1
|
Zhang Q, Shen J, Meng G, Wang H, Liu C, Zhu C, Zhao G. Screening and application of functional autochthonous starter culture from cured meat, which can reduce nitrite content. Int Microbiol 2024:10.1007/s10123-024-00606-7. [PMID: 39400630 DOI: 10.1007/s10123-024-00606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Cured meat is a fermented meat product from the traditional Chinese culture made by natural fermentation. In this study, five bacteria strains were screened from cured meat using 16S rDNA technology, and a functional local starter was selected, which was applied to the production of cured meat to standardize the production of cured meat and improve the quality of cured meat. By studying the fermentation characteristics of strain these strains, this study found that the fermentation characteristics of L. mesenteroides and S. lactis are ideal. L. mesenteroides and S. lactis were used as starter cultures in fermented bacon. Then, this study compared the quality of fermented beef with Sichuan bacon, Hunan bacon, and Xinyang bacon. The results suggested that L. mesenteroides and S. lactis can improve the sensory and texture properties of the products and reduce the moisture content, water activity, pH value, and protein content of fermented beef products. More importantly, L. mesenteroides can significantly reduce the nitrite content (25.34%) and nitrosamine content (29.69%) in fermented beef, which provides an excellent guarantee for the safety of cured meat. In this study, a functional fermentation strain-L. mesenteroides could degrade the nitrite content of fermented meat products and improve their sensory and textural properties-was screened to provide some reference value for the later development of functional strains suitable for fermented meat products.
Collapse
Affiliation(s)
- Qiuhui Zhang
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Jialong Shen
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Gaoge Meng
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Han Wang
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Chang Liu
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Chaozhi Zhu
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China.
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Gaiming Zhao
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China.
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China.
| |
Collapse
|
2
|
Yi L, Qi T, Li X, Zeng K. Controlling soft rot of green pepper by bacteriocin paracin wx3 and its effect on storage quality of green pepper. Food Chem 2024; 447:138962. [PMID: 38518614 DOI: 10.1016/j.foodchem.2024.138962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
A bacteriocin paracin wx3 was investigated as a candidate of natural preservative to control green pepper soft rot. Firstly, paracin wx3 was heterologously expressed in Pichia pastoris X33 with an improved yield of 0.537 g/L. Its size and amino acid sequence were confirmed by Tricine-SDS-PAGE and LC-MS/MS. Then, result of antibacterial activity showed that its MIC value against Pectobacterium carotovorum was 16 μg/mL. In vitro, paracin wx3 completely killed the pathogen at high concentrations ≥8 × MIC. In vivo, disease incidence of green pepper soft rot was decreased from 90% (control) to <2% (8 × MIC). Subsequently, results of action mode showed that paracin wx3 inhibited the growth of pathogen by pore-formation on cell membrane. Last, paracin wx3 treatment reduced losses of weight, firmness, total soluble solid, Vc of green pepper during storage. It also inhibited the production of soft rot volatile p-xylene, 1-butanol, 2-methyl-2-propanol, 3-hydroxybutan-2-one-D, 2-pentyl furan, butanal, etc.
Collapse
Affiliation(s)
- Lanhua Yi
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Teng Qi
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Tianyou Dairy Co.,Ltd., Chongqing 401120, PR China
| | - Xiaofen Li
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; National Citrus Engineering Research Center, Chongqing 400712, PR China.
| |
Collapse
|
3
|
Capri FC, Gaglio R, Botta L, Settanni L, Alduina R. Selection of starter lactic acid bacteria capable of forming biofilms on wooden vat prototypes for their future application in traditional Sicilian goat's milk cheese making. Int J Food Microbiol 2024; 419:110752. [PMID: 38781647 DOI: 10.1016/j.ijfoodmicro.2024.110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
In this study, 327 presumptive lactic acid bacteria (LAB) were isolated from goats' milk acid curds produced at a Sicilian dairy farm with the aim to identify potential starter cultures for traditional cheeses. All isolates were first processed by randomly amplified polymorphic DNA (RAPD)-PCR analysis. This approach identified 63 distinct strains which were evaluated for their acidifying capacity. Only 15 strains specifically stood out for their acidification capacity and were identified through 16S rRNA gene sequencing as Lactococcus lactis (11 strains) Enterococcus faecalis (three strains), and Ligilactobacillus animalis (one strain). Notably, all 15 LAB isolates produced bacteriocin-like inhibitory substances and anti-biofilm compounds, against both planktonic and biofilm forms of Listeria monocytogenes, Salmonella Enteritidis, Escherichia coli, and Staphylococcus aureus, albeit at varying levels. Among these 15 LAB, En. faecalis RGM25 and Lc. lactis RGM55, susceptible to five antibiotics tested, were put in contact with wooden vat prototypes, because all equipment used in traditional cheese production in Sicily are made of wood. Scanning electron microscopy and bacterial plate counts of the wooden vat prototypes showed the development of biofilms at levels of approximately 6.0 log CFU/cm2. Overall, this study contributes to establishing a custom-made LAB starter cultures with bio-preservatives properties for Sicilian cheese productions.
Collapse
Affiliation(s)
- Fanny Claire Capri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Bldg. 16-17, 90128 Palermo, Italy
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy.
| | - Luigi Botta
- Department of Engineering, RU INSTM, University of Palermo, Viale delle Scienze, Bldg. 6, 90128 Palermo, Italy
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Bldg. 16-17, 90128 Palermo, Italy; National Biodiversity Future Center (NBFC), Piazza Marina, 61, 90133 Palermo, Italy
| |
Collapse
|
4
|
Fan Y, Yang X, Hu C, Wei B, Xu F, Guo Q. Fermentation Performance Evaluation of Lactic Acid Bacteria Strains for Sichuan Radish Paocai Production. Foods 2024; 13:1813. [PMID: 38928755 PMCID: PMC11202693 DOI: 10.3390/foods13121813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Fermented vegetable products play a significant role in various cuisines, and understanding the fermentation dynamics of lactic acid bacteria (LAB) strains is essential for optimizing their production and quality. Here, we sought to investigate the fermentation performance of five LAB strains isolated from Sichuan paocai as starters for paocai. Sensory evaluation revealed that the inoculation of radish paocai samples with LAB strains effectively improved the overall liking and sensory satisfaction of participants, increasing the scores to varying degrees in terms of taste, flavor, texture, and coloration. Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus exhibited a good salt resistance in radish juice and could grow in a medium containing 10% NaCl. Four indicator strains commonly found in contaminated paocai were effectively inhibited by fermented LAB broths, which improved the edibility and safe production of paocai. Compared to spontaneous fermentation (CK), radish paocai inoculated with LAB showed a significantly accelerated acid production rate, shortening the fermentation period by approximately two days. The contents of titratable total acids, organic acids, and free amino acids were higher in the inoculated samples and were enriched in the taste of radish paocai. The content of volatile organic compounds in the inoculated samples was higher than that in CK. Based on OPLS-DA analysis, 31 key indicators of paocai quality were screened and used to rank the fermentation performances of the five strains using the TOPSIS method; here, Lpb. plantarum and Lcb. rhamnosus achieved the highest scores. This study provides a reference for selecting LAB strains as efficient and secure fermentation starters to optimize paocai quality.
Collapse
Affiliation(s)
- Yiwen Fan
- School of Healthy Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (Y.F.); (C.H.)
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200093, China; (X.Y.); (B.W.)
| | - Xu Yang
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200093, China; (X.Y.); (B.W.)
| | - Cihai Hu
- School of Healthy Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (Y.F.); (C.H.)
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200093, China; (X.Y.); (B.W.)
| | - Banghong Wei
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200093, China; (X.Y.); (B.W.)
| | - Fei Xu
- School of Healthy Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (Y.F.); (C.H.)
- Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| | - Quanyou Guo
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200093, China; (X.Y.); (B.W.)
| |
Collapse
|
5
|
Arbulu S, Kjos M. Revisiting the Multifaceted Roles of Bacteriocins : The Multifaceted Roles of Bacteriocins. MICROBIAL ECOLOGY 2024; 87:41. [PMID: 38351266 PMCID: PMC10864542 DOI: 10.1007/s00248-024-02357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Bacteriocins are gene-encoded antimicrobial peptides produced by bacteria. These peptides are heterogeneous in terms of structure, antimicrobial activities, biosynthetic clusters, and regulatory mechanisms. Bacteriocins are widespread in nature and may contribute to microbial diversity due to their capacity to target specific bacteria. Primarily studied as food preservatives and therapeutic agents, their function in natural settings is however less known. This review emphasizes the ecological significance of bacteriocins as multifunctional peptides by exploring bacteriocin distribution, mobility, and their impact on bacterial population dynamics and biofilms.
Collapse
Affiliation(s)
- Sara Arbulu
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
6
|
Li X, Li G, Yi L, Zeng K. Soft rot of postharvest pepper: bacterial pathogen, pathogenicity and its biological control using Lactobacillus farciminis LJLAB1. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:443-455. [PMID: 37638860 DOI: 10.1002/jsfa.12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Soft rot is the most important bacterial disease of postharvest pepper during storage and transportation. The main objectives of this study were to investigate the bacterial pathogen species causing pepper soft rot and seek for an antagonistic bacterium to control this disease. RESULTS Pathogens Pectobacterium carotovorum, Enterobacter sp., Klebsiella sp., Pseudomonas sp. and Bacillus sp. were verified to be the causes of soft rot which were isolated from rotten peppers. Among them, P. carotovorum had the highest prevalence, including P. carotovorum subsp. carotovorum (Pcc) and P. carotovorum subsp. brasilisesis (Pcb). The result of pathogenicity analysis showed that Pcb Jm2 had strong pathogenicity at 25 °C even at a cell concentration of 103 CFU mL-1 . Its pathogenicity decreased at 4 °C. Multiple pathogenic factors were identified in the draft genome of Pcb Jm2, including cellulase, pectinase, pectin methylesterase, pectinesterase, pectin lyase, polygalacturonase and so forth. Further, the disease control ability of Lactobacillus farciminis LJLAB1 was investigated. The cell-free supernatant (CFS) and crude bacteriocin of L. farciminis LJLAB1 had good antibacterial activities to Pcb Jm2 in vitro, but CFS exhibited a better disease control effect in vivo. CFS treatment prevented the damage of pepper epidermal structure caused by Pcb Jm2, and 99.26% of pathogen cells on pepper were killed by it. Moreover, CFS treatment delayed firmness decrease, soluble solid content loss, weight loss, yellowing and malonaldehyde accumulation of pepper during storage after pathogen infection. CONCLUSION L. farciminis LJLAB1 can be an effective biological control agent to control pepper soft rot caused by Pcb. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaofen Li
- College of Food Science, Southwest University, Chongqing, China
| | - Guang Li
- College of Food Science, Southwest University, Chongqing, China
| | - Lanhua Yi
- College of Food Science, Southwest University, Chongqing, China
- Research Center of Food Storage & Logistics, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, China
- Research Center of Food Storage & Logistics, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| |
Collapse
|
7
|
Wang M, Hu T, Lin X, Liang H, Li W, Zhao S, Zhong Y, Zhang H, Ge L, Jin X, Xiao L, Zou Y. Probiotic characteristics of Lactobacillus gasseri TF08-1: A cholesterol-lowering bacterium, isolated from human gut. Enzyme Microb Technol 2023; 169:110276. [PMID: 37321015 DOI: 10.1016/j.enzmictec.2023.110276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Lactobacillus contribute to maintain the human healthy and use for nutritional additives as probiotics. In this study, a cholesterol-lowering bacterium, Lactobacillus gasseri TF08-1, was isolated from the feces of a healthy adolescent, and its probiotic potentials were evaluated through genomic mining and in vitro test. The assembled draft genome comprised of 1,974,590 bp and was predicted total of 1,940 CDSs. The annotation of the genome revealed that L. gasseri TF08-1 harbored abundant categories of functional genes in metabolic and information processing. Moreover, strain TF08-1 has capacity to utilize D-Glucose, Sucrose, D-Maltose, Salicin, D-Xylose, D-Cellobiose, D-Mannose, and D-Trehalose, as the carbon source. The safety assessment showed strain TF08-1 contained few antibiotic resistance genes and virulence factors and was only resistant to 2 antibiotics detected by antimicrobial susceptibility test. A high bile salt hydrolase activity was found and a cholesterol-reducing effect was determined in vitro, which the result showed a remarkable cholesterol removal capability of L. gasseri TF08-1 with an efficiency of 84.40 %. This study demonstrated that the strain showed great capability of exopolysaccharide production, and tolerance to acid and bile salt. Therefore, these results indicate that L. gasseri TF08-1 can be considered as a safe candidate for probiotic, especially its potential in biotherapeutic for metabolic diseases.
Collapse
Affiliation(s)
- Mengmeng Wang
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Xiaoqian Lin
- BGI-Shenzhen, Shenzhen 518083, China; School of Bioscience and Biotechnology, South China University of Technology, Guangzhou 510006, China
| | | | - Wenxi Li
- BGI-Shenzhen, Shenzhen 518083, China; School of Bioscience and Biotechnology, South China University of Technology, Guangzhou 510006, China
| | | | - Yiyi Zhong
- BGI-Shenzhen, Shenzhen 518083, China; BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, China
| | - Haifeng Zhang
- BGI-Shenzhen, Shenzhen 518083, China; BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, China
| | - Lan Ge
- BGI-Shenzhen, Shenzhen 518083, China; BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen 518083, China
| | - Liang Xiao
- BGI-Shenzhen, Shenzhen 518083, China; Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China; Shenzhen Engineering Laboratory of Detection and Intervention of human intestinal microbiome, BGI-Shenzhen, Shenzhen, China; BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China; BGI Research-Wuhan, BGI, Wuhan, 430074, China
| | - Yuanqiang Zou
- BGI-Shenzhen, Shenzhen 518083, China; Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China; Shenzhen Engineering Laboratory of Detection and Intervention of human intestinal microbiome, BGI-Shenzhen, Shenzhen, China; BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China; BGI Research-Wuhan, BGI, Wuhan, 430074, China.
| |
Collapse
|
8
|
Fischer SW, Titgemeyer F. Protective Cultures in Food Products: From Science to Market. Foods 2023; 12:foods12071541. [PMID: 37048362 PMCID: PMC10094266 DOI: 10.3390/foods12071541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
An ultimate goal in food production is to guarantee food safety and security. Fermented food products benefit from the intrinsic capabilities of the applied starter cultures as they produce organic acids and bactericidal compounds such as hydrogen peroxide that hamper most food pathogens. In addition, highly potent small peptides, bacteriocins, are being expelled to exert antibiotic effects. Based on ongoing scientific efforts, there is a growing market of food products to which protective cultures are added exclusively for food safety and for prolonged shelf life. In this regard, most genera from the order Lactobacillales play a prominent role. Here, we give an overview on protective cultures in food products. We summarize the mode of actions of antibacterial mechanisms. We display the strategies for the isolation and characterization of protective cultures in order to have them market-ready. A survey of the growing market reveals promising perspectives. Finally, a comprehensive chapter discusses the current legislation issues concerning protective cultures, leading to the conclusion that the application of protective cultures is superior to the usage of defined bacteriocins regarding simplicity, economic costs, and thus usage in less-developed countries. We believe that further discovery of bacteria to be implemented in food preservation will significantly contribute to customer's food safety and food security, badly needed to feed world's growing population but also for food waste reduction in order to save substantial amounts of greenhouse gas emissions.
Collapse
Affiliation(s)
- Sebastian W Fischer
- Department of Food, Nutrition and Facilities, FH Muenster, Correnstr. 25, 48149 Münster, Germany
| | - Fritz Titgemeyer
- Department of Food, Nutrition and Facilities, FH Muenster, Correnstr. 25, 48149 Münster, Germany
| |
Collapse
|
9
|
Wang Z, Zhang Y, Chen C, Fan S, Deng F, Zhao L. A novel bacteriocin isolated from Lactobacillus plantarum W3-2 and its biological characteristics. Front Nutr 2023; 9:1111880. [PMID: 36704783 PMCID: PMC9872010 DOI: 10.3389/fnut.2022.1111880] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
In this study, screening bacteriocin-producing strains from 2,000 plant-derived strains by agar well diffusion method was conducted. The corresponding produced bacteriocin was purified and identified by Sephadex gel chromatography, reversed-phase high-performance liquid chromatography (RP-HPLC), and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Meanwhile, the biological characteristics of bacteriocin were investigated. The targeted strain W3-2 was obtained and identified as Lactobacillus plantarum by morphological observation and 16S rRNA gene sequence analysis. Correspondingly, a novel bacteriocin (named plantaricin W3-2) produced by L. plantarum W3-2 with a molecular weight of 618.26 Da, and an amino acid sequence of AVEEE was separated, purified by Sephadex gel chromatography and RP-HPLC, and identified by LC-MS/MS. Further characteristics analysis displayed that plantaricin W3-2 had good thermal, pH stability, and broad-spectrum antimicrobial ability. In conclusion, plantaricin W3-2 can be used as a new food preservative.
Collapse
Affiliation(s)
- Zengguang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yixuan Zhang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | | | - Shichao Fan
- Junjie Food Technology Co., Ltd., Shaoyang, China
| | - Fangming Deng
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China,*Correspondence: Fangming Deng,
| | - Lingyan Zhao
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China,Lingyan Zhao,
| |
Collapse
|
10
|
Zhao X, Liang Q, Song X, Zhang Y. Whole genome sequence of Lactiplantibacillus plantarum MC5 and comparative analysis of eps gene clusters. Front Microbiol 2023; 14:1146566. [PMID: 37200914 PMCID: PMC10185785 DOI: 10.3389/fmicb.2023.1146566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction Probiotic Lactiplantibacillus plantarum MC5 produces large amounts of exopolysaccharides (EPS), and its use as a compound fermentor can greatly improve the quality of fermented milk. Methods To gain insight into the genomic characteristics of probiotic MC5 and reveal the relationship between its EPS biosynthetic phenotype and genotype, we analyzed the carbohydrate metabolic capacity, nucleotide sugar formation pathways, and EPS biosynthesis-related gene clusters of strain MC5 based on its whole genome sequence. Finally, we performed validation tests on the monosaccharides and disaccharides that strain MC5 may metabolize. Results Genomic analysis showed that MC5 has seven nucleotide sugar biosynthesis pathways and 11 sugar-specific phosphate transport systems, suggesting that the strain can metabolize mannose, fructose, sucrose, cellobiose, glucose, lactose, and galactose. Validation results showed that strain MC5 can metabolize these seven sugars and produce significant amounts of EPS (> 250 mg/L). In addition, strain MC5 possesses two typical eps biosynthesis gene clusters, which include the conserved genes epsABCDE, wzx, and wzy, six key genes for polysaccharide biosynthesis, and one MC5-specific epsG gene. Discussion These insights into the mechanism of EPS-MC5 biosynthesis can be used to promote the production of EPS through genetic engineering.
Collapse
|
11
|
Yang J, Sun Y, Chen J, Cheng Y, Zhang H, Gao T, Xu F, Pan S, Tao Y, Lu J. Fermentation of ginkgo biloba kernel juice using Lactobacillus plantarum Y2 from the ginkgo peel: Fermentation characteristics and evolution of phenolic profiles, antioxidant activities in vitro, and volatile flavor compounds. Front Nutr 2022; 9:1025080. [PMID: 36386957 PMCID: PMC9649921 DOI: 10.3389/fnut.2022.1025080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2023] Open
Abstract
In this study, a strain of Lactobacillus plantarum Y2 was isolated from the ginkgo peel, and showed adequate adaptation to the ginkgo biloba kernel juice. After 48 h of fermentation, the number of viable cells in the stable growth phase was remained at 10.0 Log CFU/mL, while the content of total organic acid increased by 5.86%. Phenolic substances were significantly enriched, and the content of total phenolic substances increased by 9.72%, and the content of total flavonoids after fermentation exceeded 55.33 mg/L, which was 3.6 times that of the unfermented ginkgo juice. The total relative content of volatile flavor compounds increased by 125.48%, and 24 new volatile flavor substances were produced. The content of total sugar, total protein, and total free amino acid decreased to 44.85, 67.51, and 6.88%, respectively. Meanwhile, more than 82.25% of 4'-O-methylpyridoxine was degraded by lactic acid fermentation, and the final concentration in ginkgo biloba kernel juice was lower than 41.53 mg/L. In addition, the antioxidant and antibacterial activities of fermented ginkgo biloba kernel juice were significantly enhanced. These results showed that LAB fermentation could effectively improve the nutritional value and safety of ginkgo biloba kernel juice.
Collapse
Affiliation(s)
- Jie Yang
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Yue Sun
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Jinling Chen
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Yu Cheng
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Haoran Zhang
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Tengqi Gao
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Feng Xu
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Saikun Pan
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Lu
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
12
|
Screening of a Novel Lactiplantibacillus plantarum MMB-05 and Lacticaseibacillus casei Fermented Sandwich Seaweed Scraps: Chemical Composition, In Vitro Antioxidant, and Volatile Compounds Analysis by GC-IMS. Foods 2022; 11:foods11182875. [PMID: 36141001 PMCID: PMC9498330 DOI: 10.3390/foods11182875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022] Open
Abstract
Lactic acid fermentation is a promising method for developing sandwich seaweed scraps. The objectives of this study were to investigate the effect of fermentation with Lactiplantibacillus plantarum MMB-05, Lactiplantibacillus casei FJAT-7928, mixed bacteria (1:1, v/v) and control on the physicochemical indexes, in vitro antioxidant activity, and volatile compounds of Porphyra yezoensis sauce. Sensory evaluation was also performed. The results indicated that all lactic acid bacteria strains grew well in P. yezoensis sauce after 72 h of fermentation, with the viable cell counts of L. plantarum MMB-05 exceeding 10.0 log CFU/mL, the total phenolic content increasing by 16.54%, and the lactic acid content increasing from 0 to 44.38 ± 0.11 mg/mL. Moreover, the metabolism of these strains significantly increased the content of umami, sweet and sour free amino acids in P. yezoensis sauce. The total antioxidant capacity of L. plantarum MMB-05, L. casei FJAT-7928, mix and control groups increased by 594.59%, 386.49%, 410.27%, and 287.62%, respectively. Gas chromatography-ion mobility spectrometry (GC-IMS) analysis suggested that aldehydes and ketones accounted for the largest proportion, and the relative contents of acids and alcohols in P. yezoensis sauce increased significantly after lactic acid bacteria fermentation. In addition, the analysis of dynamic principal component analysis (PCA) and fingerprinting showed that the volatile components of the four treatment methods could be significantly distinguished. Overall, the L. plantarum MMB-05 could be recommended as an appropriate starter for fermentation of sandwich seaweed scraps, which provides a fundamental knowledge for the utilization of sandwiched seaweed scraps.
Collapse
|
13
|
Li Y, Qian Y, Lou X, Hu Z, Hu Y, Zeng M, Liu Z. LuxS in Lactobacillus plantarum SS-128 Improves the Texture of Refrigerated Litopenaeus vannamei: Mechanism Exploration Using a Proteomics Approach. Front Microbiol 2022; 13:892788. [PMID: 35711745 PMCID: PMC9195002 DOI: 10.3389/fmicb.2022.892788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
This study illustrated the texture changes of Shewanella baltica-inoculated Litopenaeus vannamei during refrigerated storage with the exogenous addition of Lactobacillus plantarum SS-128. The group inoculated with SS-128 had an improved texture compared with that inoculated with the luxS-mutant group (ΔluxS). Proteomics were conducted to analyze the protein alterations in L. vannamei and supernatant, respectively. During storage, many texture-related proteins, including myosin heavy chain and beta-actin, were maintained due to luxS. Some endogenous enzymes related to the energy metabolism and hydrolysis of L. vannamei were downregulated. The luxS-induced interaction with S. baltica showed significant changes in the expression of some critical enzymes and pathways. The ATP-dependent zinc metalloprotease FtsH and protease subunit HslV were downregulated, and the oxidative phosphorylation and glycosaminoglycan degradation pathways in S. baltica were inhibited, resulting in the slow deterioration of L. vannamei. By exploring the mechanism underlying SS-128-led manipulation of the metabolism of spoilage bacteria, we clarified the texture maintenance mechanism of luxS in SS-128, providing theoretical evidence for SS-128 application in food preservation.
Collapse
Affiliation(s)
- Yuan Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao, China
| | - Yilin Qian
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao, China
| | - Xiaowei Lou
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Zhiheng Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,College of Food Science and Technology, Hainan Tropical Ocean University, Sanya, China
| | - Yaqin Hu
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya, China
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao, China
| | - Zunying Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao, China
| |
Collapse
|
14
|
He L, Chen Y, Zhang H, Wang H, Chen S, Liu S, Liu A, Li Q, Ao X, Liu Y. Isolation and identification of Lactobacillus and yeast species and their effect on the quality of fermented rice cakes. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Park JM, Zhang BZ, Kim JM. Effect of Fermentation Duration on the Quality Changes of Godulbaegi Kimchi. Foods 2022; 11:foods11071020. [PMID: 35407107 PMCID: PMC8997386 DOI: 10.3390/foods11071020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
Fermentative and antioxidative characteristics of Godulbaegi kimchi (LGK), a traditional, fermented Korean food, were conducted. For the study, LGK kimchi was made of Godulbaegi kimchi with pepper powder, salted shrimp, refined salt, green onions, and so on, and fermented at 5C for 6 months. The pH was decreased, and total acidity was increased during fermentation. Furthermore, lactic acid bacteria and yeast were increased, while the total viable count was decreased. The LGK showed the highest DPPH-scavenging activity, phenol content, and nitrite-scavenging activity with methanol extract among methanol, ethanol, and water. In addition, we screened strains among LGK kimchi with high antimicrobial activity and isolated them. We tested antimicrobial activity for 20 lactic acid bacteria, and we separated and identified nine strains of lactic acid bacteria with high antimicrobial activity. Given these results, LGK is expected to be an effective food in considerable antioxidative activity with an antimicrobial effect. These results are expected to serve as basic data for the study of Godulbaegi kimchi.
Collapse
|
16
|
Meruvu H, Harsa ST. Lactic acid bacteria: isolation-characterization approaches and industrial applications. Crit Rev Food Sci Nutr 2022; 63:8337-8356. [PMID: 35348017 DOI: 10.1080/10408398.2022.2054936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The current state-of-art research pertaining to lactic acid bacteria (LAB) calls for the screening and isolation of robust LAB strains to achieve holistic exploitation of LAB and their metabolites of marketable importance. Hence it is imperative to comprehend LAB sources, growth requisites, isolation and characterization strategies necessary for featured cataloging and appropriate culturing. This review comprehensively describes various growth media and biomasses used for supporting LAB sustenance, assay procedures needed for the isolation and characterization of LAB strains, and their application in diverse sectors. The various industrial patents and their summarized claims about novel LAB strains isolated and identified, methods and media (used for detection/screening, isolation, adaptation, culturing, preservation, growth improvement), the techniques and/or methodologies supporting LAB fermentation, and applications of produced industrial metabolites in various market scenarios are detailed.
Collapse
Affiliation(s)
- Haritha Meruvu
- CEO, Revathi Hospital, Revathi Firm, Rajahmundry, Andhra Pradesh, India
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sebnem Tellioglu Harsa
- Faculty of Engineering, Department of Food Engineering, İzmir Institute of Technology, Gulbahçe Campus, Urla, İzmir, Turkey
| |
Collapse
|
17
|
Isolation and identification of new source of bacteriocin-producing Lactobacillus plantarum C010 and growth kinetics of its batch fermentation. World J Microbiol Biotechnol 2022; 38:67. [PMID: 35246726 DOI: 10.1007/s11274-022-03244-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/07/2022] [Indexed: 12/28/2022]
Abstract
The control of food-borne pathogens and spoilage organisms in meat and related products is urgently needed. Bacteriocins produced by lactic acid bacteria (LAB) are promising natural food preservatives. In this study, six bacteriocin-producing bacteria were screened from soil and fresh cow dung. Pseudomonas koreensis PS1, a specific spoilage organism from spoiled chilled pork, was used as the indicator bacteria. From the analyses, the strain C010 was selected due to its high yield, broad spectrum, and subculture stability. Through morphological, biochemical, and 16S rDNA gene sequence analysis, this strain was identified as Lactobacillus plantarum. Crude bacteriocin extracted from the cell-free supernatant (CFS) of L. plantarum C010 was stable under high temperature, ultraviolet radiation, and protease attack (pepsin, trypsin, and proteinase K). The kinetics of bacterial growth and bacteriocin production by L. plantarum C010 were analyzed during batch fermentation. Bacteriocin was produced throughout the logarithmic growth phase, and the Leudeking-Piret model characterized the synthesis of bacteriocins. The present study indicates that this novel bacteriocin produced by bacteria is a promising option for reducing spoilage microorganisms and can be widely used as a bio-preservative in meat and other foods.
Collapse
|
18
|
Liu C, Xue WJ, Ding H, An C, Ma SJ, Liu Y. Probiotic Potential of Lactobacillus Strains Isolated From Fermented Vegetables in Shaanxi, China. Front Microbiol 2022; 12:774903. [PMID: 35178036 PMCID: PMC8844445 DOI: 10.3389/fmicb.2021.774903] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022] Open
Abstract
The objective of this study was to assess in vitro probiotic potential of Lactobacillus strains derived from artisanal fermented vegetables in Shaanxi, China. In total, 74 acid-producing Gram-positive strains with rod-shaped under the microscope were isolated from 16 samples of spontaneously fermented vegetables. Out of 74 strains, 26 showed high survival rate under low pH and high bile salts conditions and were subjected to molecular identification by 16S rRNA gene sequencing analysis. The results showed that 15 isolates belonged to Lactobacillus plantarum, 9 isolates belonged to Lactobacillus brevis, and the 2 remaining strains belonged to Weissella viridescens. The 24 Lactobacillus strains were investigated for their survival rate to transit simulated gastrointestinal tract, cell surface hydrophobicity, auto-aggregation, co-aggregation with pathogen, adhesion to Caco-2, antimicrobial activity, antibiotics susceptibility, radical scavenging ability, α-glucosidase inhibition, and the cholesterol assimilation. The results showed that the probiotic characteristics were strain-dependent, and several strains exhibited great probiotic potential with specific health benefits, which indicated that they might be excellent candidates for production of functional foods. Interestingly, it was first found that L. plantarum generally had higher antibacterial activities, α-glucosidase inhibition ability, and antibiotics susceptibility compared to L. brevis in this study. The results indicated that Lactobacillus strains isolated from fermented vegetables in Shaanxi, China, could be exploited as a promising novel probiotic source.
Collapse
Affiliation(s)
- Chen Liu
- Shaanxi Institute of Microbiology, Xi'an, China
| | | | - Hao Ding
- Shaanxi Institute of Microbiology, Xi'an, China
| | - Chao An
- Shaanxi Institute of Microbiology, Xi'an, China
| | - Sai-Jian Ma
- Shaanxi Institute of Microbiology, Xi'an, China
| | - Yao Liu
- Shaanxi Institute of Microbiology, Xi'an, China
| |
Collapse
|
19
|
Sharma BR, Halami PM, Tamang JP. Novel pathways in bacteriocin synthesis by lactic acid bacteria with special reference to ethnic fermented foods. Food Sci Biotechnol 2022; 31:1-16. [PMID: 35059226 PMCID: PMC8733103 DOI: 10.1007/s10068-021-00986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/28/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022] Open
Abstract
Ethnic fermented foods are known for their unique aroma, flavour, taste, texture and other sensory properties preferred by every ethnic community in this world culturally as parts of their eatables. Some beneficial microorganisms associated with fermented foods have several functional properties and health-promoting benefits. Bacteriocins are the secondary metabolites produced by the microorganisms mostly lactic acid bacteria present in the fermented foods which can act as lantibiotics against the pathogen bacteria. Several studies have been conducted regarding the isolation and characterization of potent strains as well as their association with different types of bacteriocins. Collective information regarding the gene organizations responsible for the potent effect of bacteriocins as lantibiotics, mode of action on pathogen bacterial cells is not yet available. This review focuses on the gene organizations, pathways include for bacteriocin and their mode of action for various classes of bacteriocins produced by lactic acid bacteria in some ethnic fermented foods.
Collapse
Affiliation(s)
- Basista Rabina Sharma
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020 India
| | - Prakash M. Halami
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020 India
| | - Jyoti Prakash Tamang
- DAICENTER, Department of Microbiology, Sikkim University, Science Building, Tadong, Gangtok, Sikkim 737102 India
| |
Collapse
|
20
|
Darbandi A, Asadi A, Mahdizade Ari M, Ohadi E, Talebi M, Halaj Zadeh M, Darb Emamie A, Ghanavati R, Kakanj M. Bacteriocins: Properties and potential use as antimicrobials. J Clin Lab Anal 2021; 36:e24093. [PMID: 34851542 PMCID: PMC8761470 DOI: 10.1002/jcla.24093] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/03/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
A variety of bacteriocins originate from lactic acid bacteria, which have recently been modified by scientists. Many strains of lactic acid bacteria related to food groups could produce bacteriocins or antibacterial proteins highly effective against foodborne pathogens such as Staphylococcus aureus, Pseudomonas fluorescens, P. aeruginosa, Salmonella typhi, Shigella flexneri, Listeria monocytogenes, Escherichia coli O157:H7, and Clostridium botulinum. A wide range of bacteria belonging primarily to the genera Bifidobacterium and Lactobacillus have been characterized with different health‐promoting attributes. Extensive studies and in‐depth understanding of these antimicrobials mechanisms of action could enable scientists to determine their production in specific probiotic lactic acid bacteria, as they are potentially crucial for the final preservation of functional foods or for medicinal applications. In this review study, the structure, classification, mode of operation, safety, and antibacterial properties of bacteriocins as well as their effect on foodborne pathogens and antibiotic‐resistant bacteria were extensively studied.
Collapse
Affiliation(s)
- Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Asadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Elnaz Ohadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Masoume Halaj Zadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Darb Emamie
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Kakanj
- Food and Drug Laboratory Research Center, Food and Drug Administration, MOH&ME, Tehran, Iran
| |
Collapse
|
21
|
Sakr EAE, Massoud MI, Ragaee S. Food wastes as natural sources of lactic acid bacterial exopolysaccharides for the functional food industry: A review. Int J Biol Macromol 2021; 189:232-241. [PMID: 34428487 DOI: 10.1016/j.ijbiomac.2021.08.135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023]
Abstract
Exopolysaccharides (EPSs) synthesized by lactic acid bacteria (LAB), have recently received much interest because of their various functional features in several industries. Food wastes (FWs) have become a major source of worry, as they can cause serious environmental contamination if improperly disposed. The utilization of these FWs is an excellent choice (approach) for producing value-added products such as EPSs, which will efficiently remediate wastes. The overall EPSs yield for the selected producers is strain-specific, and is heavily influenced by the nutritional and growing conditions used. This review emphasizes what is currently known about LAB's ability to generate economically relevant EPSs from FWs. In addition, a concise overview of the food industry, packaging, pharmaceutical and clinical applications application is discussed.
Collapse
Affiliation(s)
- Ebtehag A E Sakr
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt.
| | - Mona I Massoud
- Sugar Crops Research Institute, Agriculture Research Center, Ministry of Agriculture, Egypt
| | - Sanaa Ragaee
- Department of Food Science, University of Guelph, Canada
| |
Collapse
|
22
|
Transformation of Inferior Tomato into Preservative: Fermentation by Multi-Bacteriocin Producing Lactobacillus paracasei WX322. Foods 2021; 10:foods10061278. [PMID: 34205121 PMCID: PMC8228740 DOI: 10.3390/foods10061278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/23/2022] Open
Abstract
Loss and waste of postharvest vegetables are the main challenges facing the world’s vegetable supply. In this study, an innovative method of value-added transformation was provided: production of bacteriocin from vegetable waste, and then its application to preservation of vegetables. Antibacterial activity to soft rot pathogen Pectobacterium cartovorum (Pcb BZA12) indicated that tomato performed best in the nutrition supply for bacteriocin production among 12 tested vegetables. Moreover, the antibacterial activity was from Lactobacillus paracasei WX322, not components of vegetables. During a fermentation period of 10 days in tomato juice, L. paracasei WX322 grew well and antibacterial activity reached the maximum on the tenth day. Thermostability and proteinase sensitivity of the bacteriocin from tomato juice were the same with that from Man-Rogosa-Sharpe broth. Scanning electron microscope images indicated that the bacteriocin from tomato juice caused great damage to Pcb BZA12. At the same time, the bacteriocin from tomato juice significantly reduced the rotten rate of Chinese cabbage from 100% ± 0% to 20% ± 8.16% on the third day during storage. The rotten rate decrease of cucumber, tomato, and green bean was 100% ± 0% to 0% ± 0%, 70% ± 14.14% to 13.33% ± 9.43%, and 76.67% ± 4.71% to 26.67% ± 4.71%, respectively. Bacteriocin treatment did not reduce the rotten rate of balsam pear, but alleviated its symptoms.
Collapse
|
23
|
Qi T, Wang S, Deng L, Yi L, Zeng K. Controlling pepper soft rot by Lactobacillus paracasei WX322 and identification of multiple bacteriocins by complete genome sequencing. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Isolation and identification of novel antibacterial peptides produced by Lactobacillus fermentum SHY10 in Chinese pickles. Food Chem 2021; 348:129097. [PMID: 33515941 DOI: 10.1016/j.foodchem.2021.129097] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 11/23/2022]
Abstract
The aim of this study was to isolate and identify antibacterial peptides (ABPs) produced by lactic acid bacteria (LAB) in Chinese pickles. The cell-free supernatant collected from the culture of LAB with antibacterial activity against Staphylococcus aureus was used to purify ABPs. A total of 14 strains of LAB were found to have antibacterial activity. Among them, Lactobacillus fermentum (L. fermentum) SHY10 exhibited the most effective antibacterial activity. The antibacterial activity of cell-free supernatant reached the highest level after 20 h of L. fermentum SHY10 culture. Three novel ABPs were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In particular, the NQGPLGNAHR peptide showed antibacterial activity with an IC50 value of 0.957 mg/mL. In addition, molecular docking analysis revealed that this peptide interacted with DNA gyrase and dihydrofolate reductase by salt bridge formation, hydrogen bond interactions, and metal contact.
Collapse
|
25
|
Li S, Ma Y, Ji T, Sameen DE, Ahmed S, Qin W, Dai J, Li S, Liu Y. Cassava starch/carboxymethylcellulose edible films embedded with lactic acid bacteria to extend the shelf life of banana. Carbohydr Polym 2020; 248:116805. [DOI: 10.1016/j.carbpol.2020.116805] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
|
26
|
Szutowska J, Gwiazdowska D. Probiotic potential of lactic acid bacteria obtained from fermented curly kale juice. Arch Microbiol 2020; 203:975-988. [PMID: 33104821 PMCID: PMC7965858 DOI: 10.1007/s00203-020-02095-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022]
Abstract
The aim of the paper was to analyse changes in lactic acid bacteria (LAB) populations during spontaneous fermentation of green curly kale juice (Brasicca oleracea L. var. acephala L.) and to determine the probiotic potential of LAB isolates. The analyses revealed that changes in LAB populations were specific for spontaneously fermented vegetable juices. The initial microbiota, composed mostly of Leuconostoc mesenteroides bacteria, was gradually replaced by Lactobacillus species, mainly Lactobacillus plantarum, Lactobacillus sakei, and Lactobacillus coryniformis. Screening tests for the antimicrobial properties and antibiotic susceptibility of isolates allowed for the selection of 12 strains with desirable characteristics. L. plantarum isolates were characterized by the widest spectrum of antimicrobial interactions, both towards Gram-positive and Gram-negative bacteria. Also, L. plantarum strains exhibited the best growth abilities under low pH conditions, and at different NaCl and bile salt concentrations. All strains showed different levels of antibiotic sensitivity, although they were resistant to vancomycin and kanamycin. The present study has shown that bacterial isolates obtained from spontaneously fermented kale juice could constitute valuable probiotic starter cultures, which may be used in fermentation industry.
Collapse
Affiliation(s)
- Julia Szutowska
- Department of Natural Science and Quality Assurance, Institute of Quality Science, Poznań University of Economics and Business, Poznań, Poland.
| | - Daniela Gwiazdowska
- Department of Natural Science and Quality Assurance, Institute of Quality Science, Poznań University of Economics and Business, Poznań, Poland
| |
Collapse
|
27
|
Danielski GM, Evangelista AG, Luciano FB, de Macedo REF. Non-conventional cultures and metabolism-derived compounds for bioprotection of meat and meat products: a review. Crit Rev Food Sci Nutr 2020; 62:1105-1118. [DOI: 10.1080/10408398.2020.1835818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gabriela Maia Danielski
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
- Undergraduate Program in Agronomy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | | | | |
Collapse
|