1
|
Liu Y, Jiang K, Qin Y, Brennan M, Brennan C, Cao J, Wang Z, Soteyome T. Prediction of the postharvest quality of Boletus wild mushrooms stored with mesoporous silica nanoparticles antibacterial film using Long Short-Term Memory model combined with the Northern Goshawk Optimization (NGO-LSTM). Food Chem 2025; 463:141490. [PMID: 39366091 DOI: 10.1016/j.foodchem.2024.141490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/16/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
This study aimed to address the challenge of extending the shelf life of Boletus wild mushrooms, which are prone to environmental and microbial contamination. An antibacterial film composed of polylactic acid (PLA) and mesoporous silica nanoparticles loaded with citral (CMP film) was developed for this purpose. Fifteen quality indices were assessed, and the data were integrated using AHP and TOPSIS to evaluate the film's efficacy. The CMP film effectively maintained the quality of mushroom over time. Additionally, a Nonlinear Global Optimization-Long Short-Term Memory (NGO-LSTM) model was employed to predict storage quality, using seven highly correlated quality indicators. The model achieved a high predictive accuracy, with the R2 exceeding 0.999. This study presents a novel packaging solution and a predictive model that together enhance the storage and quality control of Boletus wild mushrooms.
Collapse
Affiliation(s)
- Yudi Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Kai Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Yuyue Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China.
| | - Margaret Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne 3000, Australia
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne 3000, Australia.
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Zhengxuan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Thanapop Soteyome
- Rajamangala University of Technology Phra Nakhon, Bangkok 10300, Thailand
| |
Collapse
|
2
|
Sun Y, Xu H, Xie Y, Ding K, Liu Q, Li Y, Tao N, Ding S, Wang R. Sulfonated cellulose nanocrystalline- and pea protein isolate-mixture stabilizes the citral nanoemulsion to maintain its functional activity for effectively preserving fruits. Int J Biol Macromol 2024; 289:138725. [PMID: 39672440 DOI: 10.1016/j.ijbiomac.2024.138725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
The instability of citral greatly limits its application in food field. This study aimed to develop a safe and green emulsifier-stabilized nanoemulsion (NE) to encapsulate citral for exerting its activities. A series of NEs were prepared using varying proportions (1:2 and 1:3) of sulfonated cellulose nanocrystalline- (CNC-C) and pea protein isolate- (PPI) mixture as emulsifier to encapsulate citral with different content (1 %, 2 %, and 3 %), and their stability, antioxidant and antibacterial activities were evaluated to identify the optimal system. When CNC-C and PPI proportion was 1:3 and citral content was 2 % (CC1-P3-C2), the obtained CC1-P3-C2 incorporated into pectin achieved the excellent preservation effect on kiwifruits and blueberries. It was attributed to the stability and functional activities of CC1-P3-C2. On the one hand, after storage (25 d) or at pH 11 or 100 mM NaCl, its size and polydispersity index were still within acceptance level (<300 nm and 0.3). On the other hand, it showed good antioxidant and antibacterial activities against Escherichia coli, Staphylococcus aureus, Botrytis cinerea, and Botryosphaeria dothidea, which was due to its high encapsulation efficiency (96.78 %). Therefore, CC1-P3-C2 showed a great application potential in fruit preservation, which also provided a feasible strategy to design stable citral NEs.
Collapse
Affiliation(s)
- Yuying Sun
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Haishan Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ying Xie
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ke Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Qike Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yawen Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
3
|
Shahina Z, Dahms TES. A Comparative Review of Eugenol and Citral Anticandidal Mechanisms: Partners in Crimes Against Fungi. Molecules 2024; 29:5536. [PMID: 39683696 DOI: 10.3390/molecules29235536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Candida albicans is an emerging multidrug-resistant opportunistic pathogen that causes candidiasis, superficial infections on the mucosa, nails or skin, and life-threatening candidemia in deep tissue when disseminated through the bloodstream. Recently, there has been a sharp rise in resistant strains, posing a considerable clinical challenge for the treatment of candidiasis. There has been a resurged interest in the pharmacological properties of essential oils and their active components, for example, monoterpenes with alcohol (-OH) and aldehyde (-CHO) groups. Eugenol and citral have shown promising in vitro and in vivo activity against Candida species. Although there is substantial research on the efficacy of these essential oil components against C. albicans, a detailed knowledge of their mycological mechanisms is lacking. To explore the broad-spectrum effects of EOs, it is more meaningful and rational to study the whole essential oil, along with some of its major components. This review provides a comprehensive overview of eugenol and citral anticandidal and antivirulence activity, alone and together, along with the associated mechanisms and limitations of our current knowledge.
Collapse
Affiliation(s)
- Zinnat Shahina
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| |
Collapse
|
4
|
Zhou B, Fu J, Zhang Y, Bai R, Wang Y, Yang Y, Li Y, Zhou L. Design, Bioactivity, and Action Mechanism of Pyridinecarbaldehyde Phenylhydrazone Derivatives with Broad-Spectrum Antifungal Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20850-20861. [PMID: 39287063 DOI: 10.1021/acs.jafc.4c04078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Replacing old pesticides with new pesticide varieties has been the main means to solve pesticide resistance. Therefore, it is necessary to research and develop new antifungal agents for plant protection. In this study, a series of pyridinecarbaldehyde phenylhydrazone derivatives were designed and evaluated for their inhibition activity on plant pathogenic fungi to search for novel fungicide candidates. Picolinaldehyde phenylhydrazone (1) and nicotinaldehyde phenylhydrazone (2) were identified as promising antifungal lead scaffolds. The 4-fluorophenylhydrazone derivatives (1a and 2a) of 1 and 2 showed highly effective and broad-spectrum inhibition activity in vitro on 11 phytopathogenic fungi with EC50 values of 0.870-3.26 μg/mL, superior to the positive control carbendazim in most cases. The presence of the 4-fluorine atom on the phenyl showed a remarkable activity enhancement effect. Compound 1a at 300 μg/mL provided almost complete protection against infection of Alternaria solani on tomatoes over the post-treatment 9 days and high safety to germination of plant seeds. Furthermore, 1a showed strong inhibition activity with an IC50 value of 0.506 μg/mL on succinate dehydrogenase in A. solani. Molecular docking showed that both 1a and 2a can well bind to the ubiquinone-binding region of SDH by the conventional hydrogen bond, carbon-hydrogen bond, π-π or π-amide interaction, π-alkyl interaction, X---F (X = N, C, or H) interaction, and van der Waal forces. Meanwhile, scanning and transmission electron analysis displayed that 1a destroyed the morphology of mycelium and the structure of the cell membrane of A. solani. Fluorescent staining analysis revealed that 1a changed the mitochondrial membrane potential and cell membrane permeability. Thus, pyridinecarbaldehyde phenylhydrazone compounds emerged as novel antifungal lead scaffolds, and 1a and 2a can be considered promising candidates for the development of new agricultural fungicides.
Collapse
Affiliation(s)
- Bohang Zhou
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Plant Nematology, Xi'an 710043, Shaanxi, People's Republic of China
| | - Juan Fu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yuhao Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Ruofei Bai
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yiwei Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yiwei Yang
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Plant Nematology, Xi'an 710043, Shaanxi, People's Republic of China
| | - Yingmei Li
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Plant Nematology, Xi'an 710043, Shaanxi, People's Republic of China
| | - Le Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| |
Collapse
|
5
|
Ding YY, Jin YR, Luo XF, Zhang SY, Dai TL, Ma L, Zhang ZJ, Wu ZR, Jin CX, Liu YQ. Design, Synthesis, and Antimicrobial Activity Evaluation of Novel Isocryptolepine Derivatives against Phytopathogenic Fungi and Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20831-20841. [PMID: 39284582 DOI: 10.1021/acs.jafc.4c03976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
This research adopted the Fischer indole synthesis method to continue constructing a novel drug-like chemical entity based on the guidance of isocryptolepine and obtained four series of derivatives: Y, Da, Db, and Dc. The antimicrobial activity of these derivatives against plant pathogens was further evaluated. The results showed that Dc-2 had the best antifungal effect against Botrytis cinerea, and its EC50 value was up to 1.29 μg/mL. In addition, an in vivo activity test showed that the protective effect of Dc-2 on apples was 82.2% at 200 μg/mL, which was better than that of Pyrimethanil (45.4%). Meanwhile, it was found by scanning electron microscopy and transmission electron microscopy that the compound Dc-2 affected the morphology of mycelia. The compound Dc-2 was found to damage the cell membrane by PI and ROS staining. Through experiments such as leakage of cell contents, it was found that the compound Dc-2 changed the permeability of the cell membrane and caused the leakage of substances in the cell. According to the above studies, compound Dc-2 can be used as a candidate lead compound for further structural optimization and development.
Collapse
Affiliation(s)
- Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ya-Rui Jin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Tian-Li Dai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Li Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zheng-Rong Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Cheng-Xin Jin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Begh MZA, Khan J, Al Amin M, Sweilam SH, Dharmamoorthy G, Gupta JK, Sangeetha J, Lokeshvar R, Nafady MH, Ahmad I, Alshehri MA, Emran TB. Monoterpenoid synergy: a new frontier in biological applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03342-x. [PMID: 39105799 DOI: 10.1007/s00210-024-03342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
Monoterpenoids, compounds found in various organisms, have diverse applications in various industries. Their effectiveness is influenced by the oil's chemical composition, which in turn is influenced by plant genotype, environmental conditions, cultivation practices, and plant development stage. They are used in various industries due to their distinctive odor and taste, serving as ingredients, additives, insecticides, and repellents. These compounds have synergistic properties, resulting in superior combined effects over discrete ones, potentially beneficial for various health purposes. Many experimental studies have investigated their interactions with other ingredients and their antibacterial, insecticidal, antifungal, anticancer, anti-inflammatory, and antioxidant properties. This review discusses potential synergistic interactions between monoterpenoids and other compounds, their sources, and biological functions. It also emphasizes the urgent need for more research on their bioavailability and toxicity, underlining the importance and relevance of this comprehensive study in the current scientific landscape.
Collapse
Affiliation(s)
- Md Zamshed Alam Begh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Md Al Amin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - G Dharmamoorthy
- Department of Pharmaceutical Analysis, MB School of Pharmaceutical Sciences, Mohan Babu University (Erstwhile Sree Vidyaniketan College of Pharmacy), Tirupati, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - J Sangeetha
- Department of Pharmacognosy, Malla Reddy Institute of Pharmaceutical Sciences, Maisammaguda, Dhulapally, 500100, India
| | - R Lokeshvar
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, India
| | - Mohamed H Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, 12568, Egypt
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| |
Collapse
|
7
|
Zeng C, Sun Y, Lin H, Li Z, Zhang Q, Cai T, Xiang W, Tang J, Yasurin P. D-Limonene Inhibits Pichia kluyveri Y-11519 in Sichuan Pickles by Disrupting Metabolism. Molecules 2024; 29:3561. [PMID: 39124965 PMCID: PMC11314558 DOI: 10.3390/molecules29153561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The Pichia kluyveri, a proliferation commonly found in Sichuan pickles (SCPs), can accelerate the growth and reproduction of spoilage bacteria, causing off-odor development and decay. Although D-limonene, a common natural preservative, effectively restricts P. kluyveri, its inhibitory mechanism remains unclear. This study aimed to elucidate this molecular mechanism by investigating the impact on basic P. kluyveri metabolism. The findings revealed that D-limonene inhibited P. kluyveri growth and disrupted the transcription of the genes responsible for encoding the enzymes involved in cell wall and membrane synthesis, oxidative phosphorylation, glycolysis, and the tricarboxylic acid (TCA) cycle pathway. The results indicated that these events disrupted crucial metabolism such as cell wall and membrane integrity, adenosine triphosphate (ATP) synthesis, and reactive oxygen species (ROS) balance. These insights provided a comprehensive understanding of the inhibitory effect of D-limonene on the growth and reproduction of P. kluyveri while highlighting its potential application in the SCP industry.
Collapse
Affiliation(s)
- Chaoyi Zeng
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Department of Food Biotechnology, Faculty of Biotechnology, Assumption University, Bangkok 10240, Thailand;
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Yue Sun
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Haoran Lin
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Ziyu Li
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Qing Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Ting Cai
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Wenliang Xiang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Jie Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Department of Food Biotechnology, Faculty of Biotechnology, Assumption University, Bangkok 10240, Thailand;
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Patchanee Yasurin
- Department of Food Biotechnology, Faculty of Biotechnology, Assumption University, Bangkok 10240, Thailand;
| |
Collapse
|
8
|
Zhang Y, Zhou B, Wei P, Liu L, Bai R, Wang Y, Zhou L. Design, bioactivity and mechanism of N'-phenyl pyridylcarbohydrazides with broad-spectrum antifungal activity. Mol Divers 2024:10.1007/s11030-024-10919-4. [PMID: 38926303 DOI: 10.1007/s11030-024-10919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) as one of the fastest-growing fungicide categories for plant protection. In this study, a series of N'-phenyl pyridylcarbohydrazides as analogues of commercial SDHIs were designed and evaluated for inhibition activity on phytopathogenic fungi to search for potential novel SDHIs. The determination of antifungal activity in vitro and in vivo led to the discovery of a series of compounds with high activity and broad-spectrum property. Especially, N'-(4-fluorophenyl)picolinohydrazide (1c) and N'-(3,4-fluorophenyl)picolinohydrazide (1ae) showed 0.041-1.851 μg/mL of EC50 values on twelve fungi, superior to positive controls carbendazim and boscalid. In vivo activity, 1c at 50 μg/mL showed 61% of control efficacy at the post-treatment 9th day for the infection of P. piricola on apples, slightly smaller than 70% of carbendazim. In terms of action mechanism, 1c showed strong inhibition activity with IC50 of 0.107 μg/mL on SDH in Alternaria brassicae, superior to positive SDHI boscalid (IC50 0.182 μg/mL). Molecular docking indicated that 1c can well bind with the ubiquinone-binding region of SDH mainly by hydrogen bond, carbon hydrogen bond, π-alkyl, amide-π stacking, F-N and F-H interactions. Furthermore, scanning and transmission electron micrographs showed that 1c was able to obviously change the structure of mycelia and cell membrane. Fluorescence staining analysis showed that 1c could increase both the intracellular reactive oxygen species level and mitochondrial membrane potential. Finally, seed germination test, seedling growth test and cytotoxicity assay showed that 1c had very low toxicity to plant growth and mammalian cells. Thus, N'-phenyl pyridylcarbohydrazides especially 1c and 1ae can be considered promising fungicide alternatives for plant protection.
Collapse
Affiliation(s)
- Yuhao Zhang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Bohang Zhou
- Bio-Agriculture Institute of Shaanxi, Xi'an, 710043, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Plant Nematology, Xi'an, 710043, Shaanxi, People's Republic of China
| | - Pengan Wei
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Le Liu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Ruofei Bai
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yiwei Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Le Zhou
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
9
|
Wang J, Zhao F, Huang J, Li Q, Yang Q, Ju J. Application of essential oils as slow-release antimicrobial agents in food preservation: Preparation strategies, release mechanisms and application cases. Crit Rev Food Sci Nutr 2024; 64:6272-6297. [PMID: 36651301 DOI: 10.1080/10408398.2023.2167066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Food spoilage caused by foodborne microorganisms will not only cause significant economic losses, but also the toxins produced by some microorganisms will also pose a serious threat to human health. Essential oil (EOs) has significant antimicrobial activity, but its application in the field of food preservation is limited because of its volatile, insoluble in water and sensitive to light and heat. Therefore, in order to solve these problems effectively, this paper first analyzed the antibacterial effect of EOs as an antimicrobial agent on foodborne bacteria and its mechanism. Then, the application strategies of EOs as a sustained-release antimicrobial agent in food preservation were reviewed. On this basis, the release mechanism and application cases of EOs in different antibacterial composites were analyzed. The purpose of this paper is to provide technical support and solutions for the preparation of new antibacterial packaging materials based on plant active components to ensure food safety and reduce food waste.
Collapse
Affiliation(s)
- Jindi Wang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Fangyuan Zhao
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Jinglin Huang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Qianyu Li
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Qingli Yang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Jian Ju
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| |
Collapse
|
10
|
Zhang Y, Li B, Fu M, Wang Z, Chen K, Du M, Zalán Z, Hegyi F, Kan J. Antifungal mechanisms of binary combinations of volatile organic compounds produced by lactic acid bacteria strains against Aspergillusflavus. Toxicon 2024; 243:107749. [PMID: 38710308 DOI: 10.1016/j.toxicon.2024.107749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024]
Abstract
Aspergillus flavus(A. flavus), a common humic fungus known for its ability to infect agricultural products, served as the subject of investigation in this study. The primary objective was to assess the antifungal efficacy and underlying mechanisms of binary combinations of five volatile organic compounds (VOCs) produced by lactic acid bacteria, specifically in their inhibition of A. flavus. This assessment was conducted through a comprehensive analysis, involving biochemical characterization and transcriptomic scrutiny. The results showed that VOCs induce notable morphological abnormalities in A. flavus conidia and hyphae. Furthermore, they disrupt the integrity of the fungal cell membrane and cell wall, resulting in the leakage of intracellular contents and an increase in extracellular electrical conductivity. In terms of cellular components, VOC exposure led to an elevation in malondialdehyde content while concurrently inhibiting the levels of total lipids, ergosterol, soluble proteins, and reducing sugars. Additionally, the impact of VOCs on A. flavus energy metabolism was evident, with significant inhibition observed in the activities of key enzymes, such as Na+/K+-ATPase, malate dehydrogenase, succinate dehydrogenase, and chitinase. And they were able to inhibit aflatoxin B1 synthesis. The transcriptomic analysis offered further insights, highlighting that differentially expressed genes (DEGs) were predominantly associated with membrane functionality and enriched in pathways about carbohydrate and amino acid metabolism. Notably, DEGs linked to cellular components and energy-related mechanisms exhibited down-regulation, thereby corroborating the findings from the biochemical analyses. In summary, these results elucidate the principal antifungal mechanisms of VOCs, which encompass the disruption of cell membrane integrity and interference with carbohydrate and amino acid metabolism in A. flavus.
Collapse
Affiliation(s)
- Yi Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Bin Li
- College of Food Science, Southwest University, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Mingze Fu
- College of Food Science, Southwest University, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Zhirong Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| | - Kewei Chen
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Muying Du
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Zsolt Zalán
- Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Budapest, 1022, Hungary
| | - Ferenc Hegyi
- Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Budapest, 1022, Hungary
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China.
| |
Collapse
|
11
|
Zhang Y, Yang Z, Huang Q, Zhan X, Liu X, Guo D, Wang S, Rui W, Lü X, Shi C. Antimicrobial Activity of Eugenol Against Bacillus cereus and Its Application in Skim Milk. Foodborne Pathog Dis 2024; 21:147-159. [PMID: 38100031 DOI: 10.1089/fpd.2023.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Bacillus cereus is a foodborne pathogen widely distributed in the large-scale catering industry and produces spores. The study explored the antibacterial activity, potential mechanism of eugenol against B. cereus, and spores with germination rate. The minimum inhibitory concentration (MIC; 0.6 mg/mL) of eugenol to six B. cereus strains was compared with the control; B. cereus treated with eugenol had a longer lag phase. Eugenol at a concentration of more than 1/2MIC decreased viable B. cereus (∼5.7 log colony-forming unit [CFU]/mL) counts below detectable limits within 2 h, and eugenol of 3MIC reduced B. cereus (∼5.9 log CFU/mL) in skim milk below detectable limits within 30 min. The pH values of skim milk were unaffected by the addition of eugenol. The ΔE values below 2 show that the color variations of skim milk were not visible to the human eye. For sensory evaluation, eugenol did not significantly affect the color or structural integrity of the skim milk. It had a negative impact on the flavor and general sensory acceptance of the treated milk. Eugenol hyperpolarized B. cereus cell membrane, decreased intracellular ATP concentration, and increased intracellular reactive oxygen species contents and extracellular malondialdehyde contents, resulting in the cell membrane of B. cereus being damaged and permeabilized, and cell morphology being changed. In addition, according to the viable count, confocal laser scanning microscopy, and spore morphology changes, eugenol reduced the germination rate of B. cereus spores. These findings suggest that eugenol can be used as a new natural antibacterial agent to control B. cereus and spores in the food production chain.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhuokai Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qianning Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xing Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shuo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wushuang Rui
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
12
|
Li Q, Wang C, Xiao H, Zhang Y, Xie Y. 2-Hydroxy-4-methoxybenzaldehyde, a more effective antifungal aroma than vanillin and its derivatives against Fusarium graminearum, destroys cell membranes, inhibits DON biosynthesis, and performs a promising antifungal effect on wheat grains. Front Microbiol 2024; 15:1359947. [PMID: 38468857 PMCID: PMC10925628 DOI: 10.3389/fmicb.2024.1359947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
Fusarium graminearum (F. graminearum) is a severe pathogen threatening the safety of agriculture and food. This study aimed to explore the antifungal efficacies of several plant-derived natural compounds (vanillin and its derivatives) against the growth of F. graminearum and investigate the antifungal mechanism of 2-hydroxy-4-methoxybenzaldehyde (HMB), the strongest one. The minimum inhibitory concentration (MIC) of HMB in inhibiting mycelial growth was 200 μg/mL. HMB at MIC damaged cell membranes by increasing the permeability by about 6-fold (p < 0.05) as evidenced by propidium iodide (PI) staining. Meanwhile, the content of malondialdehyde (MDA) and glycerol was increased by 45.91 and 576.19% by HMB treatment at MIC, respectively, indicating that lipid oxidation and osmotic stress occurred in the cell membrane. Furthermore, HMB exerted a strong antitoxigenic role as the content of deoxynivalenol (DON) was remarkably reduced by 93.59% at MIC on 7th day. At last, the antifungal effect of HMB against F. graminearum was also confirmed on wheat grains. These results not only revealed the antifungal mechanism of HMB but also suggested that HMB could be applied as a promising antifungal agent in the preservation of agricultural products.
Collapse
Affiliation(s)
- Qian Li
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, Henan, China
- Henan Key laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Chong Wang
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, Henan, China
- Henan Key laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Hongying Xiao
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, Henan, China
- Henan Key laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Yiming Zhang
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, Henan, China
- Henan Key laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Yanli Xie
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, Henan, China
- Henan Key laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Yuan YH, Lin XN, Xu XM, Liu LX, Li XJ, Liu YG. Antifungal mechanism of rose, mustard, and their blended essential oils against Cladosporium allicinum isolated from Xinjiang naan and its storage application. J Appl Microbiol 2024; 135:lxae010. [PMID: 38211970 DOI: 10.1093/jambio/lxae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
AIMS To reveal the inhibition mechanism of rose, mustard, and blended essential oils against Cladosporium allicinum isolated from Xinjiang naan, and investigate the effect of the three essential oils on oxidative damage and energy metabolism. METHODS AND RESULTS Rose and mustard essential oils significantly inhibited mycelial growth and spore viability in a dose-dependent relationship. After essential oil treatment, the cell membrane permeability was altered, and significant leakage of intracellular proteins and nucleic acids occurred. SEM observations further confirmed the disruption of cell structure. ROS, MDA, and SOD measurements indicated that essential oil treatment induced a redox imbalance in C. allicinum, leading to cell death. As for energy metabolism, essential oil treatment significantly reduced Na+K+-ATPase, Ca2+Mg2+-ATPase, MDH activity, and CA content, impairing metabolic functions. Finally, storage experiments showed that all three essential oils ensured better preservation of naan, with mustard essential oil having the best antifungal effect. CONCLUSIONS Rose and mustard essential oils and their blends can inhibit C. allicinum at multiple targets and pathways, destroying cell morphological structure and disrupting metabolic processes.
Collapse
Affiliation(s)
- Yu-Han Yuan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
- College of Life Sciences, Linyi University, Linyi 276000, China
| | - Xiang-Na Lin
- College of Life Sciences, Linyi University, Linyi 276000, China
| | - Xiao-Mei Xu
- College of Life Sciences, Linyi University, Linyi 276000, China
| | - Ling-Xiao Liu
- Linyi Academy of Agricultural Sciences, Linyi 276012, China
| | - Xing-Jiang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Yun-Guo Liu
- College of Life Sciences, Linyi University, Linyi 276000, China
| |
Collapse
|
14
|
Wei S, Zhang Y, Wu M, Lv Y, Zhang S, Zhai H, Hu Y. Mechanisms of methyl 2-methylbutyrate suppression on Aspergillus flavus growth and aflatoxin B1 biosynthesis. Int J Food Microbiol 2024; 409:110462. [PMID: 37918192 DOI: 10.1016/j.ijfoodmicro.2023.110462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
Aspergillus flavus and subsequently produced carcinogenic aflatoxins frequently contaminate postharvest food crops, resulting in a threat to global food safety. Chemical preservatives are currently the main antifungal agents. However, fungal resistance effect, biological toxicity, and environmental contamination limit their practical applications. The application of natural volatile organic compounds has great potential for controlling fungal and mycotoxin contamination of postharvest food crops. This study therefore investigated the antifungal and anti-aflatoxigenic activities of the volatile compound, methyl 2-methylbutyrate (M2M), against Aspergillus flavus and its potential mechanisms. M2M effectively inhibited A. flavus mycelia growth, with a minimum inhibitory concentration of 2.0 μL/mL. Moreover, M2M also suppressed aflatoxin production, sclerotia production, and the pathogenicity on peanut and corn flour. RNA-Seq results showed that 2899 differentially expressed genes (DEGs), and DEGs involved in ergosterol synthesis, cell wall structure, glycolysis, citric acid cycle, mitogen activated protein kinase signaling pathway, DNA replication, and aflatoxin biosynthesis, were down-regulated in A. flavus. Further studies showed that M2M strongly damaged the cell membrane and cell wall integrity, reduced ATP levels, and induced reactive oxygen species (ROS) accumulation and DNA damage. Notably, a GATA type zinc finger transcription factor, AfSreA (AFLA_132440), which is essential for A. flavus growth and aflatoxin production, was identified. The growth and aflatoxin yield in the ΔAfSreA strain decreased by 94.94 % and 71.82 %, respectively. Additionally, deletion of AfSreA destroyed cell wall integrity and decreased expressions of genes involved in aflatoxin biosynthesis. Taken together, our results identified the antifungal and anti-aflatoxigenic mechanisms of M2M against A. flavus, and confirmed the potential of M2M in protecting peanut and corn from fungal contamination.
Collapse
Affiliation(s)
- Shan Wei
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yige Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Menghan Wu
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yangyong Lv
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Shuaibing Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Huanchen Zhai
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yuansen Hu
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, PR China; Food Laboratory of Zhongyuan, Henan University of Technology, Luohe 462300, PR China.
| |
Collapse
|
15
|
Jiang W, Liang X, Li H, Mo L, Chen W, Wang T, Wang H, Xing Y, Liao J. Inhibitory effect of tannic acid on the growth of Apiospora arundinis and 3-Nitropropionic acid production. J Appl Microbiol 2023; 134:lxad264. [PMID: 37960923 DOI: 10.1093/jambio/lxad264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
AIMS This study aimed to investigate the inhibitory effect of tannic acid (TA) on the growth of Apiospora arundinis and 3-Nitropropionic acid (3-NPA) production. METHODS AND RESULTS To investigate the antifungal mechanism, the effects of TA on the hypha growth, electrical conductivity, hypha morphology, defense-related enzymes, and 3-NPA production of A. arundinis were studied. TA concentrations of 640 and 1280 μg ml-1 exhibited strong antifungal activity against A. arundinis. The results of scanning electron microscopy and transmission electron microscopy showed that the hypha of the A. arundinis was severely deformed after TA treatment, and the cell membrane was blurred and thin, vacuoles were obviously shrunken and smaller, and most of the organelles were decomposed into irregular fragments. The increased electrical conductivity and malondialdehyde content indicated that TA caused peroxidation of unsaturated fatty acids and damaged the structure of the cell membrane. The decrease of intracellular ATPase and succinate dehydrogenase content indicated that TA damaged the function of mitochondria, and participated in the inhibition of respiratory metabolism. In addition, TA significantly reduced 3-NPA production and completely inhibited 3-NPA production at 640 and 1280 μg ml-1. CONCLUSION TA effectively inhibited both growth of A. arundinis in vitro and 3-NPA production.
Collapse
Affiliation(s)
- Wenyan Jiang
- Agro-Products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xuelian Liang
- Agro-Products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Huiling Li
- Agro-Products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Leixing Mo
- Agro-Products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wei Chen
- Agro-Products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Tianshun Wang
- Agro-Products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Haijun Wang
- Agro-Products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yihao Xing
- Genebank of Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jie Liao
- Agro-Products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
16
|
Zhao Y, Wang ZJ, Wang CB, Tan BY, Luo XD. New and Antifungal Diterpenoids of Sunflower against Gray Mold. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16647-16656. [PMID: 37877578 DOI: 10.1021/acs.jafc.3c05553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Sunflower (Helianthus annuus L.) is cultivated around the world as an oil crop, and its receptacle is the byproduct and is usually deemed to be an agro-industrial waste. Then, phytochemical constituents and antifungal bioactivity of the sunflower receptacle against phytopathogenic fungi were investigated. As a result, 17 diterpenoids including 4 new compounds were isolated, and most of them showed potential antifungal activity against Botrytis cinerea, in which compounds 1, 3, 5, and 15 exhibited better inhibitory effect with the minimum inhibitory concentration values of 0.05-0.1 mg/mL. Meanwhile, four antifungal diterpenoids destructed plasma membrane integrity, suspended the biofilm formation ability, and increased the extravasation of cellular contents of B. cinerea. Moreover, the EtOAc extract of sunflower receptacle could keep 42.9% of blueberries from the invasion of B. cinerea at 1.6 mg/mL. The finding suggested that sunflower receptacle might be a biocontrol agent for preventing fruit from postharvest diseases.
Collapse
Affiliation(s)
- Yun Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zi-Jiao Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chang-Bin Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bang-Yin Tan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Xiao-Dong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|
17
|
Agour A, Mssillou I, Allali A, Chebaibi M, El Abdali Y, El Barnossi A, Bin Jardan YA, Wondmie GF, Nafidi HA, Bourhia M, Bari A, Lyoussi B, Derwich E. Pharmacological activities of chemically characterized essential oils from Haplophyllum tuberculatum (Forssk.). Front Chem 2023; 11:1251449. [PMID: 37867997 PMCID: PMC10587419 DOI: 10.3389/fchem.2023.1251449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
The present work aimed at characterizing the phytochemical composition of Haplophyllum tuberculatum essential oil (HTEO), assessing its antifungal activity against various fungal strains, evaluating its insecticidal and repulsive properties against Callosobruchus maculatus, and determine its antioxidant capacity. To this end, Gas chromatography-mass spectrometry analysis detected 34 compounds in HTEO, with β-Caryophyllene being the major constituent (36.94%). HTEO demonstrated predominantly modest antifungal effects, however, it sustains notable activity, particularly against Aspergillus flavus, with an inhibition rate of 76.50% ± 0.60%. Minimum inhibitory concentrations ranged from 20.53 ± 5.08 to 76.26 ± 5.08 mg/mL, effectively inhibiting fungal growth. Furthermore, the antifungal, and antioxidant activities of HTEO were evaluated in silico against the proteins Aspergillus flavus FAD glucose dehydrogenase, and beta-1,4-endoglucanase from Aspergillus niger, NAD(P)H Oxidase. Moreover, HTEO displayed strong insecticidal activity against C. maculatus, with contact and inhalation tests yielding LC50 values of 30.66 and 40.28 μL/100g, respectively, after 24 h of exposure. A dose of 5 μL/100g significantly reduced oviposition (48.85%) and inhibited emergence (45.15%) compared to the control group. Additionally, HTEO exhibited a high total antioxidant capacity of 758.34 mg AAE/g EO, highlighting its antioxidant potential. Insilico results showed that the antifungal activity of HTEO is mostly attributed to γ-Cadinene and p-Cymen-7-ol, while antioxidant is attributed to α-Terpinyl isobutyrate displayed. Overall, HTEO offers a sustainable and environmentally friendly alternative to synthetic products used to manage diseases.
Collapse
Affiliation(s)
- Abdelkrim Agour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Ibrahim Mssillou
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Aimad Allali
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Taza, Morocco
| | - Mohamed Chebaibi
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez, Morocco
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy of the Fez, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Youness El Abdali
- Laboratory of Biotechnology, Environment, Agrifood, and Health, Faculty of Sciences Dhar El Mahraz, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Azeddin El Barnossi
- Laboratory of Biotechnology, Environment, Agrifood, and Health, Faculty of Sciences Dhar El Mahraz, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Science, Laval University, Quebec City, QC, Canada
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| | - Amina Bari
- Laboratory of Biotechnology, Environment, Agrifood, and Health, Faculty of Sciences Dhar El Mahraz, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Elhoussine Derwich
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| |
Collapse
|
18
|
Zamli KM, Hashim F, Razali SA, Yusoff HM, Mohamad H, Abdullah F, Asari A. Synthesis, anti-amoebic activity and molecular docking simulation of eugenol derivatives against Acanthamoeba sp. Saudi Pharm J 2023; 31:101703. [PMID: 37546528 PMCID: PMC10400915 DOI: 10.1016/j.jsps.2023.101703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Amoebae of the genus Acanthamoeba can cause diseases such as amoebic keratitis and granulomatous amoebic encephalitis. Until now, treatment options for these diseases have not been fully effective and have several drawbacks. Therefore, research into new drugs is needed for more effective treatment of Acanthamoeba infections. Eugenol, a phenolic aromatic compound mainly derived from cloves, has a variety of pharmaceutical properties. In this study, nine eugenol derivatives (K1-K9), consisting of five new and four known compounds, were synthesized and screened for their antiamoebic properties against Acanthamoeba sp. The structure of these compounds was characterized spectroscopically by Fourier transform infrared (FTIR), Ultraviolet-Visible (UV-Vis), 1H and 13C Nuclear Magnetic Resonance (NMR) and mass spectrometer (MS). The derived molecules were screened for antiamoebic activity by determining IC50 values based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and observation of amoeba morphological changes by light and fluorescence microscopy. Most of the tested compounds possessed strong to moderate cytotoxic effects against trophozoite cells with IC50 values ranging from 0.61 to 24.83 μg/mL. Observation of amoebae morphology by light microscopy showed that the compounds caused the transformed cells to be roundish and reduced in size. Furthermore, fluorescence microscopy observation using acridine orange (AO) and propidium iodide (PI) (AO/PI) staining showed that the cells have damaged membranes by displaying a green cytoplasm with orange-stained lysosomes. Acidification of the lysosomal structure indicated disruption of the internal structure of Acanthamoeba cells when treated with eugenol derivatives. The observed biological results were also confirmed by interaction simulations based on molecular docking between eugenol derivatives and Acanthamoeba profilin. These interactions could affect the actin-binding ability of the protein, disrupting the shape and mobility of Acanthamoeba. The overall results of this study demonstrate that eugenol derivatives can be considered as potential drugs against infections caused by Acanthamoeba.
Collapse
Affiliation(s)
- Khairunisa Mohd Zamli
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Fatimah Hashim
- Biological Security and Sustainability Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Siti Aisyah Razali
- Biological Security and Sustainability Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Hanis Mohd Yusoff
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Advanced Nano Materials (ANoMa) Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Habsah Mohamad
- Institute of Biotechnology Marine, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Fauziah Abdullah
- Phytochemistry Programme, Natural Products Division, Forest Research Institute of Malaysia, 52109 Kepong, Selangor, Malaysia
| | - Asnuzilawati Asari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Advanced Nano Materials (ANoMa) Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
19
|
Cruz-Cerino P, Cristóbal-Alejo J, Ruiz-Carrera V, Gamboa-Angulo M. Plant Extracts from the Yucatan Peninsula in the In Vitro Control of Curvularia lunata and Antifungal Effect of Mosannona depressa and Piper neesianum Extracts on Postharvest Fruits of Habanero Pepper. PLANTS (BASEL, SWITZERLAND) 2023; 12:2908. [PMID: 37631120 PMCID: PMC10459550 DOI: 10.3390/plants12162908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023]
Abstract
Plant extracts are a valuable alternative for the control of phytopathogenic fungi in horticultural crops. In the present work, the in vitro antifungal effect of ethanol and aqueous extracts from different vegetative parts of 40 native plants of the Yucatan Peninsula on Curvularia lunata ITC26, a pathogen of habanero pepper (Capsicum chinense), and effects of the most active extracts on postharvest fruits were investigated. Among these, the ethanol extracts of Mosannona depressa (bark from stems and roots) and Piper neesianum (leaves) inhibited 100% of the mycelial growth of C. lunata. The three extracts were partitioned between acetonitrile and n-hexane. The acetonitrile fraction from M. depressa stem bark showed the lowest mean inhibitory concentration (IC50) of 188 µg/mL against C. lunata. The application of this extract and its active principle α-asarone in the postharvest fruits of C. chinense (500 µg/mL) was shown to inhibit 100% of the severity of the infection caused by C. lunata after 11 days of contact. Both samples caused the distortion and collapse of the conidia of the phytopathogen when observed using electron microscopy at 96 h. The spectrum of M. depressa enriched antifungal action is a potential candidate to be a botanical fungicide in the control of C. lunata in cultivating habanero pepper.
Collapse
Affiliation(s)
- Patricia Cruz-Cerino
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Merida 97205, Mexico;
| | - Jairo Cristóbal-Alejo
- Laboratorio de Fitopatología, Tecnológico Nacional de México, Campus Conkal, Conkal 97345, Mexico
| | - Violeta Ruiz-Carrera
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa 86039, Mexico;
| | - Marcela Gamboa-Angulo
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Merida 97205, Mexico;
| |
Collapse
|
20
|
Liu R, Zhang L, Xiao S, Chen H, Han Y, Niu B, Wu W, Gao H. Ursolic acid, the main component of blueberry cuticular wax, inhibits Botrytis cinerea growth by damaging cell membrane integrity. Food Chem 2023; 415:135753. [PMID: 36870211 DOI: 10.1016/j.foodchem.2023.135753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/15/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023]
Abstract
Cuticular wax has been reported to play an essential role in resisting pathogens in various fruits. This study investigated the antifungal ability of the components in blueberry cuticular wax. We showed that the cuticular wax of blueberry inhibited the growth of Botrytis cinerea and ursolic acid (UA) was the key antifungal compound. UA inhibited B. cinerea growth in vitro and in vivo. Furthermore, UA increased extracellular conductivity and cellular leakage in B. cinerea, deformed the mycelial morphology, and destroyed cell ultrastructure. We also demonstrated that UA stimulated the accumulation of reactive oxygen species (ROS) and inactivated ROS scavenging enzymes. These results indicate that UA may exert antifungal effects against B. cinerea by disrupting cell membrane integrity. Thus, UA has significant potential as an agent for the control of gray mold in blueberry.
Collapse
Affiliation(s)
- Ruiling Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liping Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shangyue Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hangjun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanchao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ben Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Weijie Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Haiyan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
21
|
Wang W, Li T, Chen J, Ye Y. Inhibition of Salmonella Enteritidis by Essential Oil Components and the Effect of Storage on the Quality of Chicken. Foods 2023; 12:2560. [PMID: 37444298 PMCID: PMC10341335 DOI: 10.3390/foods12132560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
This research investigates the antibacterial potential of plant essential oil components including thymol, carvacrol, citral, cinnamaldehyde, limonene, and β-pinene against Salmonella Enteritidis (S. Enteritidis). Through the determination of minimum inhibitory concentration, three kinds of natural antibacterial agents with the best inhibitory effect on S. Enteritidis were determined, namely thymol (128 μg/mL), carvacrol (256 μg/mL), and cinnamaldehyde (128 μg/mL). Physical, chemical, microbial, and sensory characteristics were regularly monitored on days 0, 2, 4, and 6. The findings of this study reveal that both thymol at MIC of 128 μg/mL and carvacrol at MIC of 256 μg/mL not only maintained the sensory quality of chicken, but also decreased the pH, moisture content, and TVB-N value. Additionally, thymol, carvacrol and cinnamaldehyde successfully inhibited the formation of S. Enteritidis biofilm, thereby minimizing the number of S. Enteritidis and the total aerobic plate count in chicken. Hence, thymol, carvacrol, and cinnamaldehyde have more effective inhibitory activities against S. Enteritidis, which can effectively prevent the spoilage of chicken and reduce the loss of its functional components.
Collapse
Affiliation(s)
- Wu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.L.); (J.C.); (Y.Y.)
| | | | | | | |
Collapse
|
22
|
Cutro AC, Coria MS, Bordon A, Rodriguez SA, Hollmann A. Antimicrobial properties of the essential oil of Schinus areira (Aguaribay) against planktonic cells and biofilms of S. aureus. Arch Biochem Biophys 2023:109670. [PMID: 37336342 DOI: 10.1016/j.abb.2023.109670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
The essential oil (EO) of Schinus areira L. (Anacardiaceae) leaves has shown antibacterial activity against Staphylococcus aureus. In this study we aimed to unravel the mechanisms of its antibacterial action by using bacterial cells and model membranes. First, the integrity of S. aureus membrane was evaluated by fluorescence microscopy. It was observed an increase in the permeability of cells that was dependent on the EO concentration as well as the incubation time. For a deep evaluation of the action of the EO on the lipids, its effect on the membrane fluidity was evaluated on DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine): DMPG (1,2-dimyristoyl-sn-glycero-3-phospho-1'-rac-glycerol) (5:1) liposomes by dynamic scattering light and by using Laurdan doped liposomes. The results indicate that EO produces changes in lipid membrane packing, increasing the fluidity, reducing the cooperative cohesive interaction between phospholipids and increasing access of water or the insertion of some components of the EO to the interior of the membrane. In addition, the potential effect of EO on intracellular targets, as the increase of cytosolic reactive oxygen species (ROS) and DNA damage, were evaluated. The EO was capable of increasing the production of ROS as well as inducing a partial degradation of DNA. Finally, the effect of EO on S. aureus biofilm was tested. These assays showed that EO was able to inhibit the biofilm formation, and also eradicate preformed biofilms. The results show, that the EO seems to have several bacterial targets involved in the antibacterial activity, from the bacterial membrane to DNA. Furthermore, the antibacterial action affects not only planktonic cells but also biofilms; reinforcing the potential application for this EO.
Collapse
Affiliation(s)
- Andrea C Cutro
- Laboratorio de Compuestos Bioactivos, CIBAAL, CONICET - Universidad Nacional de Santiago del Estero, Argentina; Facultad de Ciencias Médicas Universidad Nacional de Santiago del Estero, Argentina
| | - M Sumampa Coria
- INBIONATEC, CONICET- Universidad Nacional de Santiago del Estero, Argentina; Facultad de Agronomía y Agroindustrias Universidad Nacional de Santiago del Estero - CONICET, Argentina
| | - Anahi Bordon
- Laboratorio de Compuestos Bioactivos, CIBAAL, CONICET - Universidad Nacional de Santiago del Estero, Argentina
| | - Sergio A Rodriguez
- Facultad de Agronomía y Agroindustrias Universidad Nacional de Santiago del Estero - CONICET, Argentina
| | - Axel Hollmann
- Laboratorio de Compuestos Bioactivos, CIBAAL, CONICET - Universidad Nacional de Santiago del Estero, Argentina; Laboratorio de Microbiología Molecular Universidad Nacional de Quilmes, Argentina.
| |
Collapse
|
23
|
Zhang W, Li B, Lv Y, Wei S, Zhang S, Hu Y. Synergistic effects of combined cinnamaldehyde and nonanal vapors against Aspergillus flavus. Int J Food Microbiol 2023; 402:110277. [PMID: 37331114 DOI: 10.1016/j.ijfoodmicro.2023.110277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 06/20/2023]
Abstract
This study evaluated the synergistic antifungal effects of vapor-phase natural agents against Aspergillus flavus with an aim to prevent fungal contamination in agricultural products. Screening different combinations of natural antifungal vapor agents using the checkerboard assay revealed that the cinnamaldehyde and nonanal (SCAN) blend could exert the strongest synergistic antifungal activities against A. flavus, with a minimum inhibitory concentration (MIC) of 0.03 μL/mL, which caused a 76 % decrease in fungal population compared to when each agent was used separately. Subsequent gas chromatography-mass spectrometry (GC/MS) analysis demonstrated that the cinnamaldehyde/nonanal combination was stable and no effects on their individual molecular structures. SCAN at 2 × MIC completely inhibited the fungal conidia production and mycelial growth. The calcofluor white (CFW) and dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining assays showed that SCAN treatment could accelerate the destruction of cell wall integrity and accumulation of reactive oxygen species (ROS) in A. flavus. Moreover, pathogenicity assay indicated that in contrast to separate treatment with cinnamaldehyde or nonanal, SCAN could cause a decrease in the production of A. flavus asexual spores and AFB1 on peanuts, which verified its potential synergistic activity against fungal propagation. In addition, SCAN effectively preserves the organoleptic and nutritional properties of stored peanuts. Overall, our findings strongly indicated that the cinnamaldehyde/nonanal combination is a potentially significant antifungal agent against A. flavus contamination during the postharvest storage of peanuts.
Collapse
Affiliation(s)
- Wei Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, People's Republic of China
| | - Bangbang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, People's Republic of China
| | - Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, People's Republic of China
| | - Shan Wei
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, People's Republic of China
| | - Shuaibing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, People's Republic of China
| | - Yuansen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, People's Republic of China.
| |
Collapse
|
24
|
Duan WY, Zhang SB, Lei JD, Qin YL, Li YN, Lv YY, Zhai HC, Cai JP, Hu YS. Protection of postharvest grains from fungal spoilage by biogenic volatiles. Appl Microbiol Biotechnol 2023; 107:3375-3390. [PMID: 37115251 DOI: 10.1007/s00253-023-12536-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
Fungal spoilage of postharvest grains poses serious problems with respect to food safety, human health, and the economic value of grains. The protection of cereal grains from deleterious fungi is a critical aim in postharvest grain management. Considering the bulk volume of grain piles in warehouses or bins and food safety, fumigation with natural gaseous fungicides is a promising strategy to control fungal contamination on postharvest grains. Increasing research has focused on the antifungal properties of biogenic volatiles. This review summarizes the literature related to the effects of biogenic volatiles from microbes and plants on spoilage fungi on postharvest grains and highlights the underlying antifungal mechanisms. Key areas for additional research on fumigation with biogenic volatiles in postharvest grains are noted. The research described in this review supports the protective effects of biogenic volatiles against grain spoilage by fungi, providing a basis for their expanded application in the management of postharvest grains.
Collapse
Affiliation(s)
- Wen-Yan Duan
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shuai-Bing Zhang
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Jun-Dong Lei
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yu-Liang Qin
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yan-Nan Li
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yang-Yong Lv
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Huan-Chen Zhai
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Jing-Ping Cai
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yuan-Sen Hu
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| |
Collapse
|
25
|
Citral and cinnamaldehyde – Pickering emulsion stabilized by zein coupled with chitosan against Aspergillus. spp and their application in food storage. Food Chem 2023; 403:134272. [DOI: 10.1016/j.foodchem.2022.134272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/21/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
|
26
|
Qin YL, Zhang SB, Ding WZ, Lv YY, Zhai HC, Wei S, Ma PA, Hu YS. The effect of volatile compounds of Syzygium aromaticum flower buds against Aspergillus flavus growth on wheat grain at postharvest stage. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Du Y, Mi S, Wang H, Yang F, Yu H, Xie Y, Guo Y, Cheng Y, Yao W. Inactivation mechanism of Alternaria alternata by dielectric barrier discharge plasma and its quality control on fresh wolfberries. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Guo L, Mao X, Li Y, Zhou Z. Polymethoxylated flavonoids (PMFs)-loaded citral nanoemulsion controls green mold in citrus by damaging the cell membrane of Penicillium digitatum. Fungal Biol 2023; 127:854-864. [PMID: 36746557 DOI: 10.1016/j.funbio.2022.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Citrus is susceptible to Penicillium digitatum (P. digitatum) infection in post-harvest storage, resulting in enormous economic losses. This study aimed to investigate the antifungal activity and potential mechanism of the combination of Polymethoxylated flavones (PMFs) and citral (two natural antifungal components derived from citrus) against P. digitatum in vitro and citrus fruit. The results show that PMFs can enhance the antifungal activity of citral nanoemulsion, and PMFs-loaded citral nanoemulsion (PCT) has significant antifungal activity in a concentration-dependent manner. PCT can evidently inhibit spore germination and mycelial growth in vitro, and effectively control the growth of green mold on postharvest citrus fruit. Furthermore, PCT treatment resulted in the alteration of mycelia morphology, accumulation of reactive oxygen species, and membrane lipid peroxidation. These changes can disrupt the normal structure and function of the cell membrane, as evidenced by the reduction of total lipid and ergosterol content in the mycelia and the stronger red fluorescence of the cells emitted after PI staining. Based on the above results, we infer that PCT has a strong inhibitory effect on P. digitatum, and its potential mechanism is related to the destruction of the cell membrane. Therefore, PCT can be considered as a botanical fungicide for citrus preservation.
Collapse
Affiliation(s)
- Long Guo
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China; Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, 400715, China
| | - Xiaoxue Mao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China; Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, 400715, China
| | - Yi Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China; Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, 400715, China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China; The Southwest Institute of Fruits Nutrition, Banan District, Chongqing, 400054, China; Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
29
|
Candida albicans Reactive Oxygen Species (ROS)-Dependent Lethality and ROS-Independent Hyphal and Biofilm Inhibition by Eugenol and Citral. Microbiol Spectr 2022; 10:e0318322. [PMID: 36394350 PMCID: PMC9769929 DOI: 10.1128/spectrum.03183-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Candida albicans is part of the normal human flora but is most frequently isolated as the causative opportunistic pathogen of candidiasis. Plant-based essential oils and their components have been extensively studied as antimicrobials, but their antimicrobial impacts are poorly understood. Phenylpropenoids and monoterpenes, for example, eugenol from clove and citral from lemon grass, are potent antifungals against a wide range of pathogens. We report the cellular response of C. albicans to eugenol and citral, alone and combined, using biochemical and microscopic assays. The MICs of eugenol and citral were 1,000 and 256 μg/mL, respectively, with the two exhibiting additive effects based on a fractional inhibitory concentration index of 0.83 ± 0.14. High concentrations of eugenol caused membrane damage, oxidative stress, vacuole segregation, microtubule dysfunction and cell cycle arrest at the G1/S phase, and while citral had similar impacts, they were reactive oxygen species (ROS) independent. At sublethal concentrations (1/2 to 1/4 MIC), both oils disrupted microtubules and hyphal and biofilm formation in an ROS-independent manner. While both compounds disrupt the cell membrane, eugenol had a greater impact on membrane dysfunction. This study shows that eugenol and citral can induce vacuole and microtubule dysfunction, along with the inhibition of hyphal and biofilm formation. IMPORTANCE Candida albicans is a normal resident on and in the human body that can cause relatively benign infections. However, when our immune system is severely compromised (e.g., cancer chemotherapy patients) or underdeveloped (e.g., newborns), this fungus can become a deadly pathogen, infecting the bloodstream and organs. Since there are only a few effective antifungal agents that can be used to combat fungal infections, these fungi have been exposed to them over and over again, allowing the fungi to develop resistance. Instead of developing antifungal agents that kill the fungi, some of which have undesirable side effects on the human host, researchers have proposed to target the fungal traits that make the fungus more virulent. Here, we show how two components of plant-based essential oils, eugenol and citral, are effective inhibitors of C. albicans virulence traits.
Collapse
|
30
|
Qiu L, Zhang M, Chitrakar B, Adhikari B, Yang C. Effects of nanoemulsion-based chicken bone gelatin-chitosan coatings with cinnamon essential oil and rosemary extract on the storage quality of ready-to-eat chicken patties. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
31
|
Antioxidant-Mediated Modification of Citral and Its Control Effect on Mildewy Bamboo. Polymers (Basel) 2022; 14:polym14214652. [DOI: 10.3390/polym14214652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
To reduce the oxidative degradation of citral and improve its antimildew performance, citral was modified with natural antioxidants such as tea polyphenols, ascorbic acid, and theaflavin in the present study. Additionally, the effects of these natural antioxidants on the citral degradation rate and DPPH radical-scavenging rate, as well as the effectiveness of antioxidant-modified citral in the antimildew treatment of bamboo were investigated. Ascorbic acid, theaflavin, and tea polyphenols improved the antioxidant performance of citral to some extent, and the tea polyphenols exhibited the best antioxidant performance. When the amount of tea polyphenols added to citral reached 1.0%, the oxidative degradation of citral was effectively prevented. Compared with citral, tea-polyphenol-modified citral could reduce the efficacy of the bamboo antimildew treatment against all four mildews and the effectiveness of the antimildew treatment reached 100%. Citral modification with antioxidants reduced the amount of citral required in the treatment, thereby reducing the treatment cost for bamboo mildew.
Collapse
|
32
|
Proteomic analysis of antifungal mechanism of star anise essential oil against Aspergillus niger and its application potential in prolonging bread shelf life. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Wu H, Zhao F, Li Q, Huang J, Ju J. Antifungal mechanism of essential oil against foodborne fungi and its application in the preservation of baked food. Crit Rev Food Sci Nutr 2022; 64:2695-2707. [PMID: 36129051 DOI: 10.1080/10408398.2022.2124950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Baked food is one of the most important staple foods in people's life, but its shelf life is limited. In addition, the spoilage of baked food caused by microbial deterioration will not only cause huge economic losses, but also pose a serious threat to human health. At present, due to the improvement of consumers' health awareness, the use of chemical preservatives has been gradually restricted. Compared with other types of synthetic preservatives, essential oils are becoming more and more popular because they are in line with the current development trend of "green," "safety" and "health" of food additives. Therefore, in this paper, we first summarized the main factors affecting the fungal contamination of baked food. Then analyzed the antifungal activity and mechanism of essential oil. Finally, we comprehensively summarized the application strategy of essential oil in the preservation of baked food. This review is of great significance for fully understanding the antifungal mechanism of essential oils and promoting the application of essential oils in the preservation of baked food.
Collapse
Affiliation(s)
- Hao Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| | - Fangyuan Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| | - Qianyu Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| | - Jinglin Huang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| | - Jian Ju
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| |
Collapse
|
34
|
The Antifungal Activity of Cinnamon-Litsea Combined Essential Oil against Dominant Fungal Strains of Moldy Peanut Kernels. Foods 2022; 11:foods11111586. [PMID: 35681336 PMCID: PMC9180872 DOI: 10.3390/foods11111586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/17/2023] Open
Abstract
The antifungal activity of cinnamon (Cinnamomum cassia Presl), litsea [Litsea cubeba (Lour.) Pers.], clove (Syzygium aromaticum L.), thyme (Thymus mongolicus Ronn.) and citronella (Cymbopogon winterianus Jowitt) essential oils (EOs) against the dominant fungi isolated from moldy peanuts was investigated in this research. Firstly, strain YQM was isolated and identified by morphological characterization and 18S rRNA gene sequence analysis to be Aspergillus flavus (A. flavus). Next, antifungal effects of single or mixed EOs on strain YQM were evaluated by the inhibition zone test. The cinnamon-litsea combined essential oil (CLCEO, Vcinnamon oil:Vlitsea oil = 3:5) displayed the best antifungal effect on strain YQM. The chemical composition of CLCEO was identified and quantified by gas chromatograph-mass spectrometry (GC-MS), and results revealed that the major components of CLCEO were cinnamaldehyde and citral. Finally, the effect of EOs on the microstructure of strain YQM mycelia was observed under scanning electron microscope (SEM). The mycelia exposed to cinnamon essential oil (CEO) and litsea essential oil (LEO) were partly deformed and collapsed, while the mycelia treated with CLCEO were seriously damaged and the deformation phenomena such as shrinking, shriveling and sinking occurred. Therefore, CLCEO has great potential for using as anti-mildew agents during peanut storage.
Collapse
|
35
|
Wang J, Zhang J, Ma J, Liu L, Li J, Shen T, Tian Y. The major component of cinnamon oil as a natural substitute against
Fusarium solani
on
Astragalus membranaceus. J Appl Microbiol 2022; 132:3125-3141. [DOI: 10.1111/jam.15458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/03/2022] [Accepted: 01/18/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Jianglai Wang
- School of Biological and Pharmaceutical Engineering Lanzhou Jiaotong University Lanzhou 730070 China
| | - Jinfeng Zhang
- School of Biological and Pharmaceutical Engineering Lanzhou Jiaotong University Lanzhou 730070 China
| | - Jinxiu Ma
- School of Biological and Pharmaceutical Engineering Lanzhou Jiaotong University Lanzhou 730070 China
| | - Lu Liu
- School of Biological and Pharmaceutical Engineering Lanzhou Jiaotong University Lanzhou 730070 China
| | - Jiajia Li
- Research Institute Lanzhou Jiaotong University Lanzhou 730070 China
| | - Tong Shen
- Research Institute Lanzhou Jiaotong University Lanzhou 730070 China
| | - Yongqiang Tian
- School of Biological and Pharmaceutical Engineering Lanzhou Jiaotong University Lanzhou 730070 China
| |
Collapse
|
36
|
Heptanal inhibits the growth of Aspergillus flavus through disturbance of plasma membrane integrity, mitochondrial function and antioxidant enzyme activity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Coelho CMM, Pereira R, Vieira TF, Teixeira CM, Fernandes MJG, Rodrigues ARO, Pereira DM, Sousa S, Gil Fortes A, Castanheira EMS, T Gonçalves MS. Synthesis, computational and nanoencapsulation studies on eugenol-derived insecticides. NEW J CHEM 2022. [DOI: 10.1039/d2nj01893d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new set of alkoxy alcohols were synthesised by reaction of eugenol oxirane with aliphatic and aromatic alcohols. These eugenol derivatives were evaluated against their effect upon the viability of...
Collapse
|
38
|
Hao J, Lei Y, Gan Z, Zhao W, Shi J, Jia C, Sun A. Synergetic Inactivation Mechanism of Protocatechuic Acid and High Hydrostatic Pressure against Escherichia coli O157:H7. Foods 2021; 10:foods10123053. [PMID: 34945604 PMCID: PMC8701084 DOI: 10.3390/foods10123053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
With the wide application of high hydrostatic pressure (HHP) technology in the food industry, safety issues regarding food products, resulting in potential food safety hazards, have arisen. To address such problems, this study explored the synergetic bactericidal effects and mechanisms of protocatechuic acid (PCA) and HHP against Escherichia coli O157:H7. At greater than 200 MPa, PCA (1.25 mg/mL for 60 min) plus HHP treatments had significant synergetic bactericidal effects that positively correlated with pressure. After a combined treatment at 500 MPa for 5 min, an approximate 9.0 log CFU/mL colony decline occurred, whereas the individual HHP and PCA treatments caused 4.48 and 1.06 log CFU/mL colony decreases, respectively. Mechanistically, membrane integrity and morphology were damaged, and the permeability increased when E. coli O157: H7 was exposed to the synergetic stress of PCA plus HHP. Inside cells, the synergetic treatment additionally targeted the activities of enzymes such as superoxide dismutase, catalase and ATPase, which were inhibited significantly (p ≤ 0.05) when exposed to high pressure. Moreover, an analysis of circular dichroism spectra indicated that the synergetic treatment caused a change in DNA structure, which was expressed as the redshift of the characteristic absorption peak. Thus, the synergetic treatment of PCA plus HHP may be used as a decontamination method owing to the good bactericidal effects on multiple targets.
Collapse
Affiliation(s)
- Jingyi Hao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yuqing Lei
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Zhilin Gan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Wanbin Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Junyan Shi
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chengli Jia
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Aidong Sun
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-62336700
| |
Collapse
|
39
|
Wang RX, Du SS, Wang JR, Chu QR, Tang C, Zhang ZJ, Yang CJ, He YH, Li HX, Wu TL, Liu YQ. Design, Synthesis, and Antifungal Evaluation of Luotonin A Derivatives against Phytopathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14467-14477. [PMID: 34843231 DOI: 10.1021/acs.jafc.1c04242] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Crop diseases caused by fungi threaten food security and exacerbate the food crisis. Inspired by the application of fungicide candidates from natural products in agrochemical discovery, a series of luotonin A derivatives were designed, synthesized, and evaluated for their antifungal activities against five plant fungi. Most of these compounds exhibited significant fungicidal activity against Botrytis cinerea in vitro with EC50 values less than 1 μg/mL. Among them, compounds w7, w8, w12, and w15 showed superior antifungal activity against B. cinerea with EC50 values of 0.036, 0.050, 0.042, and 0.048 μg/mL, respectively, which were more potent than boscalid (EC50 = 1.790 μg/mL). Preliminary mechanism studies revealed that compound w7 might pursue its antifungal activity by disrupting the fungal cell membrane and cell wall. Moreover, in vivo bioassay also indicated that compound w7 could be effective for the control of B. cinerea. The above results evidenced the potential of luotonin A derivatives as novel and promising candidate fungicides.
Collapse
Affiliation(s)
- Ren-Xuan Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Sha-Sha Du
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jing-Ru Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Qing-Ru Chu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Chen Tang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Hui He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hai-Xing Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Tian-Lin Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
40
|
Casula E, Manconi M, Lopez-Mendez TB, Pedraz JL, Calvo E, Lozano A, Zaru M, Castangia I, Orrù G, Fais S, Manca ML. Complementary effect of Zingiber officinalis extract and citral in counteracting non allergic nasal congestion by simultaneous loading in ad hoc formulated phospholipid vesicles. Colloids Surf B Biointerfaces 2021; 209:112170. [PMID: 34740093 DOI: 10.1016/j.colsurfb.2021.112170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/29/2021] [Accepted: 10/16/2021] [Indexed: 11/15/2022]
Abstract
Natural nasal spray formulations were prepared by using Zingiber officinalis (Z. officinalis) extract and citral synergically loaded into specifically designed phospholipid vesicles. Phospholipid vesicles were selected according to their stabilizing effect on the nasal mucosal barrier, and their effectiveness was further potentiated by the co-loading of Z. officinalis extract as antioxidant and anti-inflammatory agent, and citral as antibacterial molecule. Cryo-TEM images confirmed the formation of morphologically homogeneous and small vesicles, sized around 100 nm, negatively charged (-44 mV) and highly biocompatible (viability ≥100%) as detected by using epithelial cells. The analysis of size distribution of sprayed droplets, average velocity module and spray cone angle suggested a good aptitude of the vesicles to be nebulized and their effective deposition in the nasal cavity. Moreover, vesicles were effectively capable of inhibiting some nasal pathogenic bacteria (i.e. Streptococcus pyogenes, Staphylococcus aureus, Escherichia coli) and to protect the epithelial cells against oxidative damage. The formulations are natural and safe, and all of them have shown promising technological and biological properties suggesting their possible application in the nasal cavity for the treatment of congestions and non-allergic rhinitis.
Collapse
Affiliation(s)
- Eleonora Casula
- Dept. of Scienze della Vita e dell'Ambiente, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Maria Manconi
- Dept. of Scienze della Vita e dell'Ambiente, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy.
| | - Tania Belen Lopez-Mendez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Esteban Calvo
- LIFTEC, CSIC - Universidad de Zaragoza, María de Luna, 10, 50018 Zaragoza, Spain
| | - Antonio Lozano
- LIFTEC, CSIC - Universidad de Zaragoza, María de Luna, 10, 50018 Zaragoza, Spain
| | - Marco Zaru
- Icnoderm Srl, Sardegna Ricerche Ed. 5, Pula, 09010 Cagliari, Italy
| | - Ines Castangia
- Dept. of Scienze della Vita e dell'Ambiente, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Germano Orrù
- Molecular Biology Service Lab, Department of Surgical Science, University of Cagliari, Via Ospedale 54, 09124 Cagliari, Italy
| | - Sara Fais
- Molecular Biology Service Lab, Department of Surgical Science, University of Cagliari, Via Ospedale 54, 09124 Cagliari, Italy
| | - Maria Letizia Manca
- Dept. of Scienze della Vita e dell'Ambiente, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| |
Collapse
|
41
|
Wang Y, Lin W, Yan H, Neng J, Zheng Y, Yang K, Xing F, Sun P. iTRAQ proteome analysis of the antifungal mechanism of citral on mycelial growth and OTA production in Aspergillus ochraceus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4969-4979. [PMID: 33543481 DOI: 10.1002/jsfa.11140] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/28/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Aspergillus ochraceus causes food spoilage and produces mycotoxin ochratoxin A (OTA) during storage of agricultural commodities. In this study, citral was used to inhibit A. ochraceus growth and OTA accumulation, proteomic analysis was employed to verify the mechanism of citral. RESULTS Citral was found to significantly inhibit fungal growth and mycotoxin production in A. ochraceus. Specifically, 75, 125, 150 and 200 μL L-1 citral suppressed mycelial growth by 33%, 46%, 50% and 100%, respectively. Additionally, 75 μL L-1 citral inhibited OTA accumulation by 25%. Proteomic analysis was performed to elucidate the inhibitory mechanism of citral on mycelial growth and OTA production at subinhibitory concentrations (75 μL L-1 ). Proteomics analysis identified 2646 proteins in A. ochraceus fc-1, of which 218 were differentially expressed between control and 75 μL L-1 citral treatment samples. Differentially expressed proteins were identified by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of biological process, cellular component and molecular function terms. Potential factors affecting mycelial growth and OTA production were analysed, and OTA production was revealed to be a complex process involving many associated factors related to various processes including nutrient intake, sterol biosynthesis, ribosome biogenesis, energy metabolism, oxidative stress and amino acid metabolism. In addition, citral at 75 μL L-1 down-regulated OTA biosynthetic genes including pks and nrps, but slightly up-regulated the global regulatory factors veA, velB and laeA. CONCLUSION The findings further demonstrate the potential of citral for the preservation of grains and other agricultural products, and provide new insight into its antifungal mechanisms at subinhibitory concentrations. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan Wang
- College of Food Science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| | - Wei Lin
- College of Food Science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| | - Hao Yan
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Jing Neng
- College of Food Science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| | - Yong Zheng
- College of Food Science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| |
Collapse
|
42
|
Zhang J, Du C, Li Q, Hu A, Peng R, Sun F, Zhang W. Inhibition mechanism and antibacterial activity of natural antibacterial agent citral on bamboo mould and its anti-mildew effect on bamboo. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202244. [PMID: 33996126 PMCID: PMC8059595 DOI: 10.1098/rsos.202244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/29/2021] [Indexed: 05/14/2023]
Abstract
Bamboo, a natural material, has been widely used in the fields of decoration, architecture and furniture. However, bamboo is easy to mildew and lose its use value. In this paper, the inhibition mechanism and antibacterial activity of a natural antibacterial agent citral on bamboo mould and its anti-mildew effect on bamboo were studied. The results showed that citral could change the shape of mycelium, destroy the integrity of mycelium structure, cell wall and cell membrane structure, thereby causing leakage of nucleic acids, proteins and other substances in the cell, as well as destroy the pH balance of the inside and outside of the cell, to inhibit or kill mould. When the concentration of citral is 100 mg ml-1, the antibacterial rates of citral against Penicillium citrinum (PC), Trichoderma viride (TV), Aspergillus niger (AN) and a hybrid fungi group comprising PC, TV and AN (Hun) were more than 100%. However, compared with the direct effect of citral on mould, the antibacterial property of bamboo treated with citral was significantly reduced, the mildew proof effect can be achieved only if the concentration of citral to treat bamboo is increased to more than twice the concentration of citral directly acting on mould.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Chungui Du
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Qi Li
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Ailian Hu
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Rui Peng
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Fangli Sun
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Weigang Zhang
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| |
Collapse
|
43
|
Ulanowska M, Olas B. Biological Properties and Prospects for the Application of Eugenol-A Review. Int J Mol Sci 2021; 22:3671. [PMID: 33916044 PMCID: PMC8036490 DOI: 10.3390/ijms22073671] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022] Open
Abstract
Eugenol is a phenolic aromatic compound obtained mainly from clove oil. Due to its known antibacterial, antiviral, antifungal, anticancer, anti-inflammatory and antioxidant properties, it has long been used in various areas, such as cosmetology, medicine, and pharmacology. However, high concentrations can be toxic. A dose of 2.5 mg/kg body weight is regarded as safe. This paper reviews the current state of knowledge regarding the activities and application of eugenol and its derivatives and recent research of these compounds. This review is based on information concerning eugenol characteristics and recent research from articles in PubMed. Eugenol remains of great interest to researchers, since its multidirectional action allows it to be a potential component of drugs and other products with therapeutic potential against a range of diseases.
Collapse
Affiliation(s)
| | - Beata Olas
- Department of General Biochemistry, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland;
| |
Collapse
|
44
|
Yang R, Miao J, Shen Y, Cai N, Wan C, Zou L, Chen C, Chen J. Antifungal effect of cinnamaldehyde, eugenol and carvacrol nanoemulsion against Penicillium digitatum and application in postharvest preservation of citrus fruit. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110924] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
New Eugenol Derivatives with Enhanced Insecticidal Activity. Int J Mol Sci 2020; 21:ijms21239257. [PMID: 33291666 PMCID: PMC7729565 DOI: 10.3390/ijms21239257] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Eugenol, the generic name of 4-allyl-2-methoxyphenol, is the major component of clove essential oil, and has demonstrated relevant biological potential with well-known antimicrobial and antioxidant actions. New O-alkylated eugenol derivatives, bearing a propyl chain with terminals like hydrogen, hydroxyl, ester, chlorine, and carboxylic acid, were synthesized in the present work. These compounds were later subjected to epoxidation conditions to give the corresponding oxiranes. All derivatives were evaluated against their effect upon the viability of insect cell line Sf9 (Spodoptera frugiperda), demonstrating that structural changes elicit marked effects in terms of potency. In addition, the most promising molecules were evaluated for their impact in cell morphology, caspase-like activity, and potential toxicity towards human cells. Some molecules stood out in terms of toxicity towards insect cells, with morphological assessment of treated cells showing chromatin condensation and fragmentation, which are compatible with the occurrence of programmed cell death, later confirmed by evaluation of caspase-like activity. These findings point out the potential use of eugenol derivatives as semisynthetic insecticides from plant natural products.
Collapse
|