1
|
Elisha C, Bhagwat P, Pillai S. Emerging production techniques and potential health promoting properties of plant and animal protein-derived bioactive peptides. Crit Rev Food Sci Nutr 2024:1-30. [PMID: 39206881 DOI: 10.1080/10408398.2024.2396067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bioactive peptides (BPs) are short amino acid sequences that that are known to exhibit physiological characteristics such as antioxidant, antimicrobial, antihypertensive and antidiabetic properties, suggesting that they could be exploited as functional foods in the nutraceutical industry. These BPs can be derived from a variety of food sources, including milk, meat, marine, and plant proteins. In the past decade, various methods including in silico, in vitro, and in vivo techniques have been explored to unravel underlying mechanisms of BPs. To forecast interactions between peptides and their targets, in silico methods such as BIOPEP, molecular docking and Quantitative Structure-Activity Relationship modeling have been employed. Additionally, in vitro research has examined how BPs affect enzyme activities, protein expressions, and cell cultures. In vivo studies on the contrary have appraised the impact of BPs on animal models and human subjects. Hence, in the light of recent literature, this review examines the multifaceted aspects of BPs production from milk, meat, marine, and plant proteins and their potential bioactivities. We envisage that the various concepts discussed will contribute to a better understanding of the food derived BP production, which could pave a way for their potential applications in the nutraceutical industry.
Collapse
Affiliation(s)
- Cherise Elisha
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
2
|
Chen J, Mou L, Wang L, Wu G, Dai X, Chen Q, Zhang J, Luo X, Xu F, Zhang M, Duan Y, Pang H, Wang Y, Cai Y, Tan Z. Mixed Bacillus subtilis and Lactiplantibacillus plantarum-fermented feed improves gut microbiota and immunity of Bamei piglet. Front Microbiol 2024; 15:1442373. [PMID: 39268530 PMCID: PMC11390403 DOI: 10.3389/fmicb.2024.1442373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024] Open
Abstract
Antibiotics are widely used in the breeding production of Bamei pigs, affecting the quality and safety of pork and causing enormous harm to human health, the environment, and public health. The use of probiotic fermented feed to replace antibiotic feed is one of the solutions, which has the potential to improve the intestinal microbiota, promote animal growth, and enhance immunity. The purpose of this study was to evaluate the effect of fermented feed with Lactiplantibacillus (L.) plantarum QP28-1a or Bacillus (B.) subtilis QB8a on feed, growth performance, gut microbiota, and immunity of weaned piglets. A total of 60 freshly weaned piglets from the Tibetan Plateau were randomly divided into five groups and fed basal feed, L. plantarum fermented feed, B. subtilis fermented feed, mixed fermented feed, and antibiotic fermented feed for 60 days, respectively. The results showed fermented feed supplemented with L. plantarum QP28-1a or B. subtilis QB8a significantly lowered the pH of the feed (P < 0.05), produced lactic acid and acetic acid, inhibited the growth of harmful bacteria in the feed, and reduced the feed conversion rate in the group fed mixed fermented feed (P < 0.05). The fermented feed increased the α-diversity and prominently altered the β-diversity of the intestinal microbiota, increasing the relative abundance of beneficial bacteria such as Lactobacillus and Turicibacter and decreasing the relative abundance of conditional pathogens such as Streptococcus and Clostridium, improving the intestinal microbiota of the Bamei piglets. Notably, the mixed fermented feed improved the immunity of Bamei piglets by modulating the production of pro-inflammatory cytokines, anti-inflammatory cytokines, and inflammatory-related signaling pathways. Spearman's correlation analysis revealed that the increased expression of immune-related cytokines may be associated with a significant enrichment of Lactobacillus, Prevotellaceae, Erysipelotrichaceae, and Ruminococcaceae in the gut. In conclusion, the probiotic fermented feed maintained an acidic environment conducive to suppressing pathogens, reduced the feed conversion ratio, optimized the intestinal microbiota, improved immunity, and alleviated intestinal inflammation that may be caused by weaning, demonstrating the excellent application prospects of L. plantarum QP28-1a and B. subtilis QB8a fermented feed in the feeding of Bamei piglets.
Collapse
Affiliation(s)
- Jun Chen
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Liyu Mou
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lei Wang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Guofang Wu
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Ximei Dai
- Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Zhengzhou, China
| | - Qiufang Chen
- Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Zhengzhou, China
| | - Jianbo Zhang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Xuan Luo
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Fafang Xu
- Bamei Pig Original Breeding Base of Huzhu County, Huzhou, China
| | - Miao Zhang
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaoke Duan
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Huili Pang
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanping Wang
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yimin Cai
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhongfang Tan
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Sarıtaş S, Portocarrero ACM, Miranda López JM, Lombardo M, Koch W, Raposo A, El-Seedi HR, de Brito Alves JL, Esatbeyoglu T, Karav S, Witkowska AM. The Impact of Fermentation on the Antioxidant Activity of Food Products. Molecules 2024; 29:3941. [PMID: 39203019 PMCID: PMC11357363 DOI: 10.3390/molecules29163941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
From ancient times to the present day, fermentation has been utilized not only for food preservation but also for enhancing the nutritional and functional properties of foods. This process is influenced by numerous factors, including the type of microorganisms used, substrate composition, pH, time, and temperature, all of which can significantly alter the characteristics of the final product. Depending on the parameters, fermentation enhances the bioactive content of the products and imparts the necessary properties, such as antioxidant characteristics, for the products to be considered functional. The enhancement of these properties, particularly antioxidant activity, enriches foods with bioactive compounds and functional attributes, contributing to improved health benefits. Through a review of recent research, this study elucidates how different fermentation processes can enhance the bioavailability and efficacy of antioxidants, thereby improving the nutritional and functional qualities of foods. This study investigated the multifaceted effects of fermentation on antioxidant properties by exploring various types and conditions of fermentation. It highlights specific examples from dairy products and other food categories as well as the valorization of food waste and byproducts. The findings underscore the potential of fermentation as a sustainable method to produce health-promoting foods with elevated antioxidant activities, offering new perspectives for food science and technology.
Collapse
Affiliation(s)
- Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye;
| | - Alicia C. Mondragon Portocarrero
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición Bromatología, Universidade de Santiago de Compostela, Campus Terra, 27002 Lugo, Spain; (A.C.M.P.); (J.M.M.L.)
| | - Jose M. Miranda López
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición Bromatología, Universidade de Santiago de Compostela, Campus Terra, 27002 Lugo, Spain; (A.C.M.P.); (J.M.M.L.)
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di 11 Val Cannuta 247, 00166 Rome, Italy;
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland;
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal;
| | - Hesham R. El-Seedi
- Chemistry Department, Faculty of Science, Islamic University of Madinah, P.O. Box 170, Madinah 42351, Saudi Arabia;
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil;
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfired Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany;
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Bialystok Medical University, 15-089 Bialystok, Poland
| |
Collapse
|
4
|
Skrzypczak K, Wirkijowska A, Przygoński K, Terpiłowski K, Blicharz-Kania A. Quality and functional properties of bread containing the addition of probiotically fermented Cicer arietinum. Food Chem 2024; 448:139117. [PMID: 38608398 DOI: 10.1016/j.foodchem.2024.139117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
This study aimed to determine the impact of supplementation with probiotically fermented chickpea (Cicer arietinum L) seeds on the quality parameters and functional characteristics of wheat bread. The addition of chickpea seeds caused significant changes in the chemical composition of the control wheat bread. The legume-supplemented products exhibited higher values of a* and b* color parameters and higher hardness after 24 h of storage than the control. The application of fermented or unfermented chickpeas contributed to an increase in total polyphenol and flavonoid contents, iron chelating capacity, and antioxidant properties of the final product. The variant containing unfermented seeds had the highest riboflavin content (29.53 ± 1.11 µg/100 g d.w.), Trolox equivalent antioxidant capacity (227.02 ± 7.29 µmol·L-1 TX/100 g d.w.), and free radical scavenging activity (71.37 ± 1.30 % DPPH inhibition). The results of this preliminary research have practical importance in the production of innovative bakery products with potential properties of functional food.
Collapse
Affiliation(s)
- Katarzyna Skrzypczak
- Department of Plant Food Technology and Gastronomy, Sub-department of Fruits, Vegetables and Mushrooms Technology, Faculty of Food Science and Biotechnology University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Anna Wirkijowska
- Department of Plant Food Technology and Gastronomy, Department of Engineering and Technology of Grains, Faculty of Food Science and Biotechnology University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland.
| | - Krzysztof Przygoński
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Food Concentrates and Starch Products Department, Starołęcka 40, 61-361 Poznań, Poland
| | - Konrad Terpiłowski
- Department of Interfacial Phenomena, Maria Curie Skłodowska University, M. Curie Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Agata Blicharz-Kania
- Department of Biological Bases of Food and Feed Technologies, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
| |
Collapse
|
5
|
Elhalis H, Chin XH, Chow Y. Soybean fermentation: Microbial ecology and starter culture technology. Crit Rev Food Sci Nutr 2024; 64:7648-7670. [PMID: 36916137 DOI: 10.1080/10408398.2023.2188951] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Fermented soybean products, including Soya sauce, Tempeh, Miso, and Natto have been consumed for decades, mainly in Asian countries. Beans are processed using either solid-state fermentation, submerged fermentation, or a sequential of both methods. Traditional ways are still used to conduct the fermentation processes, which, depending on the fermented products, might take a few days or even years to complete. Diverse microorganisms were detected during fermentation in various processes with Bacillus species or filamentous fungi being the two main dominant functional groups. Microbial activities were essential to increase the bean's digestibility, nutritional value, and sensory quality, as well as lower its antinutritive factors. The scientific understanding of fermentation microbial communities, their enzymes, and their metabolic activities, however, still requires further development. The use of a starter culture is crucial, to control the fermentation process and ensure product consistency. A broad understanding of the spontaneous fermentation ecology, biochemistry, and the current starter culture technology is essential to facilitate further improvement and meet the needs of the current extending and sustainable economy. This review covers what is currently known about these aspects and reveals the limited available information, along with the possible directions for future starter culture design in soybean fermentation.
Collapse
Affiliation(s)
- Hosam Elhalis
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, Singapore, Singapore
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, Australia
| | - Xin Hui Chin
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, Singapore, Singapore
| | - Yvonne Chow
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, Singapore, Singapore
| |
Collapse
|
6
|
Samtiya M, Badgujar PC, Chandratre GA, Aluko RE, Kumar A, Bhushan B, Dhewa T. Effect of selective fermentation on nutritional parameters and techno-functional characteristics of fermented millet-based probiotic dairy product. Food Chem X 2024; 22:101483. [PMID: 38840723 PMCID: PMC11152665 DOI: 10.1016/j.fochx.2024.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
The primary goal of this study was to assess the effect of selective fermentation on the nutritional and techno-functional characteristics of fermented millet-skim milk-based product. The product was made with HHB-311 biofortified pearl millet (PM) flour, skim milk powder, and isolated cultures (either alone or in combination) of Limosilactobacillus fermentum MS005 (LF) and Lactobacillus rhamnosus GG 347 (LGG). To optimize fermentation time, time intervals 8, 16, and 24 h were explored, while the temperature was kept 37 °C. Results of protein digestibility showed that LF (16 h) and LGG (24 h) fermented samples had significantly higher (P < 0.05) protein digestibility of 90.75 ± 1.6% and 93.76 ± 3.4%, respectively, than that of control (62.60 ± 2.6%). Further, 16 h fermentation with LF showed enhanced iron (39%) and zinc (14%) bioavailability. The results suggested that LF with 16 h fermentation is most suitable for making millet-based fermented products with superior techno-functional attributes and micronutrient bioavailability.
Collapse
Affiliation(s)
- Mrinal Samtiya
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana 123 031, India
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131 028, India
| | - Prarabdh C. Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131 028, India
| | - Gauri A. Chandratre
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125001, India
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana 123 031, India
| | - Bharat Bhushan
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana 131 028, India
- Department of Food Science, Technology and Processing, School of Health Sciences, Amity University Punjab, Mohali, Punjab-140306, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana 123 031, India
| |
Collapse
|
7
|
Zhang C, Huang H, Liu B, Tang X, Tan B, Jiang Q, Yin Y. Optimizing Cellulase- Limosilactobacillus fermentum ZC529 Synergy Fermentation for Preserving Macadamia integrifolia Pericarp's Potential Use as Antioxidants. Antioxidants (Basel) 2024; 13:783. [PMID: 39061852 PMCID: PMC11273814 DOI: 10.3390/antiox13070783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Macadamia integrifolia pericarps (MIP) are byproducts of nut production which are rich in natural antioxidant compounds, making them an excellent source for extracting bioactive compounds. However, the antioxidant compounds in MIP are easily oxidized under natural storage conditions, resulting in significant biomass loss and resource wastage. To preserve the potential of MIP to be used as an antioxidant product, we employed cellulase and Limosilactobacillus fermentum ZC529 (L.f ZC529) fermentation and utilized response surface methodology to optimize the fermentation parameters for mitigating the antioxidant loss. Total antioxidant capacity (T-AOC) was used as the response variable. The fermented MIP water extract (FMIPE) was obtained via ultrasound-assisted extraction, and its biological activity was evaluated to optimize the best fermentation conditions. Results indicated that a cellulase dosage of 0.9%, an L.f ZC529 inoculation size of 4 mL/100 g, and a fermentation time of 7 days were the optimal conditions for MIP fermentation. Compared to spontaneous fermentation, these optimal conditions significantly increased the total phenolic and total flavonoid contents (p < 0.05). T-AOC was 160.72% increased by this optimal fermentation (p < 0.05). Additionally, supplementation with varying concentrations of FMIPE (6.25%, 12.5%, and 25%) increased the T-AOC, SOD activity, and GSH content, and reduced MDA levels of the oxidative-stressed Drosophila melanogaster (p < 0.05). Moreover, 12.5% and 25% of FMIPE treatments elevated CAT activity in the Drosophila melanogaster (p < 0.05). The effects of FMIPE on GSH and MDA in Drosophila melanogaster were equivalent to the 0.5% vitamin C (Vc) treatment. In summary, synergistic fermentation using cellulase and L.f ZC529 effectively preserves the antioxidant activity of the MIP, offering a simple, eco-friendly method to promote the utilization of MIP resources.
Collapse
Affiliation(s)
- Chen Zhang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.Z.); (B.T.)
- Institute of Yunnan Circular Agricultural Industry, Pu’er 665000, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Haibo Huang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.Z.); (B.T.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Bifan Liu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.Z.); (B.T.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Xiongzhuo Tang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.Z.); (B.T.)
- Institute of Yunnan Circular Agricultural Industry, Pu’er 665000, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Bi’e Tan
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.Z.); (B.T.)
- Institute of Yunnan Circular Agricultural Industry, Pu’er 665000, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Qian Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.Z.); (B.T.)
- Institute of Yunnan Circular Agricultural Industry, Pu’er 665000, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.Z.); (B.T.)
- Institute of Yunnan Circular Agricultural Industry, Pu’er 665000, China
- Yuelushan Laboratory, Changsha 410128, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
8
|
Gao Y, Hu M, Meng W, Wen W, Zhang P, Fan B, Wang F, Li S. Study on the quality of soybean proteins fermented by Bacillus subtilis BSNK-5: Insights into nutritional, functional, safety, and flavor properties. Food Chem 2024; 443:138523. [PMID: 38286093 DOI: 10.1016/j.foodchem.2024.138523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
Microbial fermentation emerges as a promising strategy to elevate the quality of soybean proteins in food industry. This study conducted a comprehensive assessment of the biotransformation of four types of soybean proteins by Bacillus subtilis BSNK-5, a proteinase-rich bacterium. BSNK-5 had good adaptability to each protein. Soluble protein, peptides and free amino acids increased in fermented soybean proteins (FSPs) and dominant after 48-84 h fermentation, enhancing nutritional value. Extensive proteolysis of BSNK-5 also improved antioxidant and antihypertensive activities, reaching peak level after 48 h fermentation. Furthermore, excessive proteolysis effectively enhanced the generation of beneficial spermidine without producing toxic histamine after fermentation, and formed the flavor profile with 56 volatiles in 48 h FSPs. Further degradation of amino acids showed a positive correlation with off-flavors, particularly the enrichment of 3-methylbutanoic acid. These findings establish a theoretical foundation for regulating moderate fermentation by BSNK-5 to enabling the high-value utilization of soybean protein.
Collapse
Affiliation(s)
- Yaxin Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Miao Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weimin Meng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Wen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pengfei Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
9
|
Du Q, Li H, Tu M, Wu Z, Zhang T, Liu J, Ding Y, Zeng X, Pan D. Legume protein fermented by lactic acid bacteria: Specific enzymatic hydrolysis, protein composition, structure, and functional properties. Colloids Surf B Biointerfaces 2024; 238:113929. [PMID: 38677155 DOI: 10.1016/j.colsurfb.2024.113929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
In recent years, with increasing emphasis on healthy, green, and sustainable consumption concepts, plant-based foods have gained popularity among consumers. As widely sourced plant-based raw materials, legume proteins are considered sustainable and renewable alternatives to animal proteins. However, legume proteins have limited functional properties, which hinder their application in food products. LAB fermentation is a relatively natural processing method that is safer than chemical/physical modification methods and can enrich the functional properties of legume proteins through biodegradation and modification. Therefore, changes in legume protein composition, structure, and functional properties and their related mechanisms during LAB fermentation are described. In addition, the specific enzymatic hydrolysis mechanisms of different LAB proteolytic systems on legume proteins are also focused in this review. The unique proteolytic systems of different LAB induce specific enzymatic hydrolysis of legume proteins, resulting in the production of hydrolysates with diverse functional properties, including solubility, emulsibility, gelability, and foamability, which are determined by the composition (peptide/amino acid) and structure (secondary/tertiary) of legume proteins after LAB fermentation. The correlation between LAB-specific enzymatic hydrolysis, protein composition and structure, and protein functional properties will assist in selecting legume protein raw materials and LAB strains for legume plant-based food products and expand the application of legume proteins in the food industry.
Collapse
Affiliation(s)
- Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Hang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Tao Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China.
| |
Collapse
|
10
|
Okomo Aloo S, Park S, Martins Oyinloye T, Oh DH. Rheological properties, biochemical changes, and potential health benefits of dehulled and defatted industrial hempseeds after fermentation. Food Chem 2024; 439:138086. [PMID: 38043281 DOI: 10.1016/j.foodchem.2023.138086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/11/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Dehulled hempseed (DHS), fermented dehulled hempseed (FDHS), hempseed cake (HSC), and fermented HSC (FHSC) were examined for their phytochemical composition, health benefits, and rheological characteristics. At 500 µg/mL concentration, DHS, FDHS, HSC, and FHSC extracts exhibited the ability to inhibit DPPH radicals, with 32.46 %, 47.35 %, 33.85 %, and 47.41 %, respectively. Similarly, they demonstrated potential to scavenge ABTS radicals by 13.7 %, 27.87 %, 14.40 % and 25.70 %, respectively. For lipase inhibition activity, FDHS (72.92 %) and FDHS (85.89 %) outperformed DHS (52.94 %) and HSC (43.08 %). Furthermore, FHSC enhanced the survival and reduced fat accumulation in glucose-supplemented Caenorhabditis elegans. We used HPLC and UHPLC-ESI-QTOF-MS for metabolite analysis, quantifying eight polyphenols using HPLC and identifying thirty-four metabolites with UHPLC-ESI-QTOF-MS. Generally, metabolomics indicated an improved metabolite profile after fermentation. Fermentation also showed impact on rheological characteristics, modifying viscosity, loss modulus, and storage modulus. These findings collectively demonstrate the ability of fermentation in enhancing overall value of hempseed.
Collapse
Affiliation(s)
- Simon Okomo Aloo
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - SeonJu Park
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Timilehin Martins Oyinloye
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea.
| |
Collapse
|
11
|
Hwang SJ, Choi YJ, Wang JH, Son CG. Lactobacillus Casei-fermented Amomum Xanthioides Mitigates non-alcoholic fatty liver disease in a high-fat diet mice model. Biomed Pharmacother 2024; 172:116250. [PMID: 38320334 DOI: 10.1016/j.biopha.2024.116250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a substantial global health issue owing to its high prevalence and the lack of effective therapies. Fermentation of medicinal herbs has always been considered a feasible strategy for enhancing efficacy in treating various ailments. This study aimed to investigate the potential benefits of the Lactobacillus casei-fermented Amomum xanthioides (LAX) on NAFLD in a high-fat diet model. HFD-fed C57BL6/j mice were administered with 200 mg/kg of LAX or unfermented Amomum xanthioides (AX) or 100 mg/kg of metformin for 6 weeks from the 4th week. The 10-week HFD-induced alterations of hepatic lipid accumulation and hepatic inflammation were significantly attenuated by LAX dominantly (more than AX or metformin), which evidenced by pathohistological findings, lipid contents, inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)- 6 and IL-1β, oxidative parameters such as reactive oxygen species (ROS) and malondialdehyde (MDA), and molecular changes reversely between lipogenic proteins such as glycerol-3-phosphate acyltransferase (GPAM) and sterol regulatory element-binding protein (SREBP)- 1, and lipolytic proteins including peroxisome proliferator-activated receptor (PPAR-α) and AMP-activated kinase (AMPK)-α in the liver tissues. In addition, the abnormal serum lipid parameters (triglyceride, total cholesterol and LDL-cholesterol) notably ameliorated by LAX. In conclusion, these findings support the potential of LAX as a promising plant-derived remedy for NAFLD.
Collapse
Affiliation(s)
- Seung-Ju Hwang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea; Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea
| | - Yu-Jin Choi
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea; Department of Internal Medicine, College of Korean Medicine, Se-Myung University, Semyeong-ro 65, Jecheon-si, Chungcheongbuk-do, 27136, the Republic of Korea
| | - Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea; Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea.
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea; Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea.
| |
Collapse
|
12
|
Yang X, Zhang W, Lan Y, Zhang J, Zheng W, Wu J, Zhang C, Dang B. An investigation into the effects of various processing methods on the characteristic compounds of highland barley using a widely targeted metabolomics approach. Food Res Int 2024; 180:114061. [PMID: 38395553 DOI: 10.1016/j.foodres.2024.114061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
This study explored the influence of diverse processing methods (cooking (CO), extrusion puffing (EX), and steam explosion puffing (SE), stir-frying (SF) and fermentation (FE)) on highland barley (Qingke) chemical composition using UHPLC-MS/MS based widely targeted metabolomics. Overall, 827 metabolites were identified and categorized into 16 classes, encompassing secondary metabolites, amino acids, nucleotides, lipids, etc. There 43, 85, 131, 51 and 98 differential metabolites were respectively selected from five comparative groups (raw materials (RM) vs CO/EX/SE/SF/FE), mainly involved in amino acids, nucleotides, flavonoids, and alkaloids. Compared to other treated groups, FE group possessed the higher content of crude protein (15.12 g/100 g DW), and the relative levels of free amino acids (1.32 %), key polyphenols and arachidonic acid (0.01 %). EX group had the higher content of anthocyanins (4.22 mg/100 g DW), and the relative levels of free amino acids (2.02 %) and key polyphenols. SE group showed the higher relative levels of phenolic acids (0.14 %), flavonoids (0.20 %) and alkaloids (1.17 %), but the lowest free amino acids (0.75 %). Different processing methods all decreased Qingke's antioxidant capacity, with the iron reduction capacity (988.93 μmol/100 g DW) in SE group was the lowest. On the whole, FE and EX were alleged in improving Qingke's nutritional value. CO and SF were also suitable for Qingke processing since fewer differential metabolites were identified in CO vs RM and SF vs RM groups. Differential metabolites were connected to 14 metabolic pathways, with alanine, aspartate, and glutamate metabolism being central. This study contributed theoretical groundwork for the scientific processing and quality control of Qingke products.
Collapse
Affiliation(s)
- Xijuan Yang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Wengang Zhang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Yongli Lan
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Jie Zhang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Wancai Zheng
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Jing Wu
- Qinghai Tianyoude Technology Investment Management Group Co., Ltd., Xining 810016, China
| | - Chengping Zhang
- Qinghai Tianyoude Technology Investment Management Group Co., Ltd., Xining 810016, China
| | - Bin Dang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China.
| |
Collapse
|
13
|
Lian X, Shi M, Liang Y, Lin Q, Zhang L. The Effects of Unconventional Feed Fermentation on Intestinal Oxidative Stress in Animals. Antioxidants (Basel) 2024; 13:305. [PMID: 38539839 PMCID: PMC10967513 DOI: 10.3390/antiox13030305] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 12/10/2024] Open
Abstract
Unconventional feed, which is abundant in China, contains anti-nutritional factors and toxins; however, these can be greatly reduced with microbial fermentation, thus improving the nutrient content of the feed, enhancing animal appetites, and ultimately significantly improving the intestinal health and growth performance of animals. When oxidative stress occurs, fermented feed can effectively reduce the damage caused by stress to the gastrointestinal tract, accelerate the removal of gastrointestinal abnormalities, improve the ability to resist intestinal stress, and ensure the efficient production of animals. This review introduces the application of unconventional fermented feed in animal production, and expounds upon the function of unconventional fermented feed in animals with oxidative stress symptoms, so as to provide a theoretical reference for the development and application of unconventional fermented feed in antioxidative stress reduction.
Collapse
Affiliation(s)
- Xiao Lian
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (X.L.); (M.S.); (Y.L.); (Q.L.)
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Mingyu Shi
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (X.L.); (M.S.); (Y.L.); (Q.L.)
| | - Ying Liang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (X.L.); (M.S.); (Y.L.); (Q.L.)
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (X.L.); (M.S.); (Y.L.); (Q.L.)
| | - Lingyu Zhang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (X.L.); (M.S.); (Y.L.); (Q.L.)
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
14
|
Liang P, Chen S, Fang X, Wu J. Recent advance in modification strategies and applications of soy protein gel properties. Compr Rev Food Sci Food Saf 2024; 23:e13276. [PMID: 38284605 DOI: 10.1111/1541-4337.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 01/30/2024]
Abstract
Soy protein gel can be developed into a variety of products, ranging from traditional food (e.g., tofu) to newly developed food (e.g., soy yogurt and meat analog). So far, efforts are still needed to be made on modifying the gel properties of soy protein for improving its sensory properties as animal protein-based food substitutes. Furthermore, there is always a need to regulate its gel properties for designing novel and tailored products of soy protein gels due to the fast-growing plant protein-based product market. This review gave an emphasis on the latest modification strategies and applications of gel properties of soy protein. The modifying methods of soy protein gel properties were reviewed from an aspect of composition or processing. Compositional modification included changing protein composition and gelling conditions and using additives, whereas processing strategies can be achieved through physical, chemical, and enzymatic treatments. Several compositional modification and processing strategies have been both proven to alter the gel properties of soy protein effectively. So far, soy protein gel has been applied in the field of food and biomedicine. In the future, more mechanistic studies on the modification methods are still needed to facilitate the full application of soy protein gel.
Collapse
Affiliation(s)
- Peijun Liang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Simin Chen
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jianfeng Wu
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Yang F, Chen C, Ni D, Yang Y, Tian J, Li Y, Chen S, Ye X, Wang L. Effects of Fermentation on Bioactivity and the Composition of Polyphenols Contained in Polyphenol-Rich Foods: A Review. Foods 2023; 12:3315. [PMID: 37685247 PMCID: PMC10486714 DOI: 10.3390/foods12173315] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Polyphenols, as common components with various functional activities in plants, have become a research hotspot. However, researchers have found that the bioavailability and bioactivity of plant polyphenols is generally low because they are usually in the form of tannins, anthocyanins and glycosides. Polyphenol-rich fermented foods (PFFs) are reported to have better bioavailability and bioactivity than polyphenol-rich foods, because polyphenols are used as substrates during food fermentation and are hydrolyzed into smaller phenolic compounds (such as quercetin, kaempferol, gallic acid, ellagic acid, etc.) with higher bioactivity and bioavailability by polyphenol-associated enzymes (PAEs, e.g., tannases, esterases, phenolic acid decarboxylases and glycosidases). Biotransformation pathways of different polyphenols by PAEs secreted by different microorganisms are different. Meanwhile, polyphenols could also promote the growth of beneficial bacteria during the fermentation process while inhibiting the growth of pathogenic bacteria. Therefore, during the fermentation of PFFs, there must be an interactive relationship between polyphenols and microorganisms. The present study is an integration and analysis of the interaction mechanism between PFFs and microorganisms and is systematically elaborated. The present study will provide some new insights to explore the bioavailability and bioactivity of polyphenol-rich foods and greater exploitation of the availability of functional components (such as polyphenols) in plant-derived foods.
Collapse
Affiliation(s)
- Fan Yang
- Moutai Group, Institute of Science and Technology, Zunyi 564501, China
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co., Ltd., Renhuai 564501, China
| | - Chao Chen
- Moutai Group, Institute of Science and Technology, Zunyi 564501, China
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co., Ltd., Renhuai 564501, China
| | - Derang Ni
- Moutai Group, Institute of Science and Technology, Zunyi 564501, China
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co., Ltd., Renhuai 564501, China
| | - Yubo Yang
- Moutai Group, Institute of Science and Technology, Zunyi 564501, China
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co., Ltd., Renhuai 564501, China
| | - Jinhu Tian
- Department of Food Science and Nutrition, Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Yuanyi Li
- Moutai Group, Institute of Science and Technology, Zunyi 564501, China
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co., Ltd., Renhuai 564501, China
| | - Shiguo Chen
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- Department of Food Science and Nutrition, Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Li Wang
- Moutai Group, Institute of Science and Technology, Zunyi 564501, China
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co., Ltd., Renhuai 564501, China
| |
Collapse
|
16
|
Mehaya FM, El-Shazly AI, El-Dein AN, Farid MA. Evaluation of nutritional and physicochemical characteristics of soy yogurt by Lactobacillus plantarum KU985432 and Saccharomyces boulardii CNCMI-745. Sci Rep 2023; 13:13026. [PMID: 37563274 PMCID: PMC10415370 DOI: 10.1038/s41598-023-40207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/07/2023] [Indexed: 08/12/2023] Open
Abstract
Nutritional yeast-produced soy yogurt has grown in demand, because of its unique nutritional and health benefits. It has low cholesterol, no lactose, and high levels of protein, probiotic yeast, vitamins, and minerals. In this work, Soymilk (12.5%) was prepared and fermented to produce soy yogurt. Growth curves, probiotic characteristics of Saccharomyces boulardii CNCMI-745 and Lactobacillus plantarum KU985432 were determined. The nutritional value of both yogurts was evaluated, including viable cell count, protein, vitamin B-complex, sugars, phenolic acids, and fatty acids, mineral content, stability, and storage. Analysis of the physicochemical composition of the yogurts included assessment of titratable acidity, antioxidant potential, viscosity, and moisture content. The probiotic viable count of the produced yogurts met the standards for commercial yogurts. S. boulardii CNCMI-745 displayed safety characteristics and high tolerance to heat, acid, and alkaline stress. The produced B vitamins increased in both yogurts. The total saturated fatty acids in Saccharomyces-yogurt decreased, while the unsaturated fatty acids increased. Saccharomyces-yogurt showed high antioxidant activity, phenolic acids, and crude protein content. Both yogurts demonstrated the same tendency for stability during 16 day-storage. In conclusion, using nutritional yeast in the production of soy yogurt increased its nutritional content more than probiotic lactic acid bacteria.
Collapse
Affiliation(s)
- Fathy M Mehaya
- Food Technology Department, National Research Centre, Cairo, Egypt
| | - Asmaa I El-Shazly
- Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo, Egypt.
| | - Asmaa Negm El-Dein
- Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo, Egypt
| | - Mohamed A Farid
- Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
17
|
Pop OL, Suharoschi R, Socaci SA, Berger Ceresino E, Weber A, Gruber-Traub C, Vodnar DC, Fărcaș AC, Johansson E. Polyphenols—Ensured Accessibility from Food to the Human Metabolism by Chemical and Biotechnological Treatments. Antioxidants (Basel) 2023; 12:antiox12040865. [PMID: 37107240 PMCID: PMC10135483 DOI: 10.3390/antiox12040865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Polyphenols are plant-based compounds famous for their positive impact on both human health and the quality of food products. The benefits of polyphenols are related to reducing cardiovascular diseases, cholesterol management, cancers, and neurological disorders in humans and increasing the shelf life, management of oxidation, and anti-microbial activity in food products. The bioavailability and bio-accessibility of polyphenols are of the highest importance to secure their impact on human and food health. This paper summarizes the current state-of-the-art approaches on how polyphenols can be made more accessible in food products to contribute to human health. For example, by using food processing methods including various technologies, such as chemical and biotechnological treatments. Food matrix design and simulation procedures, in combination with encapsulation of fractionated polyphenols utilizing enzymatic and fermentation methodology, may be the future technologies to tailor specific food products with the ability to ensure polyphenol release and availability in the most suitable parts of the human body (bowl, intestine, etc.). The development of such new procedures for utilizing polyphenols, combining novel methodologies with traditional food processing technologies, has the potential to contribute enormous benefits to the food industry and health sector, not only reducing food waste and food-borne illnesses but also to sustain human health.
Collapse
Affiliation(s)
- Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Sonia Ancuța Socaci
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Elaine Berger Ceresino
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| | - Achim Weber
- Innovation Field Functional Surfaces and Materials, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Carmen Gruber-Traub
- Innovation Field Functional Surfaces and Materials, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Anca Corina Fărcaș
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Eva Johansson
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| |
Collapse
|
18
|
Optimization of Wheat Straw Conversion into Microbial Lipids by Lipomyces tetrasporus DSM 70314 from Bench to Pilot Scale. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Microbial lipids are renewable platforms for several applications including biofuels, green chemicals, and nutraceuticals that can be produced from several residual carbon sources. Lignocellulosic biomasses are abundant raw materials for the production of second-generation sugars with conversion yields depending on the quality of the hydrolysates and the metabolic efficiency of the microorganisms. In the present work, wheat straw pre-treated by steam explosion and enzymatically hydrolysed was converted into microbial lipids by Lipomyces tetrasporus DSM 70314. The preliminary optimization of the enzymatic hydrolysis was performed at the bench scale through the response surface methodology (RSM). The fermentation medium and set-up were optimized in terms of the nitrogen (N) source and carbon-to-nitrogen (C/N) ratio yielding to the selection of soy flour as a N source and C/N ratio of 160. The bench scale settings were scaled-up and further optimized at the 10 L-scale and finally at the 50 L pilot scale bioreactor. Process optimization also included oxygen supply strategies. Under optimized conditions, a lipid concentration of 14.8 gL−1 was achieved corresponding to a 23.1% w/w lipid yield and 67.4% w/w lipid cell content. Oleic acid was the most abundant fatty acid with a percentage of 57%. The overall process mass balance was assessed for the production of biodiesel from wheat straw.
Collapse
|
19
|
Koyum KA, Foo HL, Ramli N, Loh TC. Biotransformation of gluten-free composite flour mediated by probiotics via solid-state fermentation process conducted under different moisture contents. Front Nutr 2023; 10:910537. [PMID: 36875851 PMCID: PMC9975957 DOI: 10.3389/fnut.2023.910537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/11/2023] [Indexed: 02/17/2023] Open
Abstract
Staple foods produced from composite flour are considered feasible to alleviate protein-energy malnutrition (PEM). However, one of the major limitations of composite flour is poor protein digestibility. The biotransformation process mediated by probiotics via solid-state fermentation (SSF) holds a promising potential to address the poor protein digestibility in composite flour. Yet, there is no report established in this regard to the best of our knowledge. Therefore, 4 strains of Lactiplantibacillus plantarum and Pediococcus pentosaceus UP2 isolated from Malaysian foods that were previously reported to produce versatile extracellular hydrolytic enzymes were employed to biotransform gluten-free composite flour derived from rice, sorghum, and soybean. The SSF process was performed under 30-60% (v/w) moisture content for 7 days, where samples were withdrawn at 24 h intervals for various analyses such as pH, total titratable acidity (TTA), extracellular protease activity, soluble protein concentration, crude protein content, and in vitro protein digestibility. The pH of the biotransformed composite flour showed a significant reduction from the initial range of pH 5.98-6.67 to the final pH of 4.36-3.65, corresponding to the increase in the percentage of TTA in the range of 0.28-0.47% to 1.07-1.65% from days 0 to 4 and remained stable till day 7 of the SSF process. The probiotics strains exhibited high extracellular proteolytic activity (0.63-1.35 U/mg to 4.21-5.13 U/mg) from days 0 to 7. In addition, the treated composite flour soluble protein increased significantly (p ≤ 0.05) (0.58-0.60 mg/mL to 0.72-0.79 mg/mL) from days 0 to 7, crude protein content (12.00-12.18% to 13.04-14.39%) and protein digestibility (70.05-70.72% to 78.46-79.95%) from days 0 to 4 of SSF. The results of biotransformation of 50% (v/w) moisture content were mostly comparable to 60% (v/w) moisture content, implying 50% (v/w) moisture content was the most suitable moisture content for the effective biotransformation of gluten-free composite flour mediated by probiotics via SSF since flour quality is better at lower moisture content. As for the overall performance, L. plantarum RS5 was ranked the best strain, attributed to the general improvement in the physicochemical properties of composite flour.
Collapse
Affiliation(s)
- Kareem Adebayo Koyum
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hooi Ling Foo
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Research Laboratory of Probiotics and Cancer Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Norhayati Ramli
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang, Malaysia
| | - Teck Chwen Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
20
|
Gaur G, Gänzle MG. Conversion of (poly)phenolic compounds in food fermentations by lactic acid bacteria: Novel insights into metabolic pathways and functional metabolites. Curr Res Food Sci 2023; 6:100448. [PMID: 36713641 PMCID: PMC9876838 DOI: 10.1016/j.crfs.2023.100448] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023] Open
Abstract
Lactobacillaceae are among the major fermentation organisms in most food fermentations but the metabolic pathways for conversion of (poly)phenolic compounds by lactobacilli have been elucidated only in the past two decades. Hydroxycinnamic and hydroxybenzoic acids are metabolized by separate enzymes which include multiple esterases, decarboxylases and hydroxycinnamic acid reductases. Glycosides of phenolic compounds including flavonoids are metabolized by glycosidases, some of which are dedicated to glycosides of plant phytochemicals rather than oligosaccharides. Metabolism of phenolic compounds in food fermentations often differs from metabolism in vitro, likely reflecting the diversity of phenolic compounds and the unknown stimuli that induce expression of metabolic genes. Current knowledge will facilitate fermentation strategies to achieve improved food quality by targeted conversion of phenolic compounds.
Collapse
Affiliation(s)
- Gautam Gaur
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Michael G. Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
Egbune EO, Aganbi E, Anigboro AA, Ezedom T, Onojakpor O, Amata AI, Tonukari NJ. Biochemical characterization of solid-state fermented cassava roots (Manihot esculenta Crantz) and its application in broiler feed formulation. World J Microbiol Biotechnol 2022; 39:62. [PMID: 36577912 DOI: 10.1007/s11274-022-03496-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022]
Abstract
The biochemical parameters of solid-state fermented peeled and unpeeled cassava roots (Manihot esculenta Crantz) and their application in broiler feed formulations were investigated. Fermentation occurred at room temperature for 72 h (pH 3-9). The samples utilized for five (5) broiler starter feeds were labeled: control, unfermented unpeeled cassava (UUC), unfermented peeled cassava (UPC), fermented unpeeled cassava (FUC), and fermented peeled cassava (FPC). Formulations were made by substituting fermented/non-fermented cassava roots at pH 7 for maize (w/w%). Fermentation-induced changes included increased soluble and total protein concentrations (69.3 and 334.5 mg/g) and (9.6 and 10.8%), respectively, in cultures prepared with peeled and unpeeled cassava at pH 7 compared to the control (p < 0.05), and a reduction (p < 0.01) in cyanide concentration from 44.4 to 78.7 mg/kg in the control to 8.5 and 13.7 mg/kg in fermented cassava at pH 7. Birds fed FUC and FPC meal (0.6 and 0.5 kg) gained significantly more weight (p < 0.05) than those fed the control (0.3 kg). The biochemical parameters aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, and urea levels in broiler serum did not differ significantly (p > 0.05) for birds fed with fermented peeled and unpeeled cassava. Conversely, serum albumin and calcium levels were significantly lower (p < 0.05) for birds fed with the control feed compared to birds fed with fermented feeds. The results imply that fermented peeled and unpeeled cassava roots could be a safe and nutritionally beneficial replacement for maize in broiler diet.
Collapse
Affiliation(s)
- Egoamaka O Egbune
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Nigeria. .,Tonukari Biotechnology Laboratory, Sapele, Delta State, Nigeria.
| | - Eferhire Aganbi
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Nigeria.,Georgia State University, J. Mack Robinson College of Business, 3348 Peachtree Rd NE, Atlanta, GA, 30326, USA
| | | | - Theresa Ezedom
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Ogheneyoma Onojakpor
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Alex-Ifo Amata
- Department of Animal Science and Fisheries, Faculty of Agricultural Science, Delta State University, Abraka, Nigeria
| | - Nyerhovwo J Tonukari
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Nigeria.,Tonukari Biotechnology Laboratory, Sapele, Delta State, Nigeria
| |
Collapse
|
22
|
Mahdi SA, Astawan M, Wulandari N, Muhandri T, Wresdiyati T, Febrinda AE. Formula Optimization and Physicochemical Characterization of Tempe Drink Powder. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2022. [DOI: 10.12944/crnfsj.10.3.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tempe is chosen as the main ingredient of tempe drink powder (TDP) due to its protein digestibility, phytochemical compounds, as well as vitamins and minerals. Previous studies had been conducted to develop TDP formula. The commercial TDP formula showed that improvement of quality aspects needs to be done so the product has better physical and chemical characteristics. In order to optimize the TDP formula, the viscosity, water solubility index (WSI), water absorption index (WAI), sedimentation index (SI), proximate, antioxidant activity, isoflavone content, GABA content, and physicochemical properties were analyzed. The optimized formula was done using the mixture experiment optimization method with optimization d-optimal to obtain the best formula. The optimization result showed that the best formula proportion consisted of 70% (w/w) Tempe flour, 18.23% (w/w) maltodextrin and 1.77% (w/w) guar gum. The best formula was chosen due to having better chemical characteristics compared with the commercial TDP and commercial soy drink powder (SDP), with protein content of 42.61%, antioxidant activity of 58.36 mgAEAC/100g, daidzein and genistein isoflavones of each 48.18 and 140.06 mg/100g and GABA of 21.24 mg/g. Based on the physical characteristics, the optimum formula had a lower viscosity value (18.67 cP) and WAI (2.58g/g) as well as a higher SI value (10.18%) and WSI (9.70%) compared with the commercial TDP. The optimum TDP formula has fulfilled the quality requirements based on the Indonesian National Standard (SNI 7612:2011) regarding soy drink powder.
Collapse
Affiliation(s)
- Sulaiman Akbar Mahdi
- 1Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
| | - Made Astawan
- https://www.foodandnutritionjournal.org/volume10number3/formula-optimization-and-physicochemical-characterization-of-tempe-drink-powder/
| | - Nur Wulandari
- 1Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
| | - Tjahja Muhandri
- 1Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
| | - Tutik Wresdiyati
- 2Department of Anatomy, Physiology, and Pharmacology, School of Veterinary Medicine and Biomedicine, IPB University, Bogor, Indonesia
| | - Andi Early Febrinda
- 3Department of Food Quality Assurance Supervisor, College of Vocational Studies, IPB University, Bogor, Indonesia
| |
Collapse
|
23
|
Padalkar G, Mandlik R, Sudhakaran S, Vats S, Kumawat S, Kumar V, Kumar V, Rani A, Ratnaparkhe MB, Jadhav P, Bhat JA, Deshmukh R, Sharma TR, Sonah H. Necessity and challenges for exploration of nutritional potential of staple-food grade soybean. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Biscuits Prepared with Enzymatically-Processed Soybean Meal Are Rich in Isoflavone Aglycones, Sensorially Well-Accepted and Stable during Storage for Six Months. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227975. [PMID: 36432079 PMCID: PMC9699538 DOI: 10.3390/molecules27227975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
Soybean meal (SBM) is a co-product of the soybean oil industry that is rich in bioactive compounds, such as isoflavones. We aimed to study the effects of processing SBM by fermentation (Saccharomyces cerevisiae) (FSBM) and enzymatic hydrolysis (CelluMax C, a commercial cellulase) (ESBM) on its chemical composition, with emphasis on isoflavones. Fermentation increased protein content by 9%, ash content by 7%, dietary fiber by 11% and minerals by up to 38%, except for iron, which decreased by 26%. Fermentation completely removed oligosaccharides from SBM, while enzymatic processing decreased oligosaccharides by 45% in SBM. Both processes converted glycosylated isoflavones into the corresponding aglycones, the content of which increased by up to 7.7-fold. Biscuits containing SBM, FSBM and ESBM could be labeled as dietary sources of dietary fibers, potassium, phosphorous, calcium and zinc, as well as high in proteins, copper, iron, manganese and magnesium. While FSBM biscuits had lower sensory scores compared to SBM biscuits, ESBM biscuits had equivalent scores. During storage for 180 days at room temperature, the isoflavone profile of all biscuits remained stable. Moreover, storage did not impair microbiological and sensory qualities of any biscuits. Altogether, ESBM biscuits show great marketing potential.
Collapse
|
25
|
Fermented Black Tea and Its Relationship with Gut Microbiota and Obesity: A Mini Review. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fermentation is one of the world’s oldest techniques for food preservation, nutrient enhancement, and alcohol manufacturing. During fermentation, carbohydrates such as glucose and starch are converted into other molecules, such as alcohol and acid, anaerobically through enzymatic action while generating energy for the microorganism or cells involved. Black tea is among the most popular fermented beverages; it is made from the dried tea leaves of the evergreen shrub plant known as Camellia sinensis. The adequate consumption of black tea is beneficial to health as it contains high levels of flavanols, also known as catechins, which act as effective antioxidants and are responsible for protecting the body against the development of illnesses, such as inflammation, diabetes, hypertension, cancer, and obesity. The prevalence of obesity is a severe public health concern associated with the incidence of various serious diseases and is now increasing, including in Malaysia. Advances in ‘omic’ research have allowed researchers to identify the pivotal role of the gut microbiota in the development of obesity. This review explores fermented black tea and its correlation with the regulation of the gut microbiota and obesity.
Collapse
|
26
|
Wang Y, Cao K, Li H, Sun H, Liu X. Improvement of active peptide yield, antioxidant activity and anti-aging capacity of rapeseed meal fermented with YY-112 pure fermentation and co-fermentation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
27
|
Evaluating the Influence of Microbial Fermentation on the Nutritional Value of Soybean Meal. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this article is to increase the nutritional value of soybean meal while reducing the content of antinutrients by microbial fermentation of soybean meal with a mixed culture of probiotic microorganisms (Bacillus subtilis, Aspergillus niger, Saccharomyces cerevisiae, Lactiplantibacillus plantarum) at two different hydromodules. The addition of microorganisms increased the content of easily digestible protein and amine nitrogen in fermented soybean meal (30:110 and 30:130, hydromodulus soybean meal:water) while decreasing urease activity (hydromodulus 30:110). The positive effect of microbial fermentation on the mineral composition of soybean meal was demonstrated. The ability of microorganisms in the fermentation process to increase the content of protein, essential amino acids, and macro- and microelements in soybean meal while decreasing anti-nutritional factors opens up possibilities for using this technology to advance animal husbandry.
Collapse
|
28
|
Purewal SS, Kaur P, Garg G, Sandhu KS, Salar RK. Antioxidant, anti-cancer, and debittering potential of edible fungi (Aspergillus oryzae) for bioactive ingredient in personalized foods. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
Păcularu-Burada B, Ceoromila (Cantaragiu) AM, Vasile MA, Bahrim GE. Novel insights into different kefir grains usefulness as valuable multiple starter cultures to achieve bioactive gluten-free sourdoughs. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
30
|
A Novel Fermented Rapeseed Meal, Inoculated with Selected Protease-Assisting Screened B. subtilis YY-4 and L. plantarum 6026, Showed High Availability and Strong Antioxidant and Immunomodulation Potential Capacity. Foods 2022; 11:foods11142118. [PMID: 35885361 PMCID: PMC9317248 DOI: 10.3390/foods11142118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
A study was conducted to investigate the yield of small peptides from rapeseed meal (RSM) by solid-state fermentation (SSF) with acid-protease-assisting B. subtilis YY-4 and L. plantarum CICC6026 (FRSMP). This study explored the availability, antioxidant capacity and immunomodulation activity. The objective of this study was to develop a novel functional food ingredient to contribute to health improvement. The results showed that the concentrations of soluble peptides and free amino acids significantly increased after fermentation (p < 0.001), and the concentration of small molecular peptides (molecular weight < 1 KDa) significantly increased (p < 0.001). The dense surface microstructure of the RSM after fermentation was changed to be loose and porous. The FRSMP exhibited high availability and high antioxidant activity, and it displayed high immunomodulation activity. The novel fermentation was effective for improving the nutritional and biological properties, which provided a feasible method of enhancing the added value.
Collapse
|
31
|
Yadav DN, Tushir S, Sethi S, Mir NA, Wadhwa R, Bansal S. A superior approach for production of protein isolate from de‐oiled soy meal and its comparison with conventional method. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Deep Narayan Yadav
- ICAR‐Central Institute of Post‐Harvest Engineering & Technology Ludhiana 141004 Punjab India
| | - Surya Tushir
- ICAR‐Central Institute of Post‐Harvest Engineering & Technology Ludhiana 141004 Punjab India
| | - Swati Sethi
- ICAR‐Central Institute of Post‐Harvest Engineering & Technology Ludhiana 141004 Punjab India
| | - Nisar A. Mir
- ICAR‐Central Institute of Post‐Harvest Engineering & Technology Ludhiana 141004 Punjab India
| | - Ritika Wadhwa
- ICAR‐Central Institute of Post‐Harvest Engineering & Technology Ludhiana 141004 Punjab India
| | - Sangita Bansal
- ICAR‐National Bureau of Plant Genetic Resources Pusa 110012 New Delhi India
| |
Collapse
|
32
|
Shabbir U, Tyagi A, Ham HJ, Elahi F, Oh DH. Effect of Fermentation on the Bioactive Compounds of the Black Soybean and Their Anti-Alzheimer’s Activity. Front Nutr 2022; 9:880361. [PMID: 35634410 PMCID: PMC9137038 DOI: 10.3389/fnut.2022.880361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Black soybean is one of the nutritious crops and is being used in traditional medicines in Asian countries. In the present study, we fermented black soybean and screened against in vitro Alzheimer’s disease (AD) biomarkers such as cholinesterase enzymes, inflammatory factors, oxidative stress, and presence of γ-aminobutyric acid (GABA) levels. Firstly, we fermented black soybean with different lactic acid bacteria (LABs) and selected the Pediococcus acidilactici as the best LAB on the basis of GABA levels in the fermentate. We have found that black soybean fermented with P. acidilactici significantly inhibited the inflammatory factors (proteinase, protein denaturation, and lipoxygenase) and cholinesterase enzymes than non-fermented samples. An increase in the antioxidant capacity (FRAP, ABTS, and DPPH), anthocyanins, phenolics, flavonoids, and GABA content was also observed in fermented samples. Moreover, UHPLC-ESI-QTOF-MS/MS technique identified 38 bioactive components, including polyphenols, amino acids, and fatty acids. Among identified components, eight bioactive compounds were quantified, and an increase in the concentration of daidzein, genistein, glycitein, (+)-catechin, quercetin, and gallic acid was observed in fermented samples. However, the concentration of rutin and soyasaponin was higher in raw samples. These results indicated that fermentation of black soybean with P. acidilactici is a promising approach that can be used to develop functional foods to inhibit/prevent AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Umair Shabbir
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Akanksha Tyagi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Hun Ju Ham
- Department of Biological Environment, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
- *Correspondence: Deog-Hwan Oh,
| |
Collapse
|
33
|
Xu H, Sun J, Zhao Z, Ma X, Li C, Liu L, Zhang G. Lactobacillus plantarum
ZLC‐18 fermentation improve tyrosinase inhibition activity and antioxidant capacity in soybean hulls. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hanxue Xu
- Key Laboratory of Dairy Sciences Ministry of Education College of Food Sciences Northeast Agricultural University Harbin China
| | - Jinwei Sun
- Key Laboratory of Dairy Sciences Ministry of Education College of Food Sciences Northeast Agricultural University Harbin China
- Product Research and Development Center Newhopedairy Co., Ltd Chengdu China
| | - Zifu Zhao
- Key Laboratory of Dairy Sciences Ministry of Education College of Food Sciences Northeast Agricultural University Harbin China
- Inner Mongolia Yili Group Co Ltd, Hohhot China
| | - Xinkai Ma
- Key Laboratory of Dairy Sciences Ministry of Education College of Food Sciences Northeast Agricultural University Harbin China
| | - Chun Li
- Key Laboratory of Dairy Sciences Ministry of Education College of Food Sciences Northeast Agricultural University Harbin China
- Heilongjiang Green Food Research Institute Harbin China
| | - Libo Liu
- Key Laboratory of Dairy Sciences Ministry of Education College of Food Sciences Northeast Agricultural University Harbin China
| | - Guofang Zhang
- Key Laboratory of Dairy Sciences Ministry of Education College of Food Sciences Northeast Agricultural University Harbin China
| |
Collapse
|
34
|
Wang Y, Li X, Li K, Huang Y, Yang H, Zhu P, Chi Z, Xu Y, Li Q. Signature of dissolved organic matter and microbial communities based on different oxygen levels response during distillers dried grains with solubles plus sugarcane pith co-fermentations. BIORESOURCE TECHNOLOGY 2022; 349:126868. [PMID: 35183724 DOI: 10.1016/j.biortech.2022.126868] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The objective of this study was to investigate the relationship between dissolved organic matter (DOM) and microbial communities during the co-fermentation of distillers dried grains with solubles (DDGS) and sugarcane pith at different oxygen levels. In aerobic fermentation (AF), the content of DOM decreased from 32.61 mg/g to 14.14 mg/g, and decreased from 32.61 mg/g to 30.83 mg/g in anaerobic fermentation (ANF). Phenols and alcohols were consumed first in AF, while lipids and proteins were consumed first in ANF. Degradation rates of cellulose, hemicellulose and lignin in AF (6.67%, 39.93%, 36.50%) were higher than those in ANF (0.69%, 18.36%, 9.12%). Firmicutes, Actinobacteriota and Ascomycota were the main phyla in community. Distance-based redundancy analysis showed that pH, organic matter (OM) and DOM were the main driving factors of microbial community succession.
Collapse
Affiliation(s)
- Yiwu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiaolan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Kecheng Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hongxiang Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Pengfei Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
35
|
Punia Bangar S, Dunno K, Kumar M, Mostafa H, Maqsood S. A comprehensive review on lotus seeds (Nelumbo nucifera Gaertn.): Nutritional composition, health-related bioactive properties, and industrial applications. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
36
|
Calvo-Lerma J, Asensio-Grau A, García-Hernández J, Heredia A, Andrés A. Exploring the Impact of Solid-State Fermentation on Macronutrient Profile and Digestibility in Chia ( Salvia hispanica) and Sesame ( Sesamum Indicum) Seeds. Foods 2022; 11:410. [PMID: 35159560 PMCID: PMC8834584 DOI: 10.3390/foods11030410] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
Fermentation of plant-based substrates with edible fungi enhances the nutrient profile and digestibility, but it has been scarcely applied to edible seeds, which are rich in healthy lipids. In this study, chia and sesame seeds were solid-state fermented with Pleurotus ostreatus, followed by drying and milling. Fermentation led to increased content of lipid and protein in both seeds' products, and a change in fatty acid profile in favor of increased polyunsaturated fatty acids. Then, the samples were subjected to in vitro digestion. Lipolysis, determined by nuclear magnetic resonance, was higher in sesame than in chia products, and the fermented counterparts had increased values compared to the controls. In terms of physical properties, fermentation showed reduced particle size and increased matrix degradation and decreased viscosity of the digestion medium, which were related to increased lipolysis. In conclusion, applying solid-state fermentation on chia and sesame seeds could be a recommendable approach.
Collapse
Affiliation(s)
- Joaquim Calvo-Lerma
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 València, Spain; (J.C.-L.); (A.H.); (A.A.)
- Instituto de Agroquímica y Tecnología de Alimentos, Spanish Scientific Research Council, 28006 Madrid, Spain
| | - Andrea Asensio-Grau
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 València, Spain; (J.C.-L.); (A.H.); (A.A.)
| | - Jorge García-Hernández
- Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, 46022 València, Spain;
| | - Ana Heredia
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 València, Spain; (J.C.-L.); (A.H.); (A.A.)
| | - Ana Andrés
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 València, Spain; (J.C.-L.); (A.H.); (A.A.)
| |
Collapse
|
37
|
Shabbir U, Tyagi A, Ham HJ, Oh DH. Comprehensive profiling of bioactive compounds in germinated black soybeans via UHPLC-ESI-QTOF-MS/MS and their anti-Alzheimer's activity. PLoS One 2022; 17:e0263274. [PMID: 35089980 PMCID: PMC8797171 DOI: 10.1371/journal.pone.0263274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Black soybeans contain several bioactive compounds and commonly consumed due to their health-related activities but rarely cultivated as edible sprouts. The present study investigated the changes that occurred during germination in two new genotypes black soybeans. Raw and germinated seeds were tested against in vitro Alzheimer's disease (AD) biomarkers, including oxidative stress, inflammatory factors and cholinesterase enzymes as well as γ-aminobutyric acid (GABA) levels. Sprouts significantly inhibited the cholinesterase enzymes and inflammatory factors (protein denaturation, proteinase and lipoxygenase) than seeds. An increase in phenolic, flavonoid and GABA (10-folds) content and antioxidant capacity (ABTS, DPPH, and FRAP) was observed in germinated seeds. However, anthocyanin content was decreased in sprouts. UHPLC-ESI-QTOF-MS2 metabolites profiling approach identified 22 compounds including amino acids, peptides, fatty acids, and polyphenols. Among identified compounds, daidzein, genistein, gallic acid, spermidine, L-asparagine, and L-lysine exhibited the highest increase after germination. The current study reveals that germination of black soybeans have promising potential to inhibit/prevent AD and can be used to develop functional foods.
Collapse
Affiliation(s)
- Umair Shabbir
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, The Republic of Korea
| | - Akanksha Tyagi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, The Republic of Korea
| | - Hun Ju Ham
- Department of Biological Environment, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, The Republic of Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, The Republic of Korea
| |
Collapse
|
38
|
Yang J, Gao T, Ge F, Sun H, Cui Z, Wei Z, Wang S, Show PL, Tao Y, Wang W. Porphyra yezoensis Sauces Fermented With Lactic Acid Bacteria: Fermentation Properties, Flavor Profile, and Evaluation of Antioxidant Capacity in vitro. Front Nutr 2022; 8:810460. [PMID: 35118108 PMCID: PMC8805458 DOI: 10.3389/fnut.2021.810460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/20/2021] [Indexed: 01/24/2023] Open
Abstract
The demand for roasted seaweed sandwich (Porphyra yezoensis) product has risen in recent years. The product slicing process has created a huge number of scraps that are not utilized effectively. Three lactic acid bacteria (LAB) strains were used to ferment P. yezoensis sauces in this study, including Lactobacillus fermentum, Lactobacillus casei, Streptococcus thermophilus, and the mixed strains (1:1:1, v/v). The fermentation characteristics, antioxidant capacity in vitro, sensory properties, and flavoring substances of fermented P. yezoensis sauces were analyzed. After 21 days of fermentation, all LAB strains grew well in the P. yezoensis sauces, with protease activity increased to 6.6, 9.24, 5.06, and 5.5 U/mL, respectively. Also, the flavors of P. yezoensis sauces fermented with L. casei and L. fermentum were satisfactory. On this premise, gas chromatography-mass spectrometry (GC-MS) was used to investigate the changes in gustatory compounds in P. yezoensis sauces fermented with L. casei and L. fermentum. In general, 42 and 41 volatile flavor chemicals were identified after the fermentation of L. casei and L. fermentum. Furthermore, the fermented P. yezoensis sauce possessed greater DPPH scavenging activity and ferric-reducing ability power than the unfermented P. yezoensis. Overall, the flavor and taste of P. yezoensis sauce fermented by L. casei was superior.
Collapse
Affiliation(s)
- Jie Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Tengqi Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Feng Ge
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Hao Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Zihang Cui
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Zhen Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wenbin Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
39
|
Kewuyemi YO, Kesa H, Adebo OA. Biochemical properties, nutritional quality, colour profile and techno‐functional properties of whole grain sourdough and malted cowpea and quinoa flours. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yusuf Olamide Kewuyemi
- School of Tourism and Hospitality College of Business and Economics University of Johannesburg P.O. Box 524, Bunting Road Campus Gauteng South Africa
| | - Hema Kesa
- School of Tourism and Hospitality College of Business and Economics University of Johannesburg P.O. Box 524, Bunting Road Campus Gauteng South Africa
| | - Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg P.O. Box 17011, Doornfontein Campus Gauteng South Africa
| |
Collapse
|
40
|
Zhao YS, Eweys AS, Zhang JY, Zhu Y, Bai J, Darwesh OM, Zhang HB, Xiao X. Fermentation Affects the Antioxidant Activity of Plant-Based Food Material through the Release and Production of Bioactive Components. Antioxidants (Basel) 2021; 10:2004. [PMID: 34943107 PMCID: PMC8698425 DOI: 10.3390/antiox10122004] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
This review reports on the effects of fermentation on the chemical constituents and antioxidant activity of plant-based food materials. Fermentation involves a series of reactions that modify the chemical components of the substrate. It could be considered a tool to increase the bioactive compounds and functional properties of food plant materials. Oxidative damage is key to the progression of many human diseases, and the production of antioxidant compounds by fermentation will be helpful to reduce the risk of these diseases. Fermentation also can improve antioxidant activity given its association with increased phytochemicals, antioxidant polysaccharides, and antioxidant peptides produced by microbial hydrolysis or biotransformation. Additionally, fermentation can encourage the breakdown of plant cell walls, which helps to liberate or produce various antioxidant compounds. Overall, results indicated that fermentation in many cases contributed to enhancing antioxidants' content and antioxidant capacity, supporting the fermentation use in the production of value-added functional food. This review provides an overview of the factors that impact the effects of fermentation on bioactive compound composition and antioxidant activity. The impacts of fermentation are summarized as a reference to its effects on food plant material.
Collapse
Affiliation(s)
- Yan-Sheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.-S.Z.); (A.S.E.); (J.-Y.Z.); (Y.Z.); (J.B.)
| | - Aya Samy Eweys
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.-S.Z.); (A.S.E.); (J.-Y.Z.); (Y.Z.); (J.B.)
- Food Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Jia-Yan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.-S.Z.); (A.S.E.); (J.-Y.Z.); (Y.Z.); (J.B.)
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.-S.Z.); (A.S.E.); (J.-Y.Z.); (Y.Z.); (J.B.)
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.-S.Z.); (A.S.E.); (J.-Y.Z.); (Y.Z.); (J.B.)
| | - Osama M. Darwesh
- Agricultural Microbiology Department, National Research Centre, Cairo 12622, Egypt;
| | - Hai-Bo Zhang
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd., Yichang 443004, China;
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.-S.Z.); (A.S.E.); (J.-Y.Z.); (Y.Z.); (J.B.)
| |
Collapse
|
41
|
Liu H, Luo S, Liu J, Yan Q, Yang S, Jiang Z. Novel green soybean shuidouchi fermented by Bacillus velezensis with multibioactivities. Food Sci Nutr 2021; 9:6538-6547. [PMID: 34925783 PMCID: PMC8645744 DOI: 10.1002/fsn3.2579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Soybeans are usually fermented by Bacillus subtilis to produce shuidouchi, which is a traditional fermentation soybean product in China. In the study, green soybeans were fermented by Bacillus velezensis to make a novel green soybean shuidouchi with multibioactivities. The processing conditions were optimized as follows: initial moisture content 75%, inoculum concentration 7 log CFU/g, and incubation time 24 h for prefermentation; water addition 50%, salt addition 6%, temperature 45°C, 3 days for postfermentation. The fermented green soybean shuidouchi (FGSS) showed 234.8 FU/g dry weight (DW) for the fibrinolytic activity and IC50 of 0.33 mg/ml for the anticoagulant activity. FGSS had higher contents of chemical components including 3.6 mg rutin (RE)/g DW of total flavonoids, 8.2 mg gallic acid (GAE)/g DW of total phenolics, 63.7 mg/g DW of reducing sugars, and 163.8 mg/g DW of peptides than the unfermented green soybean shuidouchi (UGSS). Moreover, it exhibited high antioxidant activities of 29.8, 85.1 μmol trolox equivalent (TE)/g DW, and 12.8 μmol Fe2+/g DW through 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), and ferric reducing antioxidant power (FRAP) experiments. Thus, a novel green soybean shuidouchi fermented by B. velezensis owing to multibioactivities can provide a theoretical basis for the further development of functional shuidouchi.
Collapse
Affiliation(s)
- Hong Liu
- Key Laboratory of Food Bioengineering (China National Light Industry)College of EngineeringChina Agricultural UniversityBeijingChina
| | - Shen Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Jun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Qiaojuan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry)College of EngineeringChina Agricultural UniversityBeijingChina
| | - Shaoqing Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Zhengqiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| |
Collapse
|
42
|
Tang X, Liu X, Zhang K. Effects of Microbial Fermented Feed on Serum Biochemical Profile, Carcass Traits, Meat Amino Acid and Fatty Acid Profile, and Gut Microbiome Composition of Finishing Pigs. Front Vet Sci 2021; 8:744630. [PMID: 34805337 PMCID: PMC8600044 DOI: 10.3389/fvets.2021.744630] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Microbial fermented feed is an important part of feed industry, while little research has focused on the solid-state fermentation of complete feed. Herein, the purpose of the present study was to investigate the effects of fermented complete feed (FCF) on the growth performance, biochemical profile, carcass traits, meat proximate composition, meat amino acid and fatty acid profile, and gut microbiome composition of finishing pigs, thereby providing references for the application of FCF in animal production. Twenty Duroc × Landrace × Yorkshire pigs with an average body weight (BW) of 48.74 ± 1.49 kg were divided randomly into control group (pigs received a basal diet, CN, n = 10) and FCF group (pigs fed with FCF, n = 10). The experiment lasted for 60 days. FCF improved the growth performance, which was indicated by a significantly increased final BW, average daily gain and average daily feed intake, and a significantly decreased feed-to-gain ratio. FCF improved biochemical profile, which was indicated by a higher alkaline phosphatase, glucose, immunoglobulin G, immunoglobulin M, superoxide dismutase, and total antioxidant capacity content. Pigs that received FCF had better carcass traits and meat quality than did pigs that received basal diet, which was indicated by a higher carcass length, crude protein content, lysine content, Glu content, C18:ln9c, C18:2n6c, C20:4n6, and unsaturated fatty acid content and a lower average back-fat thickness, C18:0, and saturated fatty acids. FCF significantly reduced the relative abundances of presumably pathogenic bacteria of phylum Proteobacteria and genus Escherichia–Shigella and enhanced the relative abundances of likely beneficial bacteria of phylum Firmicutes and genus Clostridium. In summary, FCF had a certain effect on the improvement of growth performance, serum biochemical profile, carcass traits, meat proximate composition, amino acid and fatty acid profile, and gut microbiome composition of finishing pigs.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Xuguang Liu
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Kai Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
43
|
Wang Y, Guo H, Wu A, Ju C, Jiang J, Chen J. Multiple‐strain
Lactobacillus
‐fermented soymilk with antioxidant capacity and delicate flavour. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- YiWen Wang
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Haocheng Guo
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Andi Wu
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Changxin Ju
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Jing Jiang
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - JianChu Chen
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| |
Collapse
|
44
|
Terefe ZK, Omwamba MN, Nduko JM. Effect of solid state fermentation on proximate composition, antinutritional factors and in vitro protein digestibility of maize flour. Food Sci Nutr 2021; 9:6343-6352. [PMID: 34760264 PMCID: PMC8565243 DOI: 10.1002/fsn3.2599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/24/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Cereals including maize generally have limiting amino acids particularly lysine. In most cases, spontaneous fermentation is used to improve the nutritional profiles of maize-based products. However, in such fermentation, biological risks including the presence of pathogenic microorganisms, chemical contaminants, and toxic compounds of microbial origin such as mycotoxins pose a health risk. The aim of this study was, therefore, to improve the nutritional properties of maize flour by reducing antinutritional factors through microbial fermentation by strains of Lactobacillus plantarum and Saccharomyces cerevisiae and their cocultures. A factorial experimental design was used to evaluate the effect of fermentation setups and time on proximate composition, antinutritional factors, and in vitro digestibility of proteins in maize flour. During 48 h of fermentation, protein content was improved by 38%, 55%, 49%, and 48%, whereas in vitro protein digestibility improved by 31%, 40%, 36%, and 34% for natural, Lactobacillus plantarum, Saccharomyces cerevisiae, and their coculture-fermented maize flour, respectively. The highest improvement in protein content and its digestibility was observed for Lactobacillus plantarum strain-fermented maize flour. Phytate, tannin and trypsin inhibitor activity were reduced significantly (p < .05) for natural, Lactobacillus plantarum, Saccharomyces cerevisiae, and coculture-fermented maize flour. The highest reduction of phytate (66%), tannin (75%), and trypsin inhibitor (64%) was observed for coculture-fermented maize flour. The two strains and their cocultures were found feasible for fermentation of maize flour to improve its nutritional profiles more than the conventional fermentation process.
Collapse
Affiliation(s)
- Zemenu K. Terefe
- Dairy and Food Science and TechnologyEgerton University ‐ Njoro CampusNjoroKenya
- Food Science and TechnologyHawassa UniversityHawassaEthiopia
| | - Mary N. Omwamba
- Dairy and Food Science and TechnologyEgerton University ‐ Njoro CampusNjoroKenya
| | - John M. Nduko
- Dairy and Food Science and TechnologyEgerton University ‐ Njoro CampusNjoroKenya
| |
Collapse
|
45
|
Novel solid-state fermentation extraction of 5-O-caffeoylquinic acid from heilong48 soybean using Lactobacillus helviticus: Parametric screening and optimization. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Li S, Tao Y, Li D, Wen G, Zhou J, Manickam S, Han Y, Chai WS. Fermentation of blueberry juices using autochthonous lactic acid bacteria isolated from fruit environment: Fermentation characteristics and evolution of phenolic profiles. CHEMOSPHERE 2021; 276:130090. [PMID: 33740651 DOI: 10.1016/j.chemosphere.2021.130090] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 05/10/2023]
Abstract
In this study, 4 Lactobacillus plantarum strains and 5 Lactobacillus fermentum strains adapting well to the unfavorable fruit system were isolated under different fruit environments. The fermentation ability of these autochthonous lactic acid bacteria (LAB) strains in blueberry juice, and the influence of microbial metabolism on juice composition were explored. After 48 h of fermentation, the viable cell counts exceeded 10.0 log CFU/mL, malic acid content decreased from 511.47 ± 10.50 mg/L to below 146.38 ± 3.79 mg/L, and lactic acid content increased from 0 mg/L to above 2184.90 ± 335.80 mg/L. Moreover, the metabolism of these strains exerted a profound influence on the phenolic composition of juice. Total phenolic content in blueberry juice increased by 6.1-81.2% under lactic acid fermentation, and the antioxidant capacity in vitro enhanced by at least 34.0%. Anthocyanin content showed a declining trend, while the profile of non-anthocyaninic phenolics exhibited complex changes. The increments of rutin, myricetin and gallic acid contents through 48 h lactic acid fermentation exceeded 136%, 71% and 38%, respectively. Instead, the contents of p-hydroxybenzoic acid and caffeic acid decreased with fermentation. Overall, Lactobacillus plantarum LSJ-TY-HYB-T9 and LSJ-TY-HYB-T7, and Lactobacillus fermentum LSJ-TY-HYB-C22 and LSJ-TY-HYB-L16 could be the suitable strains to produce fermented fruit juices, including blueberry in practical applications.
Collapse
Affiliation(s)
- Sujin Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangzhong Wen
- Blueberry Industry Development Service Center, Majiang, Guizhou, 557600, China
| | - Jianzhong Zhou
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar SeCi Begawan BE1410, Brunei Darussalam
| | - Yongbin Han
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wai Siong Chai
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
47
|
Garrido-Galand S, Asensio-Grau A, Calvo-Lerma J, Heredia A, Andrés A. The potential of fermentation on nutritional and technological improvement of cereal and legume flours: A review. Food Res Int 2021; 145:110398. [PMID: 34112401 DOI: 10.1016/j.foodres.2021.110398] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/16/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022]
Abstract
Nowadays there is an increasing demand for vegetable protein sources as an alternative to that of animal origin, not only for its greater environmental sustainability but also for its relationship with lower risk of suffering cardiovascular diseases. Legumes, cereals and seeds are seen as a good proteinaceous source providing as well dietetic fiber and phytochemicals with antioxidant properties. However, their digestibility and bioavailability are limited by the presence of anti-nutritional factors (ANFs) but susceptible of being improved by soaking, cooking or fermentation. The objective of this work is to review the solid-state and submerged fermentation effect on nutritional and functional properties of legumes, cereals and seeds. The microorganisms involved (bacteria, fungus and yeasts) are able to produce enzymes that degrade ANFs giving rise to more digestible flours with a more interesting nutritional, sensorial and technological profile. Solid-state fermentation is more commonly used for its higher efficiency, accepting agro-industrial residues as substrates and its lower volume of effluents. Fermented legumes had their technological properties enhanced while an increment in antioxidant properties was characteristic of cereals. The present review highlights fermentation of cereals and legumes mainly as a key process that at industrial scale could generate new products with enhanced nutritional and technological properties.
Collapse
Affiliation(s)
- S Garrido-Galand
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IU-IAD), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - A Asensio-Grau
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IU-IAD), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - J Calvo-Lerma
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IU-IAD), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - A Heredia
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IU-IAD), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - A Andrés
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IU-IAD), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
48
|
Cai JS, Feng JY, Ni ZJ, Ma RH, Thakur K, Wang S, Hu F, Zhang JG, Wei ZJ. An update on the nutritional, functional, sensory characteristics of soy products, and applications of new processing strategies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Ali AMM, Gullo M, Rai AK, Bavisetty SCB. Bioconservation of iron and enhancement of antioxidant and antibacterial properties of chicken gizzard protein hydrolysate fermented by Pediococcus acidilactici ATTC 8042. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2718-2726. [PMID: 33124041 DOI: 10.1002/jsfa.10898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/16/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The poultry industry is one of the fastest growing sectors, and it generates considerable quantities of chicken gizzards (CG) every day. However, due to their hard texture and high microbial load, and due to cultural beliefs, they are not preferred by consumers. Chicken gizzards are a substantial source of proteins, iron, and other nutrients, which can be used effectively to produce nutraceuticals, rich in peptides (antioxidants and antibacterial), bio-iron, essential free amino acids, and fatty acids vital for human health. RESULTS Lactic acid fermentation of CG by Pediococcus acidilactici ATTC 8042 increased the antioxidant activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH), azino-bis (3-ethylbenzothiaziline-6-sulphonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) by up to 26 times compared with unfermented CG (P < 0.05). The amount of hydrolysis and solvents (ethanol and water) used for extracting protein hydrolysates significantly affected the antioxidant properties. Moreover, fermented CG showed a negligible reduction in bio-iron (2-3%) compared with heat-processed CG (85 °C for 15 min), in which bio-iron was reduced by up to 20.3% (P < 0.05). The presence of unsaturated fatty acids such as C20:4 and C22:4 n-6 indicated a low level of lipid oxidation. CONCLUSION Fermented CG, with its reasonably high antioxidant and antibacterial activity, together with a substantial amount of bio-iron and other nutritional components can serve as a functional food or feed additive to reduce oxidative stress and to treat iron deficiency. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ali Muhammed Moula Ali
- Department of Food Science, Faculty of Food-Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Maria Gullo
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Sri Charan Bindu Bavisetty
- Department of Fermentation Technology, Faculty of Food-Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| |
Collapse
|
50
|
Hirsch Ramos A, Silva Timm N, Dietrich Ferreira C, Antunes AC, Hoffmann JF, Oliveira Rios A, Oliveira M. Effects of the intensification of soybean defects: Degradation metabolism of carbohydrates, organic acids, proteins, lipids, and phenolics. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Adriano Hirsch Ramos
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
| | - Newiton Silva Timm
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
- Department of Agricultural Engineering Rural Sciences Center Federal University of Santa Maria Santa Maria Brazil
| | | | - Ana Clara Antunes
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
| | | | - Alessandro Oliveira Rios
- Department of Food Science Institute of Food Science and Technology Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Maurício Oliveira
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
| |
Collapse
|