1
|
Dzulkharnien NSF, Rohani R, Tan Kofli N, Mohd Kasim NA, Abd Muid S, Patrick M, Mohd Fauzi NA, Alias H, Ahmad Radzuan H. Enhanced binding interaction and antibacterial inhibition for nanometal oxide particles activated with Aloe Vulgarize through one-pot ultrasonication techniques. Bioorg Chem 2024; 150:107513. [PMID: 38905888 DOI: 10.1016/j.bioorg.2024.107513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/23/2024]
Abstract
The interaction of green zinc oxide nanoparticles (ZnO NPs) with bacterial strains are still scarcely reported. This work was conducted to study the green-one-pot-synthesized ZnO NPs from the Aloe Vulgarize (AV) leaf peel extract assisted with different sonication techniques followed by the physicochemical, biological activities and molecular docking studies. The NPs structure was analyzed using FTIR, UV-vis and EDX. The morphology, particle size and crystallinity of ZnO NPs were identified using FESEM and XRD. It was found that the formed flower-like structure with sharp edge and fine size of particulates in ZnO NPs/AV could enhance the bacterial inhibition. The minimum inhibitory concentration (MIC) for all the tested bacterial strains is at 3.125 µg/ml and the bacterial growth curve are dependent on the ZnO NPs dosage. The results of disc diffusion revealed that the ZnO NPs/AV possess better antibacterial effect with bigger ZOI due to the presence of AV active ingredient. The molecular docking between active ingredients of AV in the NPs with the protein of IFCM and 1MWU revealed that low binding energy (Ebind = -6.56 kcal/mol and -8.99 kcal/mol, respectively) attributes to the excessive hydrogen bond from AV that highly influenced their interaction with the amino acid of the selected proteins. Finally, the cytotoxicity test on the biosynthesized ZnO NPs with concentration below 20 µg/ml are found nontoxic on the HDF cell. Overall, ZnO NPs/20 % AV (probe sonication) is considered as the best synthesis option due to its efficient one-pot method, short sonication time but own the best antibacterial effect.
Collapse
Affiliation(s)
- Nur Syafiqah Farhanah Dzulkharnien
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Rosiah Rohani
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Noorhisham Tan Kofli
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Noor Alicezah Mohd Kasim
- Faculty of Medicine, Universiti Teknologi Mara Selangor Branch, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Suhaila Abd Muid
- Faculty of Medicine, Universiti Teknologi Mara Selangor Branch, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Melonney Patrick
- Faculty of Medicine, Universiti Teknologi Mara Selangor Branch, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Noor Akhmazillah Mohd Fauzi
- Department of Chemical Engineering Technology, Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, 86400, Johor, Malaysia
| | - Hajar Alias
- Department of Chemical Engineering, Faculty of Chemical Engineering and Natural Resources, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Husna Ahmad Radzuan
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
2
|
Jovanović D, Bognár S, Despotović V, Finčur N, Jakšić S, Putnik P, Deák C, Kozma G, Kordić B, Šojić Merkulov D. Banana Peel Extract-Derived ZnO Nanopowder: Transforming Solar Water Purification for Safer Agri-Food Production. Foods 2024; 13:2643. [PMID: 39200570 PMCID: PMC11353736 DOI: 10.3390/foods13162643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
Pure water scarcity is the most significant emerging challenge of the modern society. Various organics such as pesticides (clomazone, quinmerac), pharmaceuticals (ciprofloxacin, 17α-ethynilestradiol), and mycotoxins (deoxynivalenol) can be found in the aquatic environment. The aim of this study was to fabricate ZnO nanomaterial on the basis of banana peel extract (ZnO/BPE) and investigate its efficiency in the photocatalytic degradation of selected organics under various experimental conditions. Newly synthesized ZnO/BPE nanomaterials were fully characterized by the XRD, FTIR, SEM-EPS, XPS, and BET techniques, which confirmed the successful formation of ZnO nanomaterials. The photocatalytic experiments showed that the optimal catalyst loading of ZnO/BPE was 0.5 mg/cm3, while the initial pH did not influence the degradation efficiency. The reusability of the ZnO/BPE nanomaterial was also tested, and minimal activity loss was found after three photocatalytic cycles. The photocatalytic efficiency of pure banana peel extract (BPE) was also studied, and the obtained data showed high removal of ciprofloxacin and 17α-ethynilestradiol. Finally, the influence of water from Danube River was also examined based on the degradation efficiency of selected pollutants. These results showed an enhanced removal of ciprofloxacin in water from the Danube River, while in the case of other pollutants, the treatment was less effective.
Collapse
Affiliation(s)
- Dušica Jovanović
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (D.J.); (S.B.); (V.D.); (N.F.); (B.K.)
| | - Szabolcs Bognár
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (D.J.); (S.B.); (V.D.); (N.F.); (B.K.)
| | - Vesna Despotović
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (D.J.); (S.B.); (V.D.); (N.F.); (B.K.)
| | - Nina Finčur
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (D.J.); (S.B.); (V.D.); (N.F.); (B.K.)
| | - Sandra Jakšić
- Scientific Veterinary Institute “Novi Sad”, Rumenački Put 20, 21000 Novi Sad, Serbia;
| | - Predrag Putnik
- Department of Food Technology, University North, Trg Dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia;
| | - Cora Deák
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla Square 1, H-6720 Szeged, Hungary; (C.D.); (G.K.)
| | - Gábor Kozma
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla Square 1, H-6720 Szeged, Hungary; (C.D.); (G.K.)
| | - Branko Kordić
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (D.J.); (S.B.); (V.D.); (N.F.); (B.K.)
| | - Daniela Šojić Merkulov
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (D.J.); (S.B.); (V.D.); (N.F.); (B.K.)
| |
Collapse
|
3
|
Shettar SS, Bagewadi ZK, Yunus Khan T, Mohamed Shamsudeen S, Kolvekar HN. Biochemical characterization of immobilized recombinant subtilisin and synthesis and functional characterization of recombinant subtilisin capped silver and zinc oxide nanoparticles. Saudi J Biol Sci 2024; 31:104009. [PMID: 38766505 PMCID: PMC11101740 DOI: 10.1016/j.sjbs.2024.104009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
This pioneering research explores the transformative potential of recombinant subtilisin, emphasizing its strategic immobilization and nanoparticle synthesis to elevate both stability and therapeutic efficacy. Achieving an impressive 95.25 % immobilization yield with 3 % alginate composed of sodium along with 0.2 M CaCl2 indicates heightened pH levels and thermal resistance, with optimal action around pH 10 as well as 80 °C temperature. Notably, the Ca-alginate-immobilized subtilisin exhibits exceptional storage longevity and recyclability, affirming its practical viability. Comprehensive analyses of the recombinant subtilisin under diverse conditions underscore its adaptability, reflected in kinetic enhancements with increased Vmax (10.7 ± 15 × 103 U/mg) and decreased Km (0.19 ± 0.3 mM) values post-immobilization using N-Suc-F-A-A-F-pNA. UV-visible spectroscopy confirms the successful capping of nanoparticles made of Ag and ZnO by recombinant subtilisin, imparting profound antibacterial efficacy against diverse organisms and compelling antioxidant properties. Cytotoxicity was detected against the MCF-7 breast cancer line of cells, exhibiting IC50 concentrations at 8.87 as well as 14.52 µg/mL of AgNP as well as ZnONP, correspondingly, indicating promising anticancer potential. Rigorous characterization, including FTIR, SEM-EDS, TGA and AFM robustly validate the properties of the capped nanoparticles. Beyond therapeutic implications, the investigation explores industrial applications, revealing the versatility of recombinant subtilisin in dehairing, blood clot dissolution, biosurfactant activity, and blood stain removal. In summary, this research unfolds the exceptional promise of recombinant subtilisin and its nanoparticles, presenting compelling opportunities for diverse therapeutic applications in medicine. These findings contribute substantively to biotechnology and healthcare and stimulate avenues for further innovation and exploration.
Collapse
Affiliation(s)
- Shreya S. Shettar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - T.M. Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Shaik Mohamed Shamsudeen
- Department of Diagnostic Dental Science and Oral Biology, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
| | - Harsh N. Kolvekar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| |
Collapse
|
4
|
Abidin NZ, Hashim H, Zubairi SI, Maskat MY, Purhanudin N, Awang R, Ali JM, Yaakob H. Enhancing polytetrafluoroethylene (PTFE) coated film for food processing: Unveiling surface transformations through oxygenated plasma treatment and parameter optimization using response surface methodology. PLoS One 2024; 19:e0303931. [PMID: 38820420 PMCID: PMC11142506 DOI: 10.1371/journal.pone.0303931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/02/2024] [Indexed: 06/02/2024] Open
Abstract
Spray drying fruit juice powders poses challenges because sugars and organic acids with low molecular weight and a low glass transition temperature inherently cause stickiness. This study employed a hydrophobic polytetrafluoroethylene (PTFE) film to mimic the surface of the drying chamber wall. The Central Composite Design (CCD) using response surface methodology investigated the impact of power (X1, Watt) and the duration of oxygenated plasma treatment (X2, minutes) on substrate contact angle (°), reflecting surface hydrophobicity. To validate the approach, Morinda citrofolia (MC) juice, augmented with maltodextrins as drying agents, underwent spray drying on the improved PTFE-coated surface. The spray drying process for MC juice was performed at inlet air temperatures of 120, 140, and 160°C, along with Noni juice-to-maltodextrin solids ratios of 4.00, 1.00, and 0.25. The PTFE-coated borosilicate substrate, prepared at a radio frequency (RF) power of 90W for 15 minutes of treatment time, exhibited a porous and spongy microstructure, correlating with superior contact angle performance (171°) compared to untreated borosilicate glass. Optimization data indicated that the PTFE film attained an optimum contact angle of 146.0° with a specific combination of plasma RF operating power (X1 = 74 W) and treatment duration (X2 = 10.0 minutes). RAMAN spectroscopy indicated a structural analysis with an ID/IG ratio of 0.2, while Brunauer-Emmett-Teller (BET) surface area analysis suggested an average particle size of less than 100 nm for all coated films. The process significantly improved the powder's hygroscopicity, resistance to caking, and moisture content of maltodextrin-MC juice. Therefore, the discovery of this modification, which applies oxygen plasma treatment to PTFE-coated substrates, effectively enhances surface hydrophobicity, contact angle, porosity, roughness, and ultimately improves the efficacy and recovery of the spray drying process.
Collapse
Affiliation(s)
- Noraziani Zainal Abidin
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Haslaniza Hashim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Saiful Irwan Zubairi
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Mohamad Yusof Maskat
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Noorain Purhanudin
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Rozidawati Awang
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Jarinah Mohd Ali
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Harisun Yaakob
- Institute Bioproduct Development (IBD), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
5
|
Messai R, Ferhat MF, Serouti A, Nourelhouda B, Humayun M, Allag N, Zoukel A, Ghezzar MR, Bououdina M. Rapid synthesis of ZnO nanoparticles via gliding arc discharge: unveiling the impact of discharge time on particle properties and photocatalytic performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33885-33903. [PMID: 38691291 DOI: 10.1007/s11356-024-33442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Herein, we present a novel approach for the synthesis of ZnO nanoparticles (ZnO NPs) using a non-thermal plasma source generated by the gliding arc discharge-air system. The effect of discharge time on the physical and optical properties, as well as the photocatalytic performance of the as-fabricated ZnO NPs, was investigated. The characterization techniques revealed that the as-synthesized ZnO exhibit hexagonal Wurtzite structure, with a wide energy gap and peak intensities of UV-vis absorption with longer discharge times. A decrease in particle size from 29 to 25 nm was also observed with increasing discharge time, while all samples were thermally stable between 25 and 700 °C. The photocatalytic performance of the ZnO NPs was evaluated by degrading Congo Red (CR) dye with a concentration of 20 ppm under sunlight at a dose of 1 mg/mL. The as-synthesized ZnO NPs revealed exceptional photocatalytic performance by degrading ~ 97% of CR dye after irradiation for 150 min. This work presents an easy and simple method for synthesizing NPs in a short time and pave the way for other potential ideas on the application of plasma gliding arc discharge.
Collapse
Affiliation(s)
- Ridha Messai
- Faculty of Technology, Department of Process Engineering, University of El Oued, 39000, El Oued, Algeria
- Laboratory of Sciences and Techniques of the Environment and Valorization, University Abdelhamid Ben Badis of Mostaganem, BP 227, 27000, Mostaganem, Algeria
| | - Mohammed Fouad Ferhat
- Faculty of Technology, Department of Process Engineering, University of El Oued, 39000, El Oued, Algeria
- Laboratory of Sciences and Techniques of the Environment and Valorization, University Abdelhamid Ben Badis of Mostaganem, BP 227, 27000, Mostaganem, Algeria
- Faculty of Exact Sciences, Department of Chemistry, University of El Oued, 39000, El Oued, Algeria
| | - Abdelghani Serouti
- Faculty of Technology, Department of Process Engineering, University of El Oued, 39000, El Oued, Algeria
- Unit of Renewable Energy Development in Arid Zone (UDERZA), University of El Oued, 39000, El Oued, Algeria
| | - Bounedjar Nourelhouda
- Faculty of Exact Sciences, Department of Chemistry, University of El Oued, 39000, El Oued, Algeria
- Unit of Renewable Energy Development in Arid Zone (UDERZA), University of El Oued, 39000, El Oued, Algeria
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, 11586, Riyadh, Saudi Arabia
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, 11586, Riyadh, Saudi Arabia.
| | - Nassiba Allag
- Department of Mechanical Engineering, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
| | - Abdelhalim Zoukel
- Laboratory Physico-Chemistry of Materials, Laghouat University, Laghouat, Algeria
- Center for Scientific and Technical Research in Physicochemical Analysis (PTAPC-Laghouat-CRAPC), Laghouat, Algeria
| | - Mouffok Redouane Ghezzar
- Laboratory of Sciences and Techniques of the Environment and Valorization, University Abdelhamid Ben Badis of Mostaganem, BP 227, 27000, Mostaganem, Algeria
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, 11586, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Kumar H, Kimta N, Guleria S, Cimler R, Sethi N, Dhanjal DS, Singh R, Duggal S, Verma R, Prerna P, Pathera AK, Alomar SY, Kuca K. Valorization of non-edible fruit seeds into valuable products: A sustainable approach towards circular bioeconomy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171142. [PMID: 38387576 DOI: 10.1016/j.scitotenv.2024.171142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Global imperatives have recently shown a paradigm shift in the prevailing resource utilization model from a linear approach to a circular bioeconomy. The primary goal of the circular bioeconomy model is to minimize waste by effective re-usage of organic waste and efficient nutrient recycling. In essence, circular bioeconomy integrates the fundamental concept of circular economy, which strives to offer sustainable goods and services by leveraging biological resources and processes. Notably, the circular bioeconomy differs from conventional waste recycling by prioritizing the safeguarding and restoration of production ecosystems, focusing on harnessing renewable biological resources and their associated waste streams to produce value-added products like food, animal feed, and bioenergy. Amidst these sustainability efforts, fruit seeds are getting considerable attention, which were previously overlooked and commonly discarded but were known to comprise diverse chemicals with significant industrial applications, not limited to cosmetics and pharmaceutical industries. While, polyphenols in these seeds offer extensive health benefits, the inadequate conversion of fruit waste into valuable products poses substantial environmental challenges and resource wastage. This review aims to comprehend the known information about the application of non-edible fruit seeds for synthesising metallic nanoparticles, carbon dots, biochar, biosorbent, and biodiesel. Further, this review sheds light on the potential use of these seeds as functional foods and feed ingredients; it also comprehends the safety aspects associated with their utilization. Overall, this review aims to provide a roadmap for harnessing the potential of non-edible fruit seeds by adhering to the principles of a sustainable circular bioeconomy.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Neetika Kimta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Richard Cimler
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Nidhi Sethi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sampy Duggal
- Department of Ayurveda & Health Sciences, Abhilashi University, Mandi 175028, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India.
| | - Prerna Prerna
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147001, India
| | | | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
7
|
Jadoun S, Yáñez J, Aepuru R, Sathish M, Jangid NK, Chinnam S. Recent advancements in sustainable synthesis of zinc oxide nanoparticles using various plant extracts for environmental remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19123-19147. [PMID: 38379040 DOI: 10.1007/s11356-024-32357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
The sustainable synthesis of zinc oxide nanoparticles (ZnO-NPs) using plant extracts has gained significant attention in recent years due to its eco-friendly nature and potential applications in numerous fields. This synthetic approach reduces the reliance on non-renewable resources and eliminates the need for hazardous chemicals, minimizing environmental pollution and human health risks. These ZnO-NPs can be used in environmental remediation applications, such as wastewater treatment or soil remediation, effectively removing pollutants and improving overall ecosystem health. These NPs possess a high surface area and band gap of 3.2 eV, can produce both OH° (hydroxide) and O2-° (superoxide) radicals for the generation of holes (h+) and electrons (e-), resulting in oxidation and reduction of the pollutants in their valence band (VB) and conduction band (CB) resulting in degradation of dyes (95-100% degradation of MB, MO, and RhB dyes), reduction and removal of heavy metal ions (Cu2+, Pb2+, Cr6+, etc.), degradation of pharmaceutical compounds (paracetamol, urea, fluoroquinolone (ciprofloxacin)) using photocatalysis. Here, we review an overview of various plant extracts used for the green synthesis of ZnO NPs and their potential applications in environmental remediation including photocatalysis, adsorption, and heavy metal remediation. This review summarizes the most recent studies and further research perspectives to explore their applications in various fields.
Collapse
Affiliation(s)
- Sapana Jadoun
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Jorge Yáñez
- Facultad de Ciencias Químicas, Departamento de Química Analítica E Inorgánica, Universidad de Concepción, Edmundo Larenas 129, 4070371, Concepción, Chile
| | - Radhamanohar Aepuru
- Departamento de Ingeniería Mecánica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - Manda Sathish
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, 3460000, Talca, Chile
| | | | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology Bengaluru, Bengaluru, Karnataka, 560054, India
| |
Collapse
|
8
|
Ali S, Dayo M, Alahmadi S, Mohamed A. Chitosan-Supported ZnO Nanoparticles: Their Green Synthesis, Characterization, and Application for the Removal of Pyridoxine HCl (Vitamin B6) from Aqueous Media. Molecules 2024; 29:828. [PMID: 38398580 PMCID: PMC10892826 DOI: 10.3390/molecules29040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 02/25/2024] Open
Abstract
A composite of chitosan-supported ZnO nanoparticles (ZnO/CS) was green-synthesized via an easy and cost-effective method using Chicory (Cichorium intybus) plant extract. The synthesis was confirmed using uv-vis spectrometry at a λmax of 380 nm, and the surface of the material was characterized via FT-IR spectroscopy, and finally via SEM, which confirmed the distribution of ZnO nanoparticles on the surface of chitosan biopolymer (CS). The synthesized material was applied in the adsorptive removal of residues of the pyridoxine hydrochloride (vitamin B6) pharmaceutical drug from aqueous media using the batch technique. The material's removal capacity was studied through several adjustable parameters including pH, contact time, the dose of the adsorbent, and the capacity for drug adsorption under the optimal conditions. Langmuir and Freundlich isotherms were applied to describe the adsorption process. The removal was found to obey the Freundlich model, which refers to a chemisorption process. Different kinetic models were also studied for the removal process and showed that the pseudo-second-order model was more fitted, which indicates that the removal was a chemisorption process. Thermodynamic studies were also carried out. The maximum removal of vitamin B6 by the nano-ZnO/CS composite was found to be 75% at optimal conditions. The results were compared to other reported adsorbents. Reusability tests showed that the nano-ZnO/CS composite can be efficiently reused up to seven times for the removal of PDX drugs from aqueous media.
Collapse
Affiliation(s)
- Samah Ali
- Chemistry Department, College of Science, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia (S.A.)
- The National Organization for Drug Control and Research, Giza 12622, Egypt
| | - Marwa Dayo
- Chemistry Department, College of Science, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia (S.A.)
| | - Sana Alahmadi
- Chemistry Department, College of Science, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia (S.A.)
| | - Amr Mohamed
- Chemistry Department, College of Science, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia (S.A.)
- The Higher Institute of Optics Technology (HIOT), Heliopolis, Cairo 17361, Egypt
| |
Collapse
|
9
|
Aliannezhadi M, Mirsanaee SZ, Jamali M, Shariatmadar Tehrani F. The physical properties and photocatalytic activities of green synthesized ZnO nanostructures using different ginger extract concentrations. Sci Rep 2024; 14:2035. [PMID: 38263199 PMCID: PMC10807023 DOI: 10.1038/s41598-024-52455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
The green synthesis method which is aligned with the sustainable development goals (SDGs) theory, is proposed to synthesize ZnO nanoparticles using ginger extract to treat the acidic wastewater and acidic factory effluent as a current challenge and the effects of the concentration of extracts on the synthesized ZnO nanostructures are investigated. The results declare that the single-phase hexagonal ZnO is formed using ginger extract concentration of less than 25 mL and the crystallite size of green synthesized ZnO NPs increased with increasing the concentration of ginger extract. Also, the significant effects of ginger extract concentration on the morphology of nanoparticles (nanocone, nanoflakes, and flower-like) and the particle size are demonstrated. The low concentration of ginger extract leads to the formation of the ZnO nanoflakes, while the flower-like structure is gradually completed by increasing the concentration of the ginger extract. Furthermore, significant changes in the specific surface area (SSA) of the samples are observed (in the range of 6.1-27.7 m2/g) by the variation of ginger extract concentration and the best SSA is related to using 10 mL ginger extract. Also, the strong effect of using ginger extract on the reflectance spectra of the green synthesized ZnO NPs, especially in the UV region is proved. The indirect (direct) band gap energies of the ZnO samples are obtained in the range of 3.09-3.20 eV (3.32-3.38 eV). Furthermore, the photocatalytic activities of the samples for the degradation of methylene blue indicate the impressive effect of ginger extract concentration on the degradation efficiency of ZnO nanoparticles and it reaches up to 44% and 83% for ZnO NPs prepared using 5 mL ginger extract in a pH of 4.3 and 5.6, respectively. This study provided new insights into the fabrication and practical application of high-performance ZnO photocatalysts synthesized using ginger extract in degrading organic pollutants in an acidic solution.
Collapse
Affiliation(s)
| | | | - Mohaddeseh Jamali
- Faculty of Physics, Semnan University, PO Box: 35195-363, Semnan, Iran
| | | |
Collapse
|
10
|
Sundararajan N, Habeebsheriff HS, Dhanabalan K, Cong VH, Wong LS, Rajamani R, Dhar BK. Mitigating Global Challenges: Harnessing Green Synthesized Nanomaterials for Sustainable Crop Production Systems. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300187. [PMID: 38223890 PMCID: PMC10784203 DOI: 10.1002/gch2.202300187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/07/2023] [Indexed: 01/16/2024]
Abstract
Green nanotechnology, an emerging field, offers economic and social benefits while minimizing environmental impact. Nanoparticles, pivotal in medicine, pharmaceuticals, and agriculture, are now sourced from green plants and microorganisms, overcoming limitations of chemically synthesized ones. In agriculture, these green-made nanoparticles find use in fertilizers, insecticides, pesticides, and fungicides. Nanofertilizers curtail mineral losses, bolster yields, and foster agricultural progress. Their biological production, preferred for environmental friendliness and high purity, is cost-effective and efficient. Biosensors aid early disease detection, ensuring food security and sustainable farming by reducing excessive pesticide use. This eco-friendly approach harnesses natural phytochemicals to boost crop productivity. This review highlights recent strides in green nanotechnology, showcasing how green-synthesized nanomaterials elevate crop quality, combat plant pathogens, and manage diseases and stress. These advancements pave the way for sustainable crop production systems in the future.
Collapse
Affiliation(s)
| | | | | | - Vo Huu Cong
- Faculty of Natural Resources and EnvironmentVietnam National University of AgricultureTrau QuyGia LamHanoi10766Vietnam
| | - Ling Shing Wong
- Faculty of Health and Life SciencesINTI International UniversityPersiaran Perdana BBNPutra NilaiNilaiNegeri Sembilan71800Malaysia
| | | | - Bablu Kumar Dhar
- Business Administration DivisionMahidol University International CollegeMohidol UniversitySalaaya73170Thailand
- Faculty of Business AdministrationDaffodil International UniversityDhaka1216Bangladesh
| |
Collapse
|
11
|
Kahandal A, Chaudhary S, Methe S, Nagwade P, Sivaram A, Tagad CK. Galactomannan polysaccharide as a biotemplate for the synthesis of zinc oxide nanoparticles with photocatalytic, antimicrobial and anticancer applications. Int J Biol Macromol 2023; 253:126787. [PMID: 37690639 DOI: 10.1016/j.ijbiomac.2023.126787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Biotemplates provide a facile, rapid, and environmentally benign route for synthesizing various nanostructured materials. Herein, Locust Bean Gum (LBG), a galactomannan polysaccharide, has been used as a biotemplate for synthesizing ZnO nanoparticles (NPs) for the first time. The composition, structure, morphology, and bandgap of ZnO were investigated by Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Photoelectron Spectroscopy (XPS), X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and UV-vis spectroscopy. XRD data showed single-phase crystalline hexagonal NPs. FTIR spectra confirmed the presence of M-O bonding in the sample. At a concentration of 0.5 mg/mL the NPs can degrade Rhodamine B under sunlight, displaying excellent photocatalytic activity. These NPs exhibited antimicrobial activity in both Staphylococcus aureus and Bacillus subtilis. Significant cell death was observed at 500 μg/mL, 250 μg/mL, 125 μg/mL and 62.5 μg/mL of NP in breast cancer, ovarian cancer and lung cancer cell lines. Wound healing assay showed that the NPs significantly blocked the cell migration at a concentration as low as 62.5 μg/mL in all three cell lines. Further optimization of the nanostructure properties will make it a promising candidate in the field of nano-biotechnology and bioengineering owing to its wide range of potential applications.
Collapse
Affiliation(s)
- Amol Kahandal
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India
| | - Sanyukta Chaudhary
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India
| | - Saakshi Methe
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India
| | - Pratik Nagwade
- Department of Chemistry, Shri Anand College, Pathardi, Ahmednagar, MH, India
| | - Aruna Sivaram
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India.
| | - Chandrakant K Tagad
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India.
| |
Collapse
|
12
|
Al-Odayni AB, Alnehia A, Al-Sharabi A, Al-Hammadi AH, Saeed WS, Abduh NAY. Biofabrication of Mg-doped ZnO nanostructures for hemolysis and antibacterial properties. Bioprocess Biosyst Eng 2023; 46:1817-1824. [PMID: 37878183 DOI: 10.1007/s00449-023-02937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/15/2023] [Indexed: 10/26/2023]
Abstract
The aim of this work was to synthesize 0.02 and 0.06 Mg-doped ZnO nanoparticles (NPs) using the aqueous extract of Plectranthus barbatus leaf. The structural integrity of the hexagonal phase was emphasized by X-ray diffraction analysis. The average crystallite size (D) of 0.02 and 0.06 Mg-doped ZnO NPs was found to be 23.83 and 26.95 nm, respectively. The scanning electron microscope images revealed a surface morphology of irregular nano-shapes of about 83 nm diameter with an elongated one-dimensional structure. The hemolysis activity demonstrated the safe nature of the synthesized materials at low doses. Antibacterial activity against S. aureus and E. coli, which assessed using the disc diffusion method, indicated that the prepared NPs could inhibit S. aureus but not E. coli. These findings suggest that the synthesized NPs could be explored for potential applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Abdel-Basit Al-Odayni
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, 11545, Riyadh, Saudi Arabia
| | - Adnan Alnehia
- Department of Physics, Faculty of Sciences, Sana'a University, Sana'a, Yemen.
- Department of Physics, Faculty of Applied Sciences, Thamar University, 87246, Dhamar, Yemen.
| | - Annas Al-Sharabi
- Department of Physics, Faculty of Applied Sciences, Thamar University, 87246, Dhamar, Yemen
| | - A H Al-Hammadi
- Department of Physics, Faculty of Sciences, Sana'a University, Sana'a, Yemen
| | - Waseem Sharaf Saeed
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, 11545, Riyadh, Saudi Arabia
| | - Naaser A Y Abduh
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Meky AI, Hassaan MA, Fetouh HA, Ismail AM, El Nemr A. Cube-shaped Cobalt-doped zinc oxide nanoparticles with increased visible-light-driven photocatalytic activity achieved by green co-precipitation synthesis. Sci Rep 2023; 13:19329. [PMID: 37935868 PMCID: PMC10630306 DOI: 10.1038/s41598-023-46464-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023] Open
Abstract
From the perspective of environmental protection, the highly efficient degradation of antibiotics and organic dyes in wastewater needs to be tackled as soon as possible. In this study, an ecofriendly and green cube-shaped cobalt-doped zinc oxide nanoparticles (Co-ZnO NPs) photocatalyst using Pterocladia Capillacea (P. Capillacea) water extract loaded with 5, 10, and 15% cobalt ions were formed via co-precipitation process to degrade antibiotics. The prepared Co-ZnO NPs were tested as a photocatalyst for the photodegradation of ciprofloxacin (CIPF) in the presence of a visible LED-light source. Co-ZnO NPs have been obtained through the co-precipitation method in the presence of P. Capillacea extract as a green capping agent and reducing agent, for the first time. Several characterization techniques including FTIR, XRD, BET, XPS, TEM, EDX, SEM, TGA and DRS UV-Vis spectroscopy were applied to study the prepared Co-ZnO NPs. XRD results suggested that the average size of these NPs ranged between 42.82 and 46.02 nm with a hexagonal wurtzite structure. Tauc plot shows that the optical energy bandgap of ZnO NPs (3.19 eV) gradually decreases to 2.92 eV by Co doping. Examinations showed that 5% Co-ZnO NPs was the highest efficient catalyst for the CIPF photodegradation when compared with ZnO NPs and other 10 and 15% Co-ZnO NPs. A 10 mg/L solution of CIPF was photo-degraded (100%) within the first 15 min irradiation. The kinetics showed that the first-order model is suitable for displaying the rate of reaction and amount of CIPF elimination with R2 = 0.952. Moreover, central composite design optimization of the 5% Co-doped ZnO NPs was also investigated.
Collapse
Affiliation(s)
- Asmaa I Meky
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed A Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Howida A Fetouh
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Amel M Ismail
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt.
| |
Collapse
|
14
|
Kalderis D, Görmez Ö, Saçlı B, Çalhan SD, Gözmen B. Valorization of loquat seeds by hydrothermal carbonization for the production of hydrochars and aqueous phases as added-value products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118612. [PMID: 37480637 DOI: 10.1016/j.jenvman.2023.118612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
In the framework of circular bio-economy, waste loquat seeds were utilized for the production of two added-value products. The seeds were hydrothermally carbonized at a temperature range of 150-250 °C and time range 2-6 h and the resultant hydrochars and aqueous phases were characterized using various methods. The optimum higher heating value of 30.64 MJ kg-1, ash content of 1.99 wt % and alkali index of 0.05 were achieved for the hydrochar prepared at 250 °C and 6 h, establishing its suitability for energy-related applications. The aqueous phase obtained at 250 °C and 6 h achieved 90% scavenging of the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical and had a IC50 value of 43.71 μg mL-1. Principal component analysis showed that the production of phenols, ketones, alkenes and organic acids was favored at >200 °C, whereas furans and aldehydes were primarily formed at 150 °C. Conclusively, both added-value products were obtained at the same optimum hydrothermal carbonization conditions of 250 °C and 6 h treatment time. In a bio-refinery context, this has the practical implication that both bio-products be obtained simultaneously, without the need to switch between different temperatures and residence times.
Collapse
Affiliation(s)
- Dimitris Kalderis
- Department of Electronics Engineering, Laboratory of Environmental Technologies and Applications (LETA), Hellenic Mediterranean University, Chania, Crete, 73100, Greece.
| | - Özkan Görmez
- Department of Chemistry, Faculty of Science, Mersin University, Mersin, Turkey
| | - Barış Saçlı
- Department of Chemistry, Faculty of Science, Mersin University, Mersin, Turkey
| | - Selda Doğan Çalhan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Belgin Gözmen
- Department of Chemistry, Faculty of Science, Mersin University, Mersin, Turkey
| |
Collapse
|
15
|
Alnehia A, Al-Sharabi A, Al-Odayni AB, Al-Hammadi AH, AL-Ostoot FH, Saeed WS, Abduh NAY, Alrahlah A. Lepidium sativum Seed Extract-Mediated Synthesis of Zinc Oxide Nanoparticles: Structural, Morphological, Optical, Hemolysis, and Antibacterial Studies. Bioinorg Chem Appl 2023; 2023:4166128. [PMID: 37780971 PMCID: PMC10541302 DOI: 10.1155/2023/4166128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 10/03/2023] Open
Abstract
Nanomaterials have unique physicochemical properties compared to their bulk counterparts. Besides, biologically synthesized nanoparticles (NPs) have proven superior to other methods. This work aimed to biosynthesize zinc oxide (ZnO) NPs using an aqueous extract of Lepidium sativum seed. The obtained ZnO NPs were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared, and ultraviolet-visible spectroscopy. The in vitro antibacterial activity of ZnO NPs against Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria was assessed using the disk diffusion technique. The hemolytic impact was quantified spectrophotometrically. The results indicated a 24.2 nm crystallite size, a hexagonal structure phase, and a 3.48 eV optical bandgap. Antibacterial studies revealed a dose-dependent response with comparable activity to the standard drug (gentamicin) and higher activity against S. aureus than E. coli, e.g., the zone of inhibition at 120 mg/mL was 23 ± 1.25 and 16 ± 1.00 mm, respectively. The hemolysis assay showed no potential harm due to ZnO NPs toward red blood cells if utilized in low doses. As a result, it could be concluded that the reported biogenic method for synthesizing ZnO NPs is promising, resulting in hemocompatible NPs and comparable bactericidal agents.
Collapse
Affiliation(s)
- Adnan Alnehia
- Department of Physics, Faculty of Sciences, Sana'a University, Sana'a, Yemen
| | - Annas Al-Sharabi
- Department of Physics, Faculty of Applied Sciences, Thamar University, Dhamar 87246, Yemen
| | - Abdel-Basit Al-Odayni
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - A. H. Al-Hammadi
- Department of Physics, Faculty of Sciences, Sana'a University, Sana'a, Yemen
| | - Fares H. AL-Ostoot
- Department of Biochemistry, Faculty of Education and Sciences, Albaydha University, Albaydha, Yemen
| | - Waseem Sharaf Saeed
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Naaser A. Y. Abduh
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Alrahlah
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| |
Collapse
|
16
|
Jahan N, Rasheed K, Rahman KU, Hazafa A, Saleem A, Alamri S, Iqbal MO, Rahman MA. Green inspired synthesis of zinc oxide nanoparticles using Silybum marianum (milk thistle) extract and evaluation of their potential pesticidal and phytopathogens activities. PeerJ 2023; 11:e15743. [PMID: 37601248 PMCID: PMC10434149 DOI: 10.7717/peerj.15743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/21/2023] [Indexed: 08/22/2023] Open
Abstract
Background The green approaches for the synthesis of nanoparticles are gaining significant importance because of their high productivity, purity, low cost, biocompatibility, and environmental friendliness. Methods The aim of the current study is the green synthesis of zinc oxide nanoparticles (ZnO-NPs) using seed extracts of Silybum marianum, which acts as a reducing and stabilizing agent. central composite design (CCD) of response surface methodology (RSM) optimized synthesis parameters (temperature, pH, reaction time, plant extract, and salt concentration) for controlled size, stability, and maximum yields of ZnO-NPs. Green synthesized ZnO-NPs was characterized using UV-visible spectroscopy and Zetasizer analyses. Results The Zetasizer confirmed that green synthesized ZnO-NPs were 51.80 nm in size and monodispersed in nature. The UV-visible results revealed a large band gap energy in the visible region at 360.5 nm wavelength. The bioactivities of green synthesized ZnO-NPs, including antifungal, antibacterial, and pesticidal, were also evaluated. Data analysis confirmed that these activities were concentration dependent. Bio-synthesized ZnO-NPs showed higher mortality towards Tribolium castaneum of about 78 ± 0.57% after 72 h observation as compared to Sitophilus oryzae, which only displayed 74 ± 0.57% at the same concentration and time intervals. Plant-mediated ZnO-NPs also showed high potential against pathogenic gram-positive bacteria (Clavibacter michiganensis), gram-negative bacteria (Pseudomonas syringae), and two fungal strains such as Fusarium oxysporum, and Aspergillums niger with inhibition zones of 18 ± 0.4, 25 ± 0.4, 21 ± 0.57, and 19 ± 0.4 mm, respectively. Conclusion The results of this study showed that Silybum marianum-based ZnO-NPs are cost-effective and efficient against crop pests.
Collapse
Affiliation(s)
- Nazish Jahan
- Department of Chemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Kousar Rasheed
- Department of Chemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Khalil-Ur- Rahman
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Abu Hazafa
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Amna Saleem
- Department of Chemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Omer Iqbal
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean university of China, Qingdao, China
| | - Md Atikur Rahman
- Grassland & Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan, Republic of Korea
| |
Collapse
|
17
|
Truong TT, Khieu TT, Luu HN, Truong HB, Nguyen VK, Vuong TX, Tran TKN. Characterization and Bioactivity of Piper chaudocanum L. Extract-Doped ZnO Nanoparticles Biosynthesized by Co-Precipitation Method. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5457. [PMID: 37570161 PMCID: PMC10420328 DOI: 10.3390/ma16155457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 08/13/2023]
Abstract
Green synthesis and nanomaterials have been the current trends in biomedical materials. In this study, Piper chaudocanum L. leaf extract-doped ZnO nanoparticles (PLE-doped ZnO NPs), a novel nanomaterial, were studied including the synthesis process, and the biomedical activity was evaluated. PLE-doped ZnO NPs were synthesized by the co-precipitation method, with differences in the synthesis procedures and dosages of the extract. The X-ray diffraction, Fourier transform infrared, scanning electron microscopy, energy dispersive X-ray spectroscopy, Brunauer-Emmett-Teller, ultraviolet-visible diffuse reflectance spectroscopy, and photoluminescence spectrum analysis results showed that the biosynthesized PLE-doped ZnO NPs were pure and in a hexagonal wurtzite phase. The PLE-doped NPs were synthesized by adding the extract to the zinc acetate solution before adjusting the pH and exhibited the smallest size (ZPS50 was 22 nm), the richest in the surface organic functional groups and the best optical activity. The highest antibacterial activity against P. aeruginosa and S. aureus was observed at 100 µg/mL of ZPS50 NPs, and the inhibition zone reached 42 and 39 nm, respectively. Moreover, ZPS50 NPs showed a moderate effectiveness against KB cancer cells with an IC50 value of 43.53 ± 2.98 µg/mL. This present study's results suggested that ZPS50 NPs could be a promising nanomaterial in developing drugs for treating human epithelial carcinoma cells and infectious illnesses.
Collapse
Affiliation(s)
- Thi Thao Truong
- Faculty of Chemistry, TNU-University of Sciences, Tan Thinh Ward, Thai Nguyen City 250000, Vietnam (V.K.N.); (T.X.V.)
| | - Thi Tam Khieu
- Faculty of Chemistry, TNU-University of Sciences, Tan Thinh Ward, Thai Nguyen City 250000, Vietnam (V.K.N.); (T.X.V.)
| | - Huu Nguyen Luu
- Laboratory of Magnetism and Magnetic Materials, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City 700000, Vietnam;
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam;
| | - Hai Bang Truong
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam;
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City 700000, Vietnam
| | - Van Khien Nguyen
- Faculty of Chemistry, TNU-University of Sciences, Tan Thinh Ward, Thai Nguyen City 250000, Vietnam (V.K.N.); (T.X.V.)
| | - Truong Xuan Vuong
- Faculty of Chemistry, TNU-University of Sciences, Tan Thinh Ward, Thai Nguyen City 250000, Vietnam (V.K.N.); (T.X.V.)
| | - Thi Kim Ngan Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
18
|
Hamdy E, Al-Askar AA, El-Gendi H, Khamis WM, Behiry SI, Valentini F, Abd-Elsalam KA, Abdelkhalek A. Zinc Oxide Nanoparticles Biosynthesized by Eriobotrya japonica Leaf Extract: Characterization, Insecticidal and Antibacterial Properties. PLANTS (BASEL, SWITZERLAND) 2023; 12:2826. [PMID: 37570980 PMCID: PMC10421472 DOI: 10.3390/plants12152826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/15/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have gained significant attention in nanotechnology due to their unique properties and potential applications in various fields, including insecticidal and antibacterial activities. The ZnO-NPs were biosynthesized by Eriobotrya japonica leaf extract and characterized by various techniques such as UV-visible (UV-vis) spectrophotometer, X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and zeta potential analysis. The results of SEM revealed that NPs were irregular and spherical-shaped, with a diameter between 5 and 27 nm. Meanwhile, DLS supported that the measured size distributions were 202.8 and 94.7 nm at 11.1° and 90.0°, respectively, which supported the polydisperse nature of NPs, and the corresponding zeta potential was -20.4 mV. The insecticidal activity of the produced ZnO-NPs was determined against the adult stage of coleopteran pests, Sitophilus oryzae (Linnaeus) (Curculionidae) and Tribolium castaneum (Herbst) (Tenebrionidae). The LC50 values of ZnO-NPs against adults of S. oryzae and T. castaneum at 24 h of exposure were 7125.35 and 5642.65 μg/mL, respectively, whereas the LC90 values were 121,824.56 and 66,825.76 μg/mL, respectively. Moreover, the biosynthesized nanoparticles exhibited antibacterial activity against three potato bacterial pathogens, and the size of the inhibition zone was concentration-dependent. The data showed that the inhibition zone size increased with an increase in the concentration of nanoparticles for all bacterial isolates tested. The highest inhibition zone was observed for Ralstonia solanacearum at a concentration of 5 µg/mL, followed by Pectobacterium atrosepticum and P. carotovorum. Eventually, ZnO-NPs could be successfully used as an influential agent in pest management programs against stored-product pests and potato bacterial diseases.
Collapse
Affiliation(s)
- Esraa Hamdy
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt;
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City 21934, Egypt;
| | - Wael M. Khamis
- Plant Protection Research Institute, Agriculture Research Center, Al-Sabhia, Alexandria 21616, Egypt;
| | - Said I. Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Franco Valentini
- Istituto Agronomico Mediterraneo di Bari, Via Ceglie 9, Valenzano, 70010 Bari, Italy;
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Centre, Giza 12619, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt;
| |
Collapse
|
19
|
Tosif MM, Bains A, Sadh PK, Sarangi PK, Kaushik R, Burla SVS, Chawla P, Sridhar K. Loquat seed starch - Emerging source of non-conventional starch: Structure, properties, and novel applications. Int J Biol Macromol 2023:125230. [PMID: 37301342 DOI: 10.1016/j.ijbiomac.2023.125230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Recently, non-conventional sources of starch have attracted attention due to their potential to provide cost-effective alternatives to traditional starch. Among non-conventional starches, loquat (Eriobotrya japonica) seed starch is an emerging source of starch consisting of the amount of starch (nearly 20 %). Due to its unique structure, functional properties, and novel applications, it could be utilized as a potential ingredient. Interestingly, this starch has similar properties as commercial starches including high amylose content, small granule size, and high viscosity and heat stability, making it an attractive option for various food applications. Therefore, this review mainly covers the fundamental understanding of the valorization of loquat seeds by extracting the starch using different isolation methods, with preferable structural, morphological, and functional properties. Different isolation and modification methods (wet milling, acid, neutral and alkaline) are effectively used to obtain higher amounts of starch are revealed. Moreover, insight into various analytical techniques including scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction used to characterize the molecular structure of the starch are discussed. In addition, the effect of shear rate and temperature on rheological attributes with solubility index, swelling power, and color is revealed. Besides, this starch contains bioactive compounds that have shown a positive impact on the enhancement of the shelf-life of the fruits. Overall, loquat seed starches have the potential to provide sustainable and cost-effective alternatives to traditional starch sources and can lead to novel applications in the food industry. Further research is needed to optimize processing techniques and develop value-added products that can be produced at a large scale. However, there is relatively limited published scientific evidence on the structural and morphological characteristics of loquat seed starch. Thus, in this review, we focused on different isolation techniques of loquat seed starch, its structural and functional characteristics, along with potential applications.
Collapse
Affiliation(s)
- Mansuri M Tosif
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Pardeep Kumar Sadh
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal 795004, Manipur, India
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | | | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
20
|
Umar E, Ikram M, Haider J, Nabgan W, Imran M, Nazir G. A State-of-Art Review of the Metal Oxide-Based Nanomaterials Effect on Photocatalytic Degradation of Malachite Green Dyes and a Bibliometric Analysis. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300001. [PMID: 37287595 PMCID: PMC10242535 DOI: 10.1002/gch2.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/19/2023] [Indexed: 06/09/2023]
Abstract
A wide range of hard contaminants in wastewater is generated from different industries as byproducts of the organic compound. In this review, various metal oxide-based nanomaterials are employed for the photocatalytic removal of malachite green (MG) dye from wastewater. Some cost-effective and appropriate testing conditions are used for degrading these hard dyes to get higher removal efficiency. The effects of specific parameters are considered such as how the catalyst is made, how much dye is in the solution at first, how much nanocatalyst is needed to break down the dye, the initial pH of the dye solution, the type of light source used, the year of publications, and how long the dye has to be exposed to light to be removed. This study suggests that Scopus-based core collected data employ bibliometric methods to provide an objective analysis of global MG dye from 2011 to 2022 (12 years). The Scopus database collects all the information (articles, authors, keywords, and publications). For bibliometric analysis, 658 publications are retrieved corresponding to MG dye photodegradation, and the number of publications increases annually. A bibliometric study reveals a state-of-art review of metal oxide-based nanomaterials' effects on photocatalytic degradation of MG dyes (12 years).
Collapse
Affiliation(s)
- Ehtisham Umar
- Solar Cell Applications Research LabDepartment of PhysicsGovernment College University LahoreLahore54000Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research LabDepartment of PhysicsGovernment College University LahoreLahore54000Pakistan
| | - Junaid Haider
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
| | - Walid Nabgan
- Departament d'Enginyeria QuímicaUniversitat Rovira i VirgiliAv Països Catalans 26Tarragona43007Spain
| | - Muhammad Imran
- Department of ChemistryGovernment College University FaisalabadPakpattan RoadSahiwalPunjab57000Pakistan
| | - Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials EngineeringSejong UniversitySeoul05006Republic of Korea
| |
Collapse
|
21
|
Zelekew OA, Haitosa HH, Chen X, Wu YN. Recent progress on plant extract-mediated biosynthesis of ZnO-based nanocatalysts for environmental remediation: Challenges and future outlooks. Adv Colloid Interface Sci 2023; 317:102931. [PMID: 37267679 DOI: 10.1016/j.cis.2023.102931] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
The plant extract mediated green synthesis of nanomaterials has attracts enormous interest due to its cost-effectiveness, greener, and environmentally friendly. It is also considered as an alternative and facile method in which the phytochemicals can be used as a natural capping and reducing agents and helped to produce nanomaterials with high surface area, different sizes, and shapes. One of the materials fabricated using green methods is zinc oxide (ZnO) semiconductor due to its enormous applications in different field areas. In this review, an overview of recent progress on green synthesized ZnO-based catalysts and various modification methods for the purpose of enhancing the catalytic activity of ZnO and the corresponding structural-activity and interactions towards the removal of pollutants are highlighted. Particularly, the plant extract mediated ZnO-based photocatalysts application for the removal of pollutants via photocatalytic degradation, reduction reaction, and adsorption mechanism are demonstrated. Besides, the opportunities, challenges, and future outlooks of ZnO-based materials for environmental remediation with green and sustainable methods are also included. We believe that this review is a timely and comprehensive review on the recent progress related to plant extract mediated ZnO-based nanocatalysts synthesis and applications for environmental remediation.
Collapse
Affiliation(s)
- Osman Ahmed Zelekew
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai 200092, China; Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Haileyesus Hatano Haitosa
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Xiaoyun Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai 200092, China.
| |
Collapse
|
22
|
Halarnekar D, Ayyanar M, Gangapriya P, Kalaskar M, Redasani V, Gurav N, Nadaf S, Saoji S, Rarokar N, Gurav S. Eco synthesized chitosan/zinc oxide nanocomposites as the next generation of nano-delivery for antibacterial, antioxidant, antidiabetic potential, and chronic wound repair. Int J Biol Macromol 2023; 242:124764. [PMID: 37148929 DOI: 10.1016/j.ijbiomac.2023.124764] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
The present research work aimed at synthesizing chitosan-coated Zinc oxide nanocomposites (NS-CS/ZnONCs) by a bio-inspired method using an aqueous extract of Nigella sativa (NS) seeds and employing a quality-by-design approach (Box-Behnken design). The biosynthesized NS-CS/ZnONCs were physicochemically characterized and subjected to their in-vitro and in-vivo therapeutic potential. The zeta potential value of -11.2 mV and -12.6 mV indicated the stability of NS-mediated synthesized zinc oxide nanoparticles (NS-ZnONPs) and NS-CS/ZnONCs, respectively. The particle size of NS-ZnONPs and NS-CS/ZnONCs were 288.1 nm and 130.2 nm, respectively, with PDI of 0.198 and 0.158. NS-ZnONPs and NS-CS/ZnONCs showed superior radical scavenging abilities, excellent α-amylase, and α-glucosidase inhibitory activities. Also, NS-ZnONPs and NS-CS/ZnONCs demonstrated effective antibacterial activity against selected pathogens. Furthermore, NS-ZnONPs and NS-CS/ZnONCs demonstrated significant (p < 0.001) wound closure with 93.00 ± 0.43 % and 95.67 ± 0.43 % on the 15th day of treatment at the dose of 14 mg/wound, compared to 93.42 ± 0.58 % of standard. Collagen turnover was represented by hydroxyproline, which was shown to be significantly (p < 0.001) higher in the NS-ZnONPs (60.70 ± 1.44 mg/g of tissue) and NS-CS/ZnONCs (66.10 ± 1.23 mg/g of tissue) treatment groups than in the control group (47.7 ± 0.81 mg/g of tissue). Thus the NS-ZnONPs and NS-CS/ZnONCs could effectively develop promising drugs to inhibit pathogens and chronic tissue repair.
Collapse
Affiliation(s)
- Diksha Halarnekar
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Goa 403 001, India
| | - Muniappan Ayyanar
- Department of Botany, A.V.V.M. Sri Pushpam College (Autonomous), Poondi (Affiliated to Bharathidasan University), 613 503, India
| | - Peramaiyan Gangapriya
- Department of Botany, A.V.V.M. Sri Pushpam College (Autonomous), Poondi (Affiliated to Bharathidasan University), 613 503, India
| | - Mohan Kalaskar
- R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Vivek Redasani
- Yashoda Technical Campus, Faculty of Pharmacy, Satara 415 011, India
| | - Nilambari Gurav
- PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa University, Goa 403401, India
| | - Sameer Nadaf
- Sant Gajanan Maharaj College of Pharmacy, Mahagao 416 503, Maharashtra, India
| | - Suprit Saoji
- Formulations and Development Department, Slyaback Pharma, Telangana, India
| | - Nilesh Rarokar
- Department of Pharmaceutical Sciences, R.T. M. University, Nagpur, Maharashtra, India
| | - Shailendra Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Goa 403 001, India.
| |
Collapse
|
23
|
Liu L, Li Y, Al-Huqail AA, Ali E, Alkhalifah T, Alturise F, Ali HE. Green synthesis of Fe 3O 4 nanoparticles using Alliaceae waste (Allium sativum) for a sustainable landscape enhancement using support vector regression. CHEMOSPHERE 2023; 334:138638. [PMID: 37100254 DOI: 10.1016/j.chemosphere.2023.138638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 06/02/2023]
Abstract
The synthesis of metal nanoparticles using green chemistry methods has gained significant attention in the field of landscape enhancement. Researchers have paid close attention to the development of very effective green chemistry approaches for the production of metal nanoparticles (NPs). The primary goal is to create an environmentally sustainable technique for generating NPs. At the nanoscale, ferro- and ferrimagnetic minerals such as magnetite exhibit superparamagnetic properties (Fe3O4). Magnetic nanoparticles (NPs) have received increased interest in nanoscience and nanotechnology due to their physiochemical properties, small particle size (1-100 nm), and low toxicity. Biological resources such as bacteria, algae, fungus, and plants have been used to manufacture affordable, energy-efficient, non-toxic, and ecologically acceptable metallic NPs. Despite the growing demand for Fe3O4 nanoparticles in a variety of applications, typical chemical production processes can produce hazardous byproducts and trash, resulting in significant environmental implications. The purpose of this study is to look at the ability of Allium sativum, a member of the Alliaceae family recognized for its culinary and medicinal benefits, to synthesize Fe3O4 NPs. Extracts of Allium sativum seeds and cloves include reducing sugars like glucose, which may be used as decreasing factors in the production of Fe3O4 NPs to reduce the requirement for hazardous chemicals and increase sustainability. The analytic procedures were carried out utilizing machine learning as support vector regression (SVR). Furthermore, because Allium sativum is widely accessible and biocompatible, it is a safe and cost-effective material for the manufacture of Fe3O4 NPs. Using the regression indices metrics of root mean square error (RMSE) and coefficient of determination (R2), the X-ray diffraction (XRD) study revealed the lighter, smoother spherical forms of NPs in the presence of aqueous garlic extract and 70.223 nm in its absence. The antifungal activity of Fe3O4 NPs against Candida albicans was investigated using a disc diffusion technique but exhibited no impact at doses of 200, 400, and 600 ppm. This characterization of the nanoparticles helps in understanding their physical properties and provides insights into their potential applications in landscape enhancement.
Collapse
Affiliation(s)
- Lisha Liu
- Chongqing Creation Vocational College, Chongqing, 402160, China
| | - Yuanhua Li
- Chongqing Creation Vocational College, Chongqing, 402160, China.
| | - Arwa A Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Elimam Ali
- Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Tamim Alkhalifah
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
| | - Fahad Alturise
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
| | - H Elhosiny Ali
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
24
|
Maheo A, Vithiya B SM, Arul Prasad T A, Mangesh VL, Perumal T, Al-Qahtani WH, Govindasamy M. Cytotoxic, Antidiabetic, and Antioxidant Study of Biogenically Improvised Elsholtzia blanda and Chitosan-Assisted Zinc Oxide Nanoparticles. ACS OMEGA 2023; 8:10954-10967. [PMID: 37008090 PMCID: PMC10061636 DOI: 10.1021/acsomega.2c07530] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/06/2023] [Indexed: 06/19/2023]
Abstract
In the present study, we have improvised a biogenic method to fabricate zinc oxide nanoparticles (ZnO NPs) using chitosan and an aqueous extract of the leaves of Elsholtzia blanda. Characterization of the fabricated products was carried out with the help of ultraviolet-visible, Fourier transform infrared, X-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, and energy-dispersive X-ray analyses. The size of the improvised ZnO NP measured between 20 and 70 nm and had a spherical and hexagonal shape. The ZnO NPs proved to be highly effective in the antidiabetic test as the sample showed the highest percentage of enzyme inhibition at 74% ± 3.7, while in the antioxidant test, 78% was the maximum percentage of 2,2-diphenyl-1-picrylhydrazyl hydrate scavenging activity. The cytotoxic effect was investigated against the human osteosarcoma (MG-63) cell line, and the IC50 value was 62.61 μg/mL. Photocatalytic efficiency was studied by the degradation of Congo red where 91% of dye degradation was observed. From the various analyses, it can be concluded that the as-synthesized NPs may be suitable for various biomedical applications as well as for environmental remediation.
Collapse
Affiliation(s)
- Athisa
Roselyn Maheo
- PG
and Research Department of Chemistry, Auxilium
College (Autonomous) (Affiliated to Thiruvalluvar University, Serkadu), Vellore 632006, India
| | - Scholastica Mary Vithiya B
- PG
and Research Department of Chemistry, Auxilium
College (Autonomous) (Affiliated to Thiruvalluvar University, Serkadu), Vellore 632006, India
| | - Augustine Arul Prasad T
- PG
and Research Department of Chemistry, Dwarakadoss
Goverdhandoss Vaishnav College (Autonomous) (Affiliated to University
of Madras), Chennai 600106, India
| | - V. L. Mangesh
- Department
of Mechanical Engineering, Koneru Lakshmaiah
Education Foundation, Vaddeswaram, Guntur 522502, Andhra
Pradesh, India
| | - Tamizhdurai Perumal
- PG
and Research Department of Chemistry, Dwarakadoss
Goverdhandoss Vaishnav College (Autonomous) (Affiliated to University
of Madras), Chennai 600106, India
| | - Wahidah H. Al-Qahtani
- Department
of Food Sciences & Nutrition, College of Food & Agriculture
Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mani Govindasamy
- Faculty,
International Ph.D. Program in Innovative Technology of Biomedical
Engineering and Medical Devices, Ming Chi
University of Technology, New Taipei
City 243303, Taiwan
- Adjunct
Faculty,
Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Thandalam, Chennai 602105, India
- Korea
University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
25
|
Kumar M, Ambika S, Hassani A, Nidheesh PV. Waste to catalyst: Role of agricultural waste in water and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159762. [PMID: 36306836 DOI: 10.1016/j.scitotenv.2022.159762] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Presently, owing to the rapid development of industrialization and urbanization activities, a huge quantity of wastewater is generated that contain toxic chemical and heavy metals, imposing higher environmental jeopardies and affecting the life of living well-being and the economy of the counties, if not treated appropriately. Subsequently, the advancement in sustainable cost-effective wastewater treatment technology has attracted more attention from policymakers, legislators, and scientific communities. Therefore, the current review intends to highlight the recent development and applications of biochars and/or green nanoparticles (NPs) produced from agricultural waste via green routes in removing the refractory pollutants from water and wastewater. This review also highlights the contemporary application and mechanism of biochar-supported advanced oxidation processes (AOPs) for the removal of organic pollutants in water and wastewater. Although, the fabrication and application of agriculture waste-derived biochar and NPs are considered a greener approach, nevertheless, before scaling up production and application, its toxicological and life-cycle challenges must be taken into account. Furthermore, future efforts should be carried out towards process engineering to enhance the performance of green catalysts to improve the economy of the process.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Selvaraj Ambika
- Faculty, Department of Civil Engineering, Indian Institute of Technology Hyderabad, Telangana, India; Adjunct Faculty, Department of Climate Change, Indian Institute of Technology Hyderabad, Telangana, India; Faculty and Program Coordinator, E-Waste Resources Engineering and Management, Indian Institute of Technology Hyderabad, Telangana, India
| | - Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
26
|
Bhatt K, Agrawal S, Pattanayak SK, Jain VK, Khan F. Biofabrication of zinc oxide nanoparticles by using Lawsonia inermis L. seed extract. INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2166071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Khushboo Bhatt
- Department of Chemistry, National Institute of Technology, Raipur, India
| | - Sonalika Agrawal
- Department of Chemistry, National Institute of Technology, Raipur, India
| | | | - Vikas Kumar Jain
- Department of Chemistry, Govt. Engineering College Sejbahar, Raipur, India
| | - Fahmida Khan
- Department of Chemistry, National Institute of Technology, Raipur, India
| |
Collapse
|
27
|
Islam SU, Bairagi S, Kamali MR. Review on Green Biomass-Synthesized Metallic Nanoparticles and Composites and Their Photocatalytic Water Purification Applications: Progress and Perspectives. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
28
|
Dhiman V, Kondal N, Prashant. Bryophyllum pinnatum leaf extract mediated ZnO nanoparticles with prodigious potential for solar driven photocatalytic degradation of industrial contaminants. ENVIRONMENTAL RESEARCH 2023; 216:114751. [PMID: 36370810 DOI: 10.1016/j.envres.2022.114751] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
In an era of environment-friendly development plant extract-based biological techniques for synthesizing nanoparticles have gained a lot of attention over traditionally famous chemical and physical synthesis techniques. In the present study we have synthesized biogenic zinc oxide nanoparticles (BPLE-ZnO NPs) using Bryophyllum pinnatum leaf extract, compared its native properties and solar-driven photocatalytic activity with chemically prepared ZnO nanoparticles (Chem-ZnO NPs). In order to characterize and compare the Chem-ZnO and BPLE-ZnO, various techniques were used, including UV-visible spectroscopy, x-ray diffractrometry, photoluminescence spectroscopy, field emission scanning electron microscopy, electron dispersive x-ray spectroscopy, fourier transform infrared spectroscopy, and zeta potential analyzer. The results revealed the formation of hexagonal wurtzite ZnO, with no significant difference between the two methods; however, the use of Bryophyllum pinnatum leaf extract in ZnO NPs synthesis resulted in reduced size, presence of biomolecules on its surface and better monodispersity than purely chemical synthesis. Further, the BPLE-ZnO NPs showed better efficiency in the solar-driven photocatalytic degradation of methylene blue (MB) dye compared to Chem-ZnO NPs. Under solar exposure at a dose of 0.50 mg/mL BPLE-ZnO, resulted in 97.31% photodegradation with a rate constant of 0.06 min-1 of 20 mg/L MB solution within just 60 min which was 9.51% higher compared to the Chem-ZnO NPs. The BPLE-ZnO NPs were also employed to investigate their solar-driven photocatalytic performance for degrading the pharmaceutical (Metronidazole and Amoxycillin) and textile pollutants (Methyl orange dye) under sunlight. The results show that Bryophyllum pinnatum leaf extract-mediated ZnO NPs have an excellent potential in solar-based photocatalytic applications.
Collapse
Affiliation(s)
- Vikas Dhiman
- Department of Physics, Chandigarh University, Gharuan, Mohali, Punjab, India; Govt. College Dhaliara, Kangra, Himachal Pradesh, India
| | - Neha Kondal
- Department of Physics, Chandigarh University, Gharuan, Mohali, Punjab, India.
| | - Prashant
- Department of Physics, Chandigarh University, Gharuan, Mohali, Punjab, India
| |
Collapse
|
29
|
An Evaluation of the Biocatalyst for the Synthesis and Application of Zinc Oxide Nanoparticles for Water Remediation—A Review. Catalysts 2022. [DOI: 10.3390/catal12111442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Global water scarcity is threatening the lives of humans, and it is exacerbated by the contamination of water, which occurs because of increased industrialization and soaring population density. The available conventional physical and chemical water treatment techniques are hazardous to living organisms and are not environmentally friendly, as toxic chemical elements are used during these processes. Nanotechnology has presented a possible way in which to solve these issues by using unique materials with desirable properties. Zinc oxide nanoparticles (ZnO NPs) can be used effectively and efficiently for water treatment, along with other nanotechnologies. Owing to rising concerns regarding the environmental unfriendliness and toxicity of nanomaterials, ZnO NPs have recently been synthesized through biologically available and replenishable sources using a green chemistry or green synthesis protocol. The green-synthesized ZnO NPs are less toxic, more eco-friendly, and more biocompatible than other chemically and physically synthesized materials. In this article, the biogenic synthesis and characterization techniques of ZnO NPs using plants, bacteria, fungi, algae, and biological derivatives are reviewed and discussed. The applications of the biologically prepared ZnO NPs, when used for water treatment, are outlined. Additionally, their mechanisms of action, such as the photocatalytic degradation of dyes, the production of reactive oxygen species (ROS), the generation of compounds such as hydrogen peroxide and superoxide, Zn2+ release to degrade microbes, as well as their adsorbent properties with regard to heavy metals and other contaminants in water bodies, are explained. Furthermore, challenges facing the green synthesis of these nanomaterials are outlined. Future research should focus on how nanomaterials should reach the commercialization stage, and suggestions as to how this ought to be achieved are presented.
Collapse
|
30
|
Batool S, Hasan M, Dilshad M, Zafar A, Tariq T, Wu Z, Chen R, Gul Hassan S, Munawar T, Iqbal F, Saqib Saif M, Waqas M, Shu X. Green synthesis of Cordia myxa incubated ZnO, Fe2O3, and Co3O4 nanoparticle: Characterization, and their response as biological and photocatalytic agent. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
31
|
Kamarajan G, Anburaj DB, Porkalai V, Muthuvel A, Nedunchezhian G. Green synthesis of ZnO nanoparticles using Acalypha indica leaf extract and their photocatalyst degradation and antibacterial activity. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Vincent J, Lau KS, Evyan YCY, Chin SX, Sillanpää M, Chia CH. Biogenic Synthesis of Copper-Based Nanomaterials Using Plant Extracts and Their Applications: Current and Future Directions. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3312. [PMID: 36234439 PMCID: PMC9565561 DOI: 10.3390/nano12193312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Plants have been used for multiple purposes over thousands of years in various applications such as traditional Chinese medicine and Ayurveda. More recently, the special properties of phytochemicals within plant extracts have spurred researchers to pursue interdisciplinary studies uniting nanotechnology and biotechnology. Plant-mediated green synthesis of nanomaterials utilises the phytochemicals in plant extracts to produce nanomaterials. Previous publications have demonstrated that diverse types of nanomaterials can be produced from extracts of numerous plant components. This review aims to cover in detail the use of plant extracts to produce copper (Cu)-based nanomaterials, along with their robust applications. The working principles of plant-mediated Cu-based nanomaterials in biomedical and environmental applications are also addressed. In addition, it discusses potential biotechnological solutions and new applications and research directions concerning plant-mediated Cu-based nanomaterials that are yet to be discovered so as to realise the full potential of the plant-mediated green synthesis of nanomaterials in industrial-scale production and wider applications. This review provides readers with comprehensive information, guidance, and future research directions concerning: (1) plant extraction, (2) plant-mediated synthesis of Cu-based nanomaterials, (3) the applications of plant-mediated Cu-based nanomaterials in biomedical and environmental remediation, and (4) future research directions in this area.
Collapse
Affiliation(s)
- Jei Vincent
- Materials Science Program, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Kam Sheng Lau
- Materials Science Program, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Yang Chia-Yan Evyan
- Faculty of Engineering, Science and Technology, Nilai University, Nilai 71800, Negeri Sembilan, Malaysia
| | - Siew Xian Chin
- ASASIpintar Program, Pusat GENIUS@Pintar Negara, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Mika Sillanpää
- Materials Science Program, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- Sustainable Membrane Technology Research Group (SMTRG), Chemical Engineering Department, Persian Gulf University, Bushehr P.O. Box 75169-13817, Iran
- Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang 314213, China
| | - Chin Hua Chia
- Materials Science Program, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
33
|
Vinayagam R, Sharma G, Murugesan G, Pai S, Gupta D, Narasimhan MK, Kaviyarasu K, Varadavenkatesan T, Selvaraj R. Rapid photocatalytic degradation of 2, 4-dichlorophenoxy acetic acid by ZnO nanoparticles synthesized using the leaf extract of Muntingia calabura. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
Matos RS, Attah-Baah JM, Monteiro MDS, Costa BFO, Mâcedo MA, Da Paz SPA, Angélica RS, de Souza TM, Ţălu Ş, Oliveira RMPB, Ferreira NS. Evaluation of the Photocatalytic Activity of Distinctive-Shaped ZnO Nanocrystals Synthesized Using Latex of Different Plants Native to the Amazon Rainforest. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2889. [PMID: 36014752 PMCID: PMC9416145 DOI: 10.3390/nano12162889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
ZnO nanocrystals with three different morphologies have been synthesized via a simple sol-gel-based method using Brosimum parinarioides (bitter Amapá) and Parahancornia amapa (sweet Amapá) latex as chelating agents. X-ray diffraction (XRD) and electron diffraction patterns (SAED) patterns showed the ZnO nanocrystals were a pure hexagonal wurtzite phase of ZnO. XRD-based spherical harmonics predictions and HRTEM images depicted that the nanocrystallites constitute pitanga-like (~15.8 nm), teetotum-like (~16.8 nm), and cambuci-like (~22.2 nm) shapes for the samples synthesized using bitter Amapá, sweet Amapá, and bitter/sweet Amapá chelating agent, respectively. The band gap luminescence was observed at ~2.67-2.79 eV along with several structural defect-related, blue emissions at 468-474 nm (VO, VZn, Zni), green emissions positioned at 513.89-515.89 (h-VO+), and orange emission at 600.78 nm (VO+-VO++). The best MB dye removal efficiency (85%) was mainly ascribed to the unique shape and oxygen vacancy defects found in the teetotum-like ZnO nanocrystals. Thus, the bitter Amapá and sweet Amapá latex are effective chelating agents for synthesizing distinctive-shaped ZnO nanocrystals with highly defective and remarkable photocatalytic activity.
Collapse
Affiliation(s)
- Robert S. Matos
- Postgraduate Program in Materials Science and Engineering (P2CEM), Federal University of Sergipe, São Cristovão 49100-000, SE, Brazil
- Amazonian Materials Group, Federal University of Amapá (UNIFAP), Macapá 68911-477, AP, Brazil
| | - John M. Attah-Baah
- Laboratory of Corrosion and Nanotechnology (LCNT), Federal University of Sergipe, São Cristovão 49100-000, SE, Brazil
| | - Michael D. S. Monteiro
- Laboratory of Corrosion and Nanotechnology (LCNT), Federal University of Sergipe, São Cristovão 49100-000, SE, Brazil
| | - Benilde F. O. Costa
- University of Coimbra, CFisUC, Department of Physics, P-3004-516 Coimbra, Portugal
| | - Marcelo A. Mâcedo
- Laboratory of Corrosion and Nanotechnology (LCNT), Federal University of Sergipe, São Cristovão 49100-000, SE, Brazil
| | - Simone P. A. Da Paz
- Institute of Geosciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Rômulo S. Angélica
- Institute of Geosciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Tiago M. de Souza
- Núcleo de Engenharia de Materiais Sustentáveis (NEMaS), Universidade do Estado do Amapá, Macapá 68900-070, AP, Brazil
| | - Ştefan Ţălu
- The Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, 15 Constantin Daicoviciu St., 400020 Cluj-Napoca, Romania
| | - Rosane M. P. B. Oliveira
- Postgraduate Program in Materials Science and Engineering (P2CEM), Federal University of Sergipe, São Cristovão 49100-000, SE, Brazil
| | - Nilson S. Ferreira
- Laboratory of Corrosion and Nanotechnology (LCNT), Federal University of Sergipe, São Cristovão 49100-000, SE, Brazil
| |
Collapse
|
35
|
Perveen S, Safdar N, Yasmin A, Bibi Y. DAT and PRX1 gene expression modulates vincristine production in Catharanthus roseus L. propagates using Cu, Fe and Zn nano structures. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111264. [PMID: 35643614 DOI: 10.1016/j.plantsci.2022.111264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/19/2022] [Indexed: 06/15/2023]
Abstract
Underlying mechanism of nanostructures upon monoterpene induction in Catharanthus roseus has not been explored yet. In the current study, Copper, Iron and Zinc nanoparticles were biosynthesized by Eriobotrya japonica seed extract and capped with reduced glutathione. Biosynthesized nanoparticles and their capped analogues were characterized by UV-visible spectrophotometer, FTIR, XRD and SEM. Selected concentration of nanostructures were used in plant tissue culture media which instigated the production of alkaloids, tannins and flavonoids without significantly affecting the growth index of propagated calli and shoots cultures of C. roseus. Accelerated vincristine production was noticed in propagated calli and shoots under copper and zinc nanostress (1645-1865 μg/ml respectively) with the least effect by iron nanostructure. Highest concentration of calcium was recorded in in vitro shoots under capped (3.42 mg/ml ± 7.16) and uncapped (4.41 mg/ml ± 20.44) Zn nanoparticles compared to control (2.82 mg/ml ± 13.41). Real time PCR depicts nano-zinc mediated increased expression of DAT and PRX1 genes of TIA pathway. Significant correlation among PRX1/DAT gene expression with vincristine production and calcium accumulation in the presence of nanostress validate by PCA. This study paved way the opportunities of metal biogenic nanomaterials as an ideal drug modulator in plant tissue culture studies.
Collapse
Affiliation(s)
- Shaghufta Perveen
- Microbiology and Biotechnology Research lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Naila Safdar
- Microbiology and Biotechnology Research lab, Fatima Jinnah Women University, Rawalpindi, Pakistan.
| | - Azra Yasmin
- Microbiology and Biotechnology Research lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Yamin Bibi
- Department of Botany, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| |
Collapse
|
36
|
Biogenic synthesis of zinc oxide nanoparticles using mushroom fungus Cordyceps militaris: Characterization and mechanistic insights of therapeutic investigation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Antioxidant, antimicrobial, and photocatalytic activity of green synthesized ZnO-NPs from Myrica esculenta fruits extract. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Nazir A, Raza M, Abbas M, Abbas S, Ali A, Ali Z, Younas U, Al-Mijalli SH, Iqbal M. Microwave assisted green synthesis of ZnO nanoparticles using Rumex dentatus leaf extract: photocatalytic and antibacterial potential evaluation. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
In the present study, biological method was opted to synthesize ZnO NPs from Rumex dentatus plant. 0.1 M solution of zinc nitrate hexahydrate is mixed with the aqueous solution of R. dentatus plant leaves extract. The proportion of each solution was 1:1. Extract of plant leaves act as reducing agent. Firstly, the color changed from dark green to brown was observed and precipitates of light brown color appeared. Characterization of produced ZnO NPs was done using UV–Visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-rays (EDX) and X-ray diffraction (XRD) spectroscopy. The prepared ZnO NPS shows maximum absorption at 373 nm, in UV–Visible range. The shape of synthesized ZnO NPs is displayed by SEM. XRD analysis explains the average size of NPs is 6.19 nm. EDX tells about the percentage composition of synthesized ZnO NPs. Antibacterial analysis declared the NPs as good antibacterial agents. Photocatalytic activity of ZnO NPs was done using methyl orange dye. It was concluded that ZnO NPs can degrade toxic pollutants especially dyes.
Collapse
Affiliation(s)
- Arif Nazir
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Mohsan Raza
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Mazhar Abbas
- Department of Basic Science (Section Biochemistry), University of Veterinary and Animals Science Labore (Jhang Campus) , Jhang, 35200 , Pakistan
| | - Shaista Abbas
- Department of Basic Science (Section Physiology), University of Veterinary and Animals Science Lahore (Jhang Campus) , Jhang 35200 , Pakistan
| | - Abid Ali
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Zahid Ali
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Umer Younas
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Samiah H. Al-Mijalli
- Department of Biology, College of Sciences , Princess Nourah bint Abdulrahman University , P.O. Box 84428 , Riyadh 11671 , Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry , Division of Science and Technology, University of Education , Lahore , Pakistan
| |
Collapse
|
39
|
Kamaruzaman NH, Mohd Noor NN, Radin Mohamed RMS, Al-Gheethi A, Ponnusamy SK, Sharma A, Vo DVN. Applicability of bio-synthesized nanoparticles in fungal secondary metabolites products and plant extracts for eliminating antibiotic-resistant bacteria risks in non-clinical environments. ENVIRONMENTAL RESEARCH 2022; 209:112831. [PMID: 35123962 DOI: 10.1016/j.envres.2022.112831] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The abundance of antibiotic-resistant bacteria in the prawn pond effluents can substantially impact the natural environment. The settlement ponds, which are the most common treatment method for farms wastewater, might effectively reduce the suspended solids and organic matter. However, the method is insufficient for bacterial inactivation. The current paper seeks to highlight the environmental issue associated with the distribution of antibiotic resistant bacteria (ARB) from prawn farm wastewater and their impact on the microbial complex community in the surface water which receiving these wastes. The inactivation of antibiotic-resistant bacteria in prawn wastewater is strongly recommended because the presence of antibiotic-resistant bacteria in the environment causes water pollution and public health issues. The nanoparticles are more efficient for bacterial inactivation. They are widely accepted due to their high chemical and mechanical stability, broad spectrum of radiation absorption, high catalytic activity, and high antimicrobial activity. Many studies have examined the use of fungi or plants extract to synthesis zinc oxide nanoparticles (ZnO NPs). It is evident from recent papers in the literature that green synthesized ZnO NPs from microbes and plant extracts are non-toxic and effective. ZnO NPs inactivate the bacterial cells as a function for releasing reactive oxygen species (ROS) and zinc ions. The inactivation of antibiotic-resistant bacteria tends to be more than 90% which exhibit strong antimicrobial behavior against bacterial species.
Collapse
Affiliation(s)
- Nur Hazirah Kamaruzaman
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Nur Nabilah Mohd Noor
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Radin Maya Saphira Radin Mohamed
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400, Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Adel Al-Gheethi
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400, Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - Ajit Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| |
Collapse
|
40
|
Dhatwalia J, Kumari A, Chauhan A, Mansi K, Thakur S, Saini RV, Guleria I, Lal S, Kumar A, Batoo KM, Choi BH, Manicum ALE, Kumar R. Rubus ellipticus Sm. Fruit Extract Mediated Zinc Oxide Nanoparticles: A Green Approach for Dye Degradation and Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3470. [PMID: 35629498 PMCID: PMC9147757 DOI: 10.3390/ma15103470] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 01/27/2023]
Abstract
Rubus ellipticus fruits aqueous extract derived ZnO-nanoparticles (NPs) were synthesized through a green synthesis method. The structural, optical, and morphological properties of ZnO-NPs were investigated using XRD, FTIR, UV-vis spectrophotometer, XPS, FESEM, and TEM. The Rietveld refinement confirmed the phase purity of ZnO-NPs with hexagonal wurtzite crystalline structure and p-63-mc space group with an average crystallite size of 20 nm. XPS revealed the presence of an oxygen chemisorbed species on the surface of ZnO-NPs. In addition, the nanoparticles exhibited significant in vitro antioxidant activity due to the attachment of the hydroxyl group of the phenols on the surface of the nanoparticles. Among all microbial strains, nanoparticles' maximum antibacterial and antifungal activity in terms of MIC was observed against Bacillus subtilis (31.2 µg/mL) and Rosellinia necatrix (15.62 µg/mL), respectively. The anticancer activity revealed 52.41% of A549 cells death (IC50: 158.1 ± 1.14 µg/mL) at 200 μg/mL concentration of nanoparticles, whereas photocatalytic activity showed about 17.5% degradation of the methylene blue within 60 min, with a final dye degradation efficiency of 72.7%. All these results suggest the medicinal potential of the synthesized ZnO-NPs and therefore can be recommended for use in wastewater treatment and medicinal purposes by pharmacological industries.
Collapse
Affiliation(s)
- Jyoti Dhatwalia
- School of Biological and Environmental Sciences, Faculty of Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173212, Himachal Pradesh, India; (J.D.); (S.T.); (I.G.); (S.L.)
| | - Amita Kumari
- School of Biological and Environmental Sciences, Faculty of Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173212, Himachal Pradesh, India; (J.D.); (S.T.); (I.G.); (S.L.)
| | - Ankush Chauhan
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kanchipuram 603103, Tamil Nadu, India;
| | - Kumari Mansi
- Advanced School of Chemical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173212, Himachal Pradesh, India;
| | - Shabnam Thakur
- School of Biological and Environmental Sciences, Faculty of Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173212, Himachal Pradesh, India; (J.D.); (S.T.); (I.G.); (S.L.)
| | - Reena V. Saini
- Central Research Laboratory MMIMSR, Department of Biotechnology MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, Haryana, India;
| | - Ishita Guleria
- School of Biological and Environmental Sciences, Faculty of Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173212, Himachal Pradesh, India; (J.D.); (S.T.); (I.G.); (S.L.)
| | - Sohan Lal
- School of Biological and Environmental Sciences, Faculty of Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173212, Himachal Pradesh, India; (J.D.); (S.T.); (I.G.); (S.L.)
| | - Ashwani Kumar
- Patanjali Research Institute, Haridwar 249405, Uttarakhand, India;
| | - Khalid Mujasam Batoo
- King Abdullah Institute for Nanotechnology, College of Science, King Saud University, Building No. 04, Riyadh 11451, Saudi Arabia;
| | - Byung Hyune Choi
- Department of Biomedical Sciences, Inha University College of Medicine, 100 Inha-ro, Incheon 22212, Korea;
| | - Amanda-Lee E. Manicum
- Department of Chemistry, Faculty of Science, Arcadia Campus, Tshwane University of Technology, Pretoria 0183, South Africa;
| | - Rajesh Kumar
- Department of Physics, Faculty of Physical Sciences, Sardar Vallabhbhai Patel Cluster University, Mandi 175001, Himachal Pradesh, India
| |
Collapse
|
41
|
Alahmdi MI, Khasim S, Vanaraj S, Panneerselvam C, Mahmoud MAA, Mukhtar S, Alsharif MA, Zidan NS, Abo-Dya NE, Aldosari OF. Green Nanoarchitectonics of ZnO Nanoparticles from Clitoria ternatea Flower Extract for In Vitro Anticancer and Antibacterial Activity: Inhibits MCF-7 Cell Proliferation via Intrinsic Apoptotic Pathway. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02263-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Omran BA, Baek KH. Valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment: Approaching green chemistry and circular economy principles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114806. [PMID: 35240500 DOI: 10.1016/j.jenvman.2022.114806] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Water pollution is one of the most critical issues worldwide and is a priority in all scientific agendas. Green nanotechnology presents a plethora of promising avenues for wastewater treatment. This review discusses the current trends in the valorization of zero-cost, biodegradable, and readily available agro-industrial biowaste to produce green bio-nanocatalysts and bio-nanosorbents for wastewater treatment. The promising roles of green bio-nanocatalysts and bio-nanosorbents in removing organic and inorganic water contaminants are discussed. The potent antimicrobial activity of bio-derived nanodisinfectants against water-borne pathogenic microbes is reviewed. The bioactive molecules involved in the chelation and tailoring of green synthesized nanomaterials are highlighted along with the mechanisms involved. Furthermore, this review emphasizes how the valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment adheres to the fundamental principles of green chemistry, circular economy, nexus thinking, and zero-waste manufacturing. The potential economic, environmental, and health impacts of valorizing agro-industrial biowaste to green nanomaterials are highlighted. The challenges and future outlooks for the management of agro-industrial biowaste and safe application of green nanomaterials for wastewater treatment are summarized.
Collapse
Affiliation(s)
- Basma A Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
43
|
Nanoarchitectonics of ZnO Nanoparticles Mediated by Extract of Tulbaghia violacea and Their Cytotoxicity Evaluation. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02248-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
Luque-Morales PA, Lopez-Peraza A, Nava-Olivas OJ, Amaya-Parra G, Baez-Lopez YA, Orozco-Carmona VM, Garrafa-Galvez HE, Chinchillas-Chinchillas MDJ. ZnO Semiconductor Nanoparticles and Their Application in Photocatalytic Degradation of Various Organic Dyes. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7537. [PMID: 34947130 PMCID: PMC8708404 DOI: 10.3390/ma14247537] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022]
Abstract
The biosynthesis of oxide semiconductor nanoparticles (NPs) using materials found in nature opens a wide field of study focused on sustainability and environmental protection. Biosynthesized NPs have the capacity to eliminate organic dyes, which pollute water and cause severe damage to the environment. In the present work, the green synthesis of zinc oxide (ZnO) NPs was carried out using Capsicum annuum var. Anaheim extract. The photocatalytic elimination of methylene blue (MB), methyl orange (MO), and Rhodamine B (RhB) in UV radiation was evaluated. The materials were characterized by scanning and transmission electron microscopy (SEM and TEM) and SEM-coupled energy dispersive spectroscopy (EDS), attenuated total reflectance-infrared (ATR-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Photoluminescence (PL), and ultraviolet-visible spectroscopy (UV-Vis). The TEM analysis showed the NPs have an average size of 40 nm and quasi-spherical shape. ATR-IR showed the ZnO NPs contained functional groups from the extract. The analysis through XRD indicated that the NPs have a hexagonal zincite crystal structure with an average crystallite size of approximately 17 nm. The photoluminescence spectrum (PL) presented an emission band at 402 nm. From the UV-Vis spectra and TAUC model, the band-gap value was found to be 2.93 eV. Finally, the photocatalytic assessment proved the ZnO NPs achieved 100% elimination of MB at 60 min exposure, and 85 and 92% degradation of MO and RhB, respectively, at 180 min. This indicates that ZnO NPs, in addition to using a friendly method for their synthesis, manage to have excellent photocatalytic activity in the degradation of various organic pollutants.
Collapse
Affiliation(s)
- Priscy Alfredo Luque-Morales
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California (UABC), Ensenada 22860, Baja California, Mexico; (P.A.L.-M.); (A.L.-P.); (O.J.N.-O.); (G.A.-P.); (Y.A.B.-L.); (H.E.G.-G.)
| | - Alejandra Lopez-Peraza
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California (UABC), Ensenada 22860, Baja California, Mexico; (P.A.L.-M.); (A.L.-P.); (O.J.N.-O.); (G.A.-P.); (Y.A.B.-L.); (H.E.G.-G.)
| | - Osvaldo Jesus Nava-Olivas
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California (UABC), Ensenada 22860, Baja California, Mexico; (P.A.L.-M.); (A.L.-P.); (O.J.N.-O.); (G.A.-P.); (Y.A.B.-L.); (H.E.G.-G.)
| | - Guillermo Amaya-Parra
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California (UABC), Ensenada 22860, Baja California, Mexico; (P.A.L.-M.); (A.L.-P.); (O.J.N.-O.); (G.A.-P.); (Y.A.B.-L.); (H.E.G.-G.)
| | - Yolanda Angelica Baez-Lopez
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California (UABC), Ensenada 22860, Baja California, Mexico; (P.A.L.-M.); (A.L.-P.); (O.J.N.-O.); (G.A.-P.); (Y.A.B.-L.); (H.E.G.-G.)
| | | | - Horacio Edgardo Garrafa-Galvez
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California (UABC), Ensenada 22860, Baja California, Mexico; (P.A.L.-M.); (A.L.-P.); (O.J.N.-O.); (G.A.-P.); (Y.A.B.-L.); (H.E.G.-G.)
| | | |
Collapse
|
45
|
MalligArjuna Rao S, Kotteeswaran S, Visagamani AM. Green synthesis of zinc oxide nanoparticles from camellia sinensis: Organic dye degradation and antibacterial activity. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Dutta G, Sugumaran A. Bioengineered zinc oxide nanoparticles: Chemical, green, biological fabrication methods and its potential biomedical applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102853] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Effect of UV Irradiation (A and C) on Casuarina equisetifolia-Mediated Biosynthesis and Characterization of Antimicrobial and Anticancer Activity of Biocompatible Zinc Oxide Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13111977. [PMID: 34834392 PMCID: PMC8622962 DOI: 10.3390/pharmaceutics13111977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 11/23/2022] Open
Abstract
The green synthesis of nanoparticles has emerged as a simple, safe, sustainable, reliable and eco-friendly protocol. Among different types of NPs, green-synthesized zinc oxide NPs (ZnONPs) show various promising biological uses due to their interesting magnetic, electrical, optical and chemical characteristics. Keeping in view the dependence of the therapeutic efficacy of NPs on their physico-chemical characteristics, the green synthesis of ZnONPs using Casuarina equisetifolia leaf extract under UV-A and UV-C light was carried out in this study. UV-irradiation helped to control the size and morphology of ZnONPs by exciting the electrons in the photoactive compounds of plant extracts to enhance the bio-reduction of ZnO into ZnONPs. C. equisetifolia leaf extract was found enriched with phenolic (2.47 ± 0.12 mg GAE/g DW) and flavonoid content (0.88 ± 0.28 mg QE/g DW) contributing to its 74.33% free-radical scavenging activity. FTIR spectra showed the involvement of polyphenols in the bio-reduction, stabilization and capping of ZnONPs. Moreover, SEM-EDX and XRD analyses showed great potential of UV-C light in yielding smaller (34–39 nm) oval-shaped ZnONPs, whereas UV-A irradiation resulted in the formation of fairly spherical 67–71 nm ZnONPs and control ZnONPs were of mixed shape and even larger size (84–89 nm). Green-synthesized ZnONPs, notably CE-UV-C-ZnONPs, showed promising anti-bacterial activities against Bacillus subtilis, Pseudomonas fluorescens and Pseudomonas aeruginosa. Moreover, ZnONPs also enhanced ROS production which led to a significant loss of mitochondrial membrane potential and activated caspase-3 gene expression and caspase-3/7 activity in human hepatocellular carcinoma (HepG2) cells. CE-UV-C-ZnONP treatment reduced HepG2 cell viability to as low as 36.97% owing to their unique shape and smaller size. Lastly, ZnONPs were found to be highly biocompatible towards brine shrimp and human red blood cells suggesting their bio-safe nature. This research study sheds light on the plausible role of UV radiation in the green synthesis of ZnONPs with reasonable control over their size and morphology, thus improving their biological efficacy.
Collapse
|
48
|
Green Synthesis of Metal and Metal Oxide Nanoparticles Using Different Plants’ Parts for Antimicrobial Activity and Anticancer Activity: A Review Article. COATINGS 2021. [DOI: 10.3390/coatings11111374] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanotechnology emerged as a scientific innovation in the 21st century. Metallic nanoparticles (metal or metal oxide nanoparticles) have attained remarkable popularity due to their interesting biological, physical, chemical, magnetic, and optical properties. Metal-based nanoparticles can be prepared by utilizing different biological, physical, and chemical methods. The biological method is preferred as it provides a green, simple, facile, ecofriendly, rapid, and cost-effective route for the green synthesis of nanoparticles. Plants have complex phytochemical constituents such as carbohydrates, amino acids, phenolics, flavonoids, terpenoids, and proteins, which can behave as reducing and stabilizing agents. However, the mechanism of green synthesis by using plants is still highly debatable. In this report, we summarized basic principles or mechanisms of green synthesis especially for metal or metal oxide (i.e., ZnO, Au, Ag, and TiO2, Fe, Fe2O3, Cu, CuO, Co) nanoparticles. Finally, we explored the medical applications of plant-based nanoparticles in terms of antibacterial, antifungal, and anticancer activity.
Collapse
|
49
|
Gangwar J, Sebastian JK. Unlocking the potential of biosynthesized zinc oxide nanoparticles for degradation of synthetic organic dyes as wastewater pollutants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3286-3310. [PMID: 34850728 DOI: 10.2166/wst.2021.430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The azo dyes released into water from different industries are accumulating in the water bodies and bioaccumulating within living systems thereby affecting environmental health. This is a major concern in developing countries where stringent regulations are not followed for the discharge of industrial waste into water bodies. This has led to the accumulation of various pollutants including dyes. As these developing countries also face acute water shortages and due to the lack of cost-effective systems to remove these pollutants, it is essential to remove these toxic dyes from water bodies, eradicate dyes, or generate fewer toxic derivatives. The photocatalysis mechanism of degradation of azo dyes has gained importance due to its eco-friendly and non-toxic roles in the environment. The zinc nanoparticles act as photocatalysts in combination with plant extracts. Plant-based nanoparticles over the years have shown the potential to degrade dyes efficiently. This is carried out by adjusting the dye and nanoparticle concentrations and combinations of nanoparticles. Our review article considers increasing the efficiency of degradation of dyes using zinc oxide (ZnO) nanoparticles and understanding the photocatalytic mechanisms in the degradation of dyes and the toxic effects of these dyes and nanoparticles in different tropic levels.
Collapse
Affiliation(s)
- Jaya Gangwar
- Department of Life Sciences, Christ University, Bangalore, Karnataka, India E-mail:
| | | |
Collapse
|
50
|
Green Synthesis of Metal and Metal Oxide Nanoparticles: Principles of Green Chemistry and Raw Materials. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7110145] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increased request for metal and metal oxide nanoparticles nanoparticles has led to their large-scale production using high-energy methods with various toxic solvents. This cause environmental contamination, thus eco-friendly “green” synthesis methods has become necessary. An alternative way to synthesize metal nanoparticles includes using bioresources, such as plants and plant products, bacteria, fungi, yeast, algae, etc. “Green” synthesis has low toxicity, is safe for human health and environment compared to other methods, meaning it is the best approach for obtaining metal and metal oxide nanoparticles. This review reveals 12 principles of “green” chemistry and examples of biological components suitable for “green” synthesis, as well as modern scientific research of eco-friendly synthesis methods of magnetic and metal nanoparticles. Particularly, using extracts of green tea, fruits, roots, leaves, etc., to obtain Fe3O4 NPs. The various precursors as egg white (albumen), leaf and fruit extracts, etc., can be used for the „green” synthesis of spinel magnetic NPs. “Green” nanoparticles are being widely used as antimicrobials, photocatalysts and adsorbents. “Green” magnetic nanoparticles demonstrate low toxicity and high biocompatibility, which allows for their biomedical application, especially for targeted drug delivery, contrast imaging and magnetic hyperthermia applications. The synthesis of silver, gold, platinum and palladium nanoparticles using extracts from fungi, red algae, fruits, etc., has been described.
Collapse
|