1
|
Isvand A, Karimaei S, Amini M. Assessment of chitosan coating enriched with Citrus limon essential oil on the quality characteristics and shelf life of beef meat during cold storage. Int J Food Microbiol 2024; 423:110825. [PMID: 39059139 DOI: 10.1016/j.ijfoodmicro.2024.110825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
The present work aimed to assess the effects of chitosan coating comprising Citrus limon essential oil (CLEO) as an antimicrobial and antioxidant on the quality and the shelf-life of beef meat during storage in cold temperatures. The microbial, chemical, and sensory characteristics of beef meat were repeatedly evaluated. The outcomes showed that CLEO had a substantial preservative effect on refrigerated beef meat by reducing total volatile basic nitrogen compounds (TVB-N), inhibiting the replication of microorganisms (p < 0.05), and decreasing oxidation (p < 0.05) during storage. The incorporation of CLEO into chitosan coating significantly reduced (p < 0.05), TBARS, especially for the Nano-CS- ClEO 2 % and 4 % groups, with values at the end of storage of approximately 0.68 and 1.01 mg MDA/kg respectively. Moreover, the meat treatments with essential oils led to lower carbonyl content production in compared to other groups that treated without essential oils. Coated beef meat had the highest inhibitory effects against microbial growth. The counts of Enterobacteriaceae, lactic acid bacteria (LAB), psychrophilic, and mesophilic bacteria were significantly lower (p < 0.05) in the Nano-CS- ClEO 2 % (1.1, 4.2, 6.2, and 6.32 Log CFU/g, respectively) at day 16. The sensory evaluation indicated that this coating with chitosan nanoemulsions in combination with ClEOs could significantly preserve sensory characteristics of beef meat during storage. Moreover, concerning sensory features, the control samples gained the maximum score. Additionally, the group that contains chitosan in combination with 4 % ClEO nanoliposomes had the highest inhibition of microbial growth, reduced sensory changes, and extending the shelf life of beef meat (p < 0.05). In conclusion, nanoemulsions containing Citrus limon essential oil had a significant preservation effect on beef meat during refrigerated storage by preventing the microorganism's proliferation and decreasing the oxidation of fat and protein (p < 0.05). Therefore, they are suggested to extend the durability of fresh meat products during refrigerated storage.
Collapse
Affiliation(s)
- Abbas Isvand
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Samira Karimaei
- Food Microbiology Division, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masoomeh Amini
- Food Microbiology Division, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Obeidnejad E, Kavoosi G, Saharkhiz MJ. Antioxidant, anti-amylase, anti-lipase, and efficiency of Satureja fatty acid on the anti-inflammatory parameters in lipopolysaccharide-stimulated macrophage through Nrf2/NF-kB/NADH oxidase pathway. Sci Rep 2024; 14:12490. [PMID: 38821994 PMCID: PMC11143312 DOI: 10.1038/s41598-024-63205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
Satureja is an aromatic plant that is used for flavoring, perfume, and food manufacturing due to its pleasant essential oil. Modern medicine research revealed several biological activities of Satureja essential oil, including antifungal, antibacterial, antiviral, antioxidant, anticancer, and anti-inflammatory. However, the functional properties of Satureja fatty acid have not been explored. This study examined the fatty acid profile, lipid nutritional quality, antioxidant, anti-amylase, and anti-lipase capacities of Satureja. The efficiency of Satureja fatty acid on the anti-oxidative and anti-inflammatory parameters in LPS-induced macrophage through the Nrf2/NF-kB/NADH oxidase pathway was examined. The whole lipid extract was prepared with chloroform/methanol/water solution. Fatty acids methyl ester from whole lipid extract were prepared with methanol/sulfuric acid reagent. The fatty acid profile was analyzed using gas chromatography-mass spectrometry. Total antioxidant was determined by ABTS decolorization. Lipase and amylase activities were determined by monitoring the decomposition of p-nitrophenyl butyrate and starch. The macrophage cell line was grown in DMEM media in the presence of fatty acid. The hydrogen peroxide production in treated cells was monitored using the FOX reagent. NADH oxidase activity was measured by monitoring NADH breakdown. The expression of NOX, NF-kB, and NRF2, were tested in the treated cells by real-time PCR. The main components of the Satureja fatty acid were linolenic acid (24.67-37.32%), palmitic acid (10.65-20.29%), linoleic acid (8.31-13.39%), oleic acid (4.42-14.35%), stearic acid (2.76-8.77%) and palmitoleic acid (1.77-4.95%). Given the nutritional quality, omega-3 PUFA (23.58-37.32%), SFA (21.53-26.70%), omega-6 PUFA (10.86-16.14%), omega-9 MUFA (4.42-14.35%), and omega-7 MUFA (1.77-4.95%) comprise the majority of fatty acids. Satureja fatty acid has a promising unsaturation index (120.77-164.27), PUFA/MUFA (2.07-6.41), hypocholesterolemic index (2.44-3.47), health-promoting index (2.03-2.42), PUFA/SFA (1.37-1.94), nutritive value index (0.53-1.71), MUFA/SFA (0.30-0.80) omega-6/omega-3 (0.34-0.65), atherogenicity index (0.41-0.49), and thrombogenicity index (0.17-0.27). Satureja fatty acid displayed strong antioxidant capacity (with IC50 ranging from 354 to 428 µg/mL), anti-lipase capacity (with IC50 ranging from 354 to 428 µg/mL), and anti-amylase capacity (with IC50 ranging from 370 to 390 µg/mL). LPS induced the expression of NOX, NRF2, and NF-kB and the synthesis of hydrogen peroxide in macrophage cells. In LPS-stimulated macrophages, Satureja fatty acid reduced NOX expression, hydrogen peroxide, and NF-kB expression and increased NRF2 at 0.04 mg/mL. In conclusion, Satureja fatty acids have potent antioxidant, anti-amylase, anti-lipase, and anti-inflammatory activities. The mechanisms in lowering oxidative stress markers depended on down-regulating superoxide-producing enzymes at gene and protein levels. Satureja polyunsaturated omega-3 fatty acids could be recommended for healthy products combined with dietary therapy to treat obesity, diabetes, and oxidative stress.
Collapse
Affiliation(s)
- Elham Obeidnejad
- Department of Biotechnology, School of Agriculture, Shiraz University, Shiraz, 7144113131, Iran
| | - Gholamreza Kavoosi
- Department of Biotechnology, School of Agriculture, Shiraz University, Shiraz, 7144113131, Iran.
| | | |
Collapse
|
3
|
Bukvicki D, D’Alessandro M, Rossi S, Siroli L, Gottardi D, Braschi G, Patrignani F, Lanciotti R. Essential Oils and Their Combination with Lactic Acid Bacteria and Bacteriocins to Improve the Safety and Shelf Life of Foods: A Review. Foods 2023; 12:3288. [PMID: 37685221 PMCID: PMC10486891 DOI: 10.3390/foods12173288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The use of plant extracts (e.g., essential oils and their active compounds) represents an interesting alternative to chemical additives and preservatives applied to delay the alteration and oxidation of foods during their storage. Essential oils (EO) are nowadays considered valuable sources of food preservatives as they provide a healthier alternative to synthetic chemicals while serving the same purpose without affecting food quality parameters. The natural antimicrobial molecules found in medicinal plants represent a possible solution against drug-resistant bacteria, which represent a global health problem, especially for foodborne infections. Several solutions related to their application on food have been described, such as incorporation in active packaging or edible film and direct encapsulation. However, the use of bioactive concentrations of plant derivatives may negatively impact the sensorial characteristics of the final product, and to solve this problem, their application has been proposed in combination with other hurdles, including biocontrol agents. Biocontrol agents are microbial cultures capable of producing natural antimicrobials, including bacteriocins, organic acids, volatile organic compounds, and hydrolytic enzymes. The major effect of bacteriocins or bacteriocin-producing LAB (lactic acid bacteria) on food is obtained when their use is combined with other preservation methods. The combined use of EOs and biocontrol agents in fruit and vegetables, meat, and dairy products is becoming more and more important due to growing concerns about potentially dangerous and toxic synthetic additives. The combination of these two hurdles can improve the safety and shelf life (inactivation of spoilage or pathogenic microorganisms) of the final products while maintaining or stabilizing their sensory and nutritional quality. This review critically describes and collects the most updated works regarding the application of EOs in different food sectors and their combination with biocontrol agents and bacteriocins.
Collapse
Affiliation(s)
- Danka Bukvicki
- Faculty of Biology, Institute of Botany and Botanical Garden ‘Jevremovac’, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia;
| | - Margherita D’Alessandro
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Samantha Rossi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Davide Gottardi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
- Interdepartmental Centre for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| | - Giacomo Braschi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
- Interdepartmental Centre for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
- Interdepartmental Centre for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| |
Collapse
|
4
|
Xu Y, Qi J, Yu M, Zhang R, Lin H, Yan H, Li C, Jia J, Hu Y. Insight into the mechanism of water-insoluble dietary fiber from star anise (Illicium verum Hook. f.) on water-holding capacity of myofibrillar protein gels. Food Chem 2023; 423:136348. [PMID: 37201258 DOI: 10.1016/j.foodchem.2023.136348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
This study aimed to determine the efficacy of star anise dietary fiber (SADF) in alleviating the oxidative damage of myofibrillar protein (MP) from the perspective of volatile components. SADF and SADF without essential oils (EOs) (NSADF) were added to oxidized MP. The addition of NSADF and SADF improved the water-holding capacity (WHC) and gel strength, with the 0.4% addition showing the highest values. Moreover, the WHC of MP from the SADF-treated group was significantly higher than that from the NSADF-treated group at the same dosage, suggesting that EOs in SADF improved the WHC through antioxidation. EOs in SADF prevented the attack of hydroxyl radicals on MP, increasing the β-sheet level and decreasing the random coil level, which was supported by the results of FT-IR, carbonyl content, and sulfhydryl content. Limonene and anisaldehyde present in EOs played an antioxidant role, and anisaldehyde could scavenge free radicals through demethoxylation.
Collapse
Affiliation(s)
- Ying Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Qi
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Manman Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ruishu Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hengxun Lin
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huimin Yan
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chao Li
- National Key Laboratory for Meat Quality Control and New Resource Creation, Yurun Group, Nanjing 210041, China
| | - Jingmin Jia
- Suzhou Fuliji Liulaoer Roast Chicken Co., Ltd, Suzhou 234101, China
| | - Yong Hu
- Anhui Youzhi Youwei Food Co., Ltd, Ma'anshan 238253, China
| |
Collapse
|
5
|
Škaljac S, Jokanović M, Tomović V, Kartalović B, Ikonić P, Ćućević N, Vranešević J, Ivić M, Šojić B, Peulić T. Influence of traditional smoking on the content of polycyclic aromatic hydrocarbons in dry fermented beef sausage from Serbia. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Šojić B, Milošević S, Savanović D, Zeković Z, Tomović V, Pavlić B. Isolation, Bioactive Potential, and Application of Essential Oils and Terpenoid-Rich Extracts as Effective Antioxidant and Antimicrobial Agents in Meat and Meat Products. Molecules 2023; 28:molecules28052293. [PMID: 36903538 PMCID: PMC10005741 DOI: 10.3390/molecules28052293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Using food additives (e.g., preservatives, antioxidants) is one of the main methods for preserving meat and meat product quality (edible, sensory, and technological) during processing and storage. Conversely, they show negative health implications, so meat technology scientists are focusing on finding alternatives for these compounds. Terpenoid-rich extracts, including essential oils (EOs), are remarkable since they are generally marked as GRAS (generally recognized as safe) and have a wide ranging acceptance from consumers. EOs obtained by conventional or non-conventional methods possess different preservative potentials. Hence, the first goal of this review is to summarize the technical-technology characteristics of different procedures for terpenoid-rich extract recovery and their effects on the environment in order to obtain safe, highly valuable extracts for further application in the meat industry. Isolation and purification of terpenoids, as the main constituents of EOs, are essential due to their wide range of bioactivity and potential for utilization as natural food additives. Therefore, the second goal of this review is to summarize the antioxidant and antimicrobial potential of EOs and terpenoid-rich extracts obtained from different plant materials in meat and various meat products. The results of these investigations suggest that terpenoid-rich extracts, including EOs obtained from several spices and medicinal herbs (black pepper, caraway, Coreopsis tinctoria Nutt., coriander, garlic, oregano, sage, sweet basil, thyme, and winter savory) can be successfully used as natural antioxidants and antimicrobials in order to prolong the shelf-life of meat and processed meat products. These results could be encouraged for higher exploitation of EOs and terpenoid-rich extracts in the meat industry.
Collapse
Affiliation(s)
- Branislav Šojić
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Sanja Milošević
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Danica Savanović
- Faculty of Technology, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Zoran Zeković
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Vladimir Tomović
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Branimir Pavlić
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
- Correspondence:
| |
Collapse
|
7
|
Đorđević N, Karabegović I, Cvetković D, Šojić B, Savić D, Danilović B. Assessment of Chitosan Coating Enriched with Free and Nanoencapsulated Satureja montana L. Essential Oil as a Novel Tool for Beef Preservation. Foods 2022; 11:foods11182733. [PMID: 36140860 PMCID: PMC9497537 DOI: 10.3390/foods11182733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
The effect of chitosan coating enriched with free and nanoencapsulated Satureja montana L. essential oil (EO) on microbial, antioxidant and sensory characteristics of beef was analyzed. Different concentrations of free Satureja montana L. EO (SMEO) and nanoparticles (CNPs) were added to chitosan coatings, namely 0.25%, 0.5% and 1%. The beef samples were immersed in the chitosan coatings and stored at +4 °C for 20 days. In this period, the changes in pH value, total viable count (TVC), lactic acid bacteria, psychrophilic bacteria and Pseudomonas spp. were analyzed. The lipid oxidation of beef was determined by the TBAR assay, while sensory analysis was performed by means of the descriptive evaluation method. Generally, the influence of chitosan coating with CNPs on the growth of the tested microorganisms was more pronounced compared to SMEO. Treatment with coating enriched with 1% CNPs resulted in the reduction in TVC and Pseudomonas spp. by 2.4 and 3 log CFU/g, compared to the control, respectively. Additionally, all applied coatings with SMEO and CNPs resulted in the prolonged oxidative stability of the meat The addition of free SMEO created an unnatural aroma for the evaluators, while this odor was neutralized by nanoencapsulation. The durability of color, smell and general acceptability of beef was significantly increased by application of chitosane coatings with the addition of SMEO or SMEO-CNPs, compared to the control. This research indicates the potential application of enriched chitosan coatings in beef preservation in order to improve meat safety and prolong shelf-life.
Collapse
Affiliation(s)
- Natalija Đorđević
- Faculty of Technology, University of Niš, Bulevar Oslobođenja 124, 16000 Leskovac, Serbia
| | - Ivana Karabegović
- Faculty of Technology, University of Niš, Bulevar Oslobođenja 124, 16000 Leskovac, Serbia
| | - Dragoljub Cvetković
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Branislav Šojić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Dragiša Savić
- Faculty of Technology, University of Niš, Bulevar Oslobođenja 124, 16000 Leskovac, Serbia
| | - Bojana Danilović
- Faculty of Technology, University of Niš, Bulevar Oslobođenja 124, 16000 Leskovac, Serbia
- Correspondence:
| |
Collapse
|
8
|
Impact of theaflavin soaking pretreatment on oxidative stabilities and physicochemical properties of semi-dried large yellow croaker (Pseudosciaena crocea) fillets during storage. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
The effect of water-insoluble dietary fiber from star anise on water retention of minced meat gels. Food Res Int 2022; 157:111425. [DOI: 10.1016/j.foodres.2022.111425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022]
|
10
|
Šojić B, Putnik P, Danilović B, Teslić N, Bursać Kovačević D, Pavlić B. Lipid Extracts Obtained by Supercritical Fluid Extraction and Their Application in Meat Products. Antioxidants (Basel) 2022; 11:antiox11040716. [PMID: 35453401 PMCID: PMC9024703 DOI: 10.3390/antiox11040716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Supercritical fluid extraction (SFE) has been recognized as the green and clean technique without any negative impact on the environment. Although this technique has shown high selectivity towards lipophilic bioactive compounds, very few case studies on the application of these extracts in final products and different food matrices were observed. Considering the recent developments in food science and the increasing application of supercritical extracts in meat products in the last decade (2012–2022), the aim of this manuscript was to provide a systematic review of the lipid extracts and bioactives successfully obtained by supercritical fluid extraction and their application in meat products as antioxidant and/or antimicrobial agents. Lipophilic bioactives from natural resources were explained in the first step, which was followed by the fundamentals of supercritical fluid extraction and application on recovery of these bioactives. Finally, the application of natural extracts and bioactives obtained by this technique as functional additives in meat and meat products were thoroughly discussed in order to review the state-of-the-art techniques and set the challenges for further studies.
Collapse
Affiliation(s)
- Branislav Šojić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Predrag Putnik
- Department of Food Technology, University North, 48000 Koprivnica, Croatia;
| | - Bojana Danilović
- Faculty of Technology, University of Niš, 16000 Leskovac, Serbia;
| | - Nemanja Teslić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: (D.B.K.); (B.P.)
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
- Correspondence: (D.B.K.); (B.P.)
| |
Collapse
|
11
|
Zixiang W, Jingjing Z, Huachen Z, Ning Z, Ruiyan Z, Lanjie L, Guiqin L. Effect of nanoemulsion loading a mixture of clove essential oil and carboxymethyl chitosan‐coated ε‐polylysine on the preservation of donkey meat during refrigerated storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wei Zixiang
- Biopharmaceutical Research Institute Liaocheng University Liaocheng China
| | - Zhang Jingjing
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center Liaocheng University Liaocheng China
| | - Zhang Huachen
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center Liaocheng University Liaocheng China
| | - Zhang Ning
- Biopharmaceutical Research Institute Liaocheng University Liaocheng China
| | - Zhang Ruiyan
- Biopharmaceutical Research Institute Liaocheng University Liaocheng China
| | - Li Lanjie
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center Liaocheng University Liaocheng China
| | - Liu Guiqin
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center Liaocheng University Liaocheng China
| |
Collapse
|
12
|
Fierascu RC, Fierascu I, Baroi AM, Ortan A. Selected Aspects Related to Medicinal and Aromatic Plants as Alternative Sources of Bioactive Compounds. Int J Mol Sci 2021; 22:1521. [PMID: 33546333 PMCID: PMC7913593 DOI: 10.3390/ijms22041521] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 01/03/2023] Open
Abstract
Natural compounds obtained from different medicinal and aromatic plants have gained respect as alternative treatments to synthetic drugs, as well as raw materials for different applications (cosmetic, food and feed industries, environment protection, and many others). Based on a literature survey on dedicated databases, the aim of the present work is to be a critical discussion of aspects regarding classical extraction versus modern extraction techniques; possibilities to scale up (advantages and disadvantages of different extraction methods usually applied and the influence of extraction parameters); and different medicinal and aromatic plants' different applications (medical and industrial applications, as well as the potential use in nanotechnology). As nowadays, research studies are directed toward the development of modern, innovative applications of the medicinal and aromatic plants, aspects regarding future perspectives are also discussed.
Collapse
Affiliation(s)
- Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (R.C.F.); (A.M.B.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
| | - Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (R.C.F.); (A.M.B.)
- Veterinary Medicine of Bucharest, University of Agronomic Sciences, 011464 Bucharest, Romania;
| | - Anda Maria Baroi
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (R.C.F.); (A.M.B.)
- Veterinary Medicine of Bucharest, University of Agronomic Sciences, 011464 Bucharest, Romania;
| | - Alina Ortan
- Veterinary Medicine of Bucharest, University of Agronomic Sciences, 011464 Bucharest, Romania;
| |
Collapse
|