed. For dispersions with a concentration of 12% (w/v), CD and WD had a significantly lower setback value than MD. The viscosity peak was affected by the presence of lipid molecules. Greater changes were evident in the β-sheet (1,610 and 1,625 cm−1) and β-spin (1,685 and 1,695 cm−1) structures. The changes identified in these structures were associated with the defatting treatment. Consequently, the intensity ratio 2,920/1,633 cm−1 was more sensitive to changes in the fat content of the flours. It was shown that defatting conditions increase the protein adsorption kinetics and that the viscoelastic properties of the protein increase when the flour has a lower fat content. Hyperprotein quinoa flour could be used to improve the protein content of products such as snacks, pastas, ice cream, bakery products, meat extenders, among others, due to its foaming, gelling or emulsifying capacity. The objective of this work was to study the effect of two types of defatting of hyperprotein quinoa flour on its structural and rheological properties.
Collapse
|
8
|
Ortiz-Gómez V, Fernández-Quintero A, Roa-Acosta DF, Bravo-Gómez JE, Solanilla-Duque JF. Physicochemical Characterization of Quinoa (Chenopodium quinoa cv. Nariño) Co-products Obtained by Wet Milling. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.851433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In recent years, great interest has been shown in pseudocereals for their high nutritional value. Wet milling has been used to obtain macromolecules such as proteins and starches. However, the co-products obtained from this food industry have been studied little. A factorial design Box-benhken was used to study the effect of surfactant concentration (SDS), sodium hydroxide (NaOH) concentration and maceration temperature on structural and colorimetric properties. Structural properties were evaluated by infrared spectroscopy (FTIR-ATR) and color changes by the CIElab tristimulus method (L*, a*, b*). A decrease in temperature and NaOH causes a decrease in lightness (L*), resulting in lower starch content and higher protein content in the co-product. This behavior was correlated with the infrared spectroscopy (FTIR-ATR) spectra. The spectra show a possible structural change in the amylose/amylopectin ratio of the starch granule at 1,012 cm−1, 1,077 cm−1, and 1,150 cm−1 bands, which are associated with glycosidic bonds, these bonds were sensitive to NaOH concentration. While those bands assigned to Amide II (1,563 cm−1) and Amide I (1,633 cm−1), were sensitive to the effect of NaOH and maceration temperature, evidencing that protein content in the co-products is variable and depends significantly on the extraction conditions. The co-products obtained by wet milling could be used in the development of functional foods, such as bread, snacks, pasta and other products.
Collapse
|
9
|
Muñoz-Pabon KS, Parra-Polanco AS, Roa-Acosta DF, Hoyos-Concha JL, Bravo-Gomez JE. Physical and Paste Properties Comparison of Four Snacks Produced by High Protein Quinoa Flour Extrusion Cooking. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.852224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Extrusion cooking is used to produce puffed snacks based on cereals and feed ingredients. Because of its nutritional properties, quinoa flour has been employed to prepare various types of foods. This study evaluates the effects of including hyper-protein quinoa flour obtained through abrasive milling in four formulations cooked at 27% moisture content and processed in a laboratory level single screw extruder to determine their physical, textural, and pasting properties. The results indicated that additional hyper-protein quinoa flour in the cereal mixture reduced 47% the expansion index (EI), while the extrudate density (ED) and hardness increased 54 and 130%, respectively. After the extrusion process, the water absorption index (WAI), water solubility index (WSI) increased by more than 100%. The addition of hyper-protein quinoa flour (25–37%) did not affect the WAI, but an increase in the WSI was observed. The quinoa flour extrusion process generated changes on the color mainly in the L parameter, which decreased in the extruded snacks with quinoa flour inclusion (51.49), compared to the snack without inclusion (62.68). Changing the integrity of the starch granules and associated proteins, causing a decrease in the viscosity peaks during heating and subsequent cooling. The extruded samples revealed stability in the retrogradation process. Extruded snacks from quinoa could be an alternative approach to produce feed ingredients with high protein contents.
Collapse
|
10
|
Ricaurte L, Perea-Flores MDJ, Méndez-Méndez JV, Santagapita PR, Quintanilla-Carvajal MX. Compound distribution, structural analysis and nanomechanical properties of nanofibers loaded with high-oleic palm oil nanoemulsions for packaging application. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Zare L, Mollakhalili-Meybodi N, Fallahzadeh H, Arab M. Effect of atmospheric pressure cold plasma (ACP) treatment on the technological characteristics of quinoa flour. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
García-Parra M, Roa-Acosta D, García-Londoño V, Moreno-Medina B, Bravo-Gomez J. Structural Characterization and Antioxidant Capacity of Quinoa Cultivars Using Techniques of FT-MIR and UHPLC/ESI-Orbitrap MS Spectroscopy. PLANTS (BASEL, SWITZERLAND) 2021; 10:2159. [PMID: 34685968 PMCID: PMC8539964 DOI: 10.3390/plants10102159] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022]
Abstract
The existence of more of 16,000 varieties of quinoa accessions around the world has caused a disregard on their structural and phytochemical characteristics. Most of such accessions belong to cultivars settled in Colombia. The goal of this research was to evaluate the structural attributes and antioxidant capacities from six quinoa cultivars with high productive potential from central regions in Colombia. This study used middle-range infrared spectroscopy (IR-MIR) to determine the proteins, starch and lipids distinctive to quinoa grains. Ultra-high-performance liquid chromatography electrospray ionization Orbitrap, along with high-resolution mass spectrometry (UHPLC/ESI-Orbitrap MS), were also used to identify the existence of polyphenols in cultivars. The antioxidant capacity was determined through DPPH, ABTS and FRAP. The spectrums exhibited significant variances on the transmittance bands associated with 2922 cm-1, 1016 cm-1 and 1633 cm-1. Moreover, the intensity variations on the peaks from the secondary protein structure were identified, mainly on the bands associated with β-Sheet-1 and -2, random coil α elice and β-turns-2 and -3. Changes found in the ratios 996 cm-1/1014 cm-1 and 1041 cm-1/1014 cm-1 were associated with the crystalline/amorphous affinity. Regarding the antioxidant capacity, great differences were identified (p < 0.001) mainly through FRAP methods, while the phenolic acids and flavonoids were determined by UHPLC/ESI-Orbitrap MS techniques. The presence of apigenin and pinocembrin on grains was reported for the first time. Titicaca and Nariño were the most phytochemically diverse quinoa seeds.
Collapse
Affiliation(s)
- Miguel García-Parra
- Doctoral Program in Agriculture and Agroindustrial Science, Agriculture Department, Universidad del Cauca, Popayán 190002, Colombia
| | - Diego Roa-Acosta
- Agroindustry Department, Faculty of Agricultural Sciences, Universidad del Cauca, Popayán 190002, Colombia; (D.R.-A.); (J.B.-G.)
| | - Víctor García-Londoño
- Institute of Polymer and Nanotechnology, Facultad de Arquitectura Diseño y Urbanismo, University of Buenos Aires-CONICET, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina;
| | - Brigitte Moreno-Medina
- Facultad de Ciencias Agropecuarias, Universidad Pedagógica y Tecnológica de Colombia (UPTC), Tunja 150002, Colombia;
| | - Jesús Bravo-Gomez
- Agroindustry Department, Faculty of Agricultural Sciences, Universidad del Cauca, Popayán 190002, Colombia; (D.R.-A.); (J.B.-G.)
| |
Collapse
|
13
|
Guo H, Hao Y, Yang X, Ren G, Richel A. Exploration on bioactive properties of quinoa protein hydrolysate and peptides: a review. Crit Rev Food Sci Nutr 2021; 63:2896-2909. [PMID: 34581209 DOI: 10.1080/10408398.2021.1982860] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Quinoa is an excellent source of nutritional and bioactive components. Protein is considered a key nutritional advantage of quinoa grain, and many studies have highlighted the nutritional and physicochemical properties of quinoa protein. In addition, quinoa protein is a good precursor of bioactive peptides. This review focused on the biological properties of quinoa protein hydrolysate and peptides, and gave a summary of the preparation and functional test of quinoa protein hydrolysate and peptides. A combination of milling fractionation and solvent extraction is recommended for the efficient production of quinoa protein. The biological functionalities of quinoa protein hydrolysate, including antidiabetic, antihypertensive, anti-inflammatory, antioxidant activities, and so on, have been extensively investigated based on in vitro studies and limited animal models. Additionally, bioinformatics analysis, including proteolysis simulation, virtual screening, and molecular docking, provides an alternative or assistive approach for exploring the potential bioactivity of quinoa protein and peptides. Nevertheless, further research is required for industrial production of bioactive quinoa peptides, verification of health benefits in humans, and mechanism interpretation of observed effects.
Collapse
Affiliation(s)
- Huimin Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Laboratory of Biomass and Green Technologies, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Yuqiong Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiushi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Guixing Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| |
Collapse
|
14
|
Stanschewski CS, Rey E, Fiene G, Craine EB, Wellman G, Melino VJ, S. R. Patiranage D, Johansen K, Schmöckel SM, Bertero D, Oakey H, Colque-Little C, Afzal I, Raubach S, Miller N, Streich J, Amby DB, Emrani N, Warmington M, Mousa MAA, Wu D, Jacobson D, Andreasen C, Jung C, Murphy K, Bazile D, Tester M. Quinoa Phenotyping Methodologies: An International Consensus. PLANTS (BASEL, SWITZERLAND) 2021; 10:1759. [PMID: 34579292 PMCID: PMC8472428 DOI: 10.3390/plants10091759] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022]
Abstract
Quinoa is a crop originating in the Andes but grown more widely and with the genetic potential for significant further expansion. Due to the phenotypic plasticity of quinoa, varieties need to be assessed across years and multiple locations. To improve comparability among field trials across the globe and to facilitate collaborations, components of the trials need to be kept consistent, including the type and methods of data collected. Here, an internationally open-access framework for phenotyping a wide range of quinoa features is proposed to facilitate the systematic agronomic, physiological and genetic characterization of quinoa for crop adaptation and improvement. Mature plant phenotyping is a central aspect of this paper, including detailed descriptions and the provision of phenotyping cards to facilitate consistency in data collection. High-throughput methods for multi-temporal phenotyping based on remote sensing technologies are described. Tools for higher-throughput post-harvest phenotyping of seeds are presented. A guideline for approaching quinoa field trials including the collection of environmental data and designing layouts with statistical robustness is suggested. To move towards developing resources for quinoa in line with major cereal crops, a database was created. The Quinoa Germinate Platform will serve as a central repository of data for quinoa researchers globally.
Collapse
Affiliation(s)
- Clara S. Stanschewski
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (C.S.S.); (E.R.); (G.F.); (G.W.); (V.J.M.); (D.S.R.P.)
| | - Elodie Rey
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (C.S.S.); (E.R.); (G.F.); (G.W.); (V.J.M.); (D.S.R.P.)
| | - Gabriele Fiene
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (C.S.S.); (E.R.); (G.F.); (G.W.); (V.J.M.); (D.S.R.P.)
| | - Evan B. Craine
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA; (E.B.C.); (K.M.)
| | - Gordon Wellman
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (C.S.S.); (E.R.); (G.F.); (G.W.); (V.J.M.); (D.S.R.P.)
| | - Vanessa J. Melino
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (C.S.S.); (E.R.); (G.F.); (G.W.); (V.J.M.); (D.S.R.P.)
| | - Dilan S. R. Patiranage
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (C.S.S.); (E.R.); (G.F.); (G.W.); (V.J.M.); (D.S.R.P.)
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany; (N.E.); (C.J.)
| | - Kasper Johansen
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Sandra M. Schmöckel
- Department Physiology of Yield Stability, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Daniel Bertero
- Department of Plant Production, School of Agriculture, University of Buenos Aires, Buenos Aires C1417DSE, Argentina;
| | - Helena Oakey
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Carla Colque-Little
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-2630 Taastrup, Denmark; (C.C.-L.); (D.B.A.); (C.A.)
| | - Irfan Afzal
- Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Sebastian Raubach
- Department of Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee AB15 8QH, UK;
| | - Nathan Miller
- Department of Botany, University of Wisconsin, 430 Lincoln Dr, Madison, WI 53706, USA;
| | - Jared Streich
- Biosciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (J.S.); (D.J.)
| | - Daniel Buchvaldt Amby
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-2630 Taastrup, Denmark; (C.C.-L.); (D.B.A.); (C.A.)
| | - Nazgol Emrani
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany; (N.E.); (C.J.)
| | - Mark Warmington
- Department of Primary Industries and Regional Development, Agriculture and Food, Kununurra, WA 6743, Australia;
| | - Magdi A. A. Mousa
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Vegetables, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - David Wu
- Shanxi Jiaqi Agri-Tech Co., Ltd., Taiyuan 030006, China;
| | - Daniel Jacobson
- Biosciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (J.S.); (D.J.)
| | - Christian Andreasen
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-2630 Taastrup, Denmark; (C.C.-L.); (D.B.A.); (C.A.)
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany; (N.E.); (C.J.)
| | - Kevin Murphy
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA; (E.B.C.); (K.M.)
| | - Didier Bazile
- CIRAD, UMR SENS, 34398 Montpellier, France;
- SENS, CIRAD, IRD, University Paul Valery Montpellier 3, 34090 Montpellier, France
| | - Mark Tester
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (C.S.S.); (E.R.); (G.F.); (G.W.); (V.J.M.); (D.S.R.P.)
| | | |
Collapse
|
15
|
Bhat MS, Arya SS. Technofunctional, rheological, thermal and structural properties of gorgon nut (
Eurayle ferox
) as affected by drying temperature. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mohmad Sayeed Bhat
- Food Engineering and Technology Department Institute of Chemical Technology Mumbai India
| | - Shalini Subhash Arya
- Food Engineering and Technology Department Institute of Chemical Technology Mumbai India
| |
Collapse
|