1
|
A review of potential antibacterial activities of nisin against Listeria monocytogenes: the combined use of nisin shows more advantages than single use. Food Res Int 2023; 164:112363. [PMID: 36737951 DOI: 10.1016/j.foodres.2022.112363] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen causing serious public health problems. Nisin is a natural antimicrobial agent produced by Lactococcus lactis and widely used in the food industry. However, the anti-L. monocytogenes efficiency of nisin might be decreased due to natural or acquired resistance of L. monocytogenes to nisin, or complexity of the food environment. The limitation of nisin as a bacteriostatic agent in food could be improved using a combination of methods. In this review, the physiochemical characteristics, species, bioengineered mutants, and antimicrobial mechanism of nisin are reviewed. Strategies of nisin combined with other antibacterial methods, including physical, chemical, and natural substances, and nanotechnology to enhance antibacterial effect are highlighted and discussed. Additionally, the antibacterial efficiency of nisin applied in real meat, dairy, and aquatic products is evaluated and analyzed. Among the various binding treatments, the combination with natural substances is more effective than the combination with physical and chemical methods. However, the combination of nisin and nanotechnology has more potential in terms of the impact on food quality.
Collapse
|
2
|
Quichaba MB, Moreira TFM, de Oliveira A, de Carvalho AS, de Menezes JL, Gonçalves OH, de Abreu Filho BA, Leimann FV. Biopreservatives against foodborne bacteria: combined effect of nisin and nanoncapsulated curcumin and co-encapsulation of nisin and curcumin. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:581-589. [PMID: 36712216 PMCID: PMC9873856 DOI: 10.1007/s13197-022-05641-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Nisin, a bacteriocin widely used in the food industry, and curcumin, the yellow pigment extracted from turmeric (Curcuma longa L.) stand out among the numerous natural preservatives that have antimicrobial activity. The conversion of these compounds into nanoparticles could be interesting as an alternative to improve technological aspects (such as the low water solubility of curcumin) and to evaluate how synergism could take place in the case of co-encapsulation. The main objective of the present work was to evaluate the combination of nisin (Nis) with nanoencapsulated curcumin (NCur, nanoencapsulated to promote water solubility), as well as the co-encapsulated curcumin and nisin (NCurNis), against the foodborne bacteria Staphylococcus aureus, Escherichia coli and Salmonella Typhimurium. Minimum inhibitory concentration and the minimum bactericidal concentration were evaluated for NCur and Nis, as well as their combination with the fractional inhibitory concentration assay. High effectiveness was found against S. aureus and the combination of both compounds resulted in Nis- nisin; synergism against the same microorganism. The co-encapsulation of curcumin and nisin was carried out based on the synergism tests and the characterization analyses demonstrated that a solid dispersion of the components in the PVP matrix was formed. The inhibitory effect of the curcumin and nisin co-encapsulate was improved when compared to the curcumin nanoparticles or nisin alone. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05641-8.
Collapse
Affiliation(s)
- Michely Bião Quichaba
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology–Paraná–UTFPR, Campus Campo Mourão, via Rosalina Maria dos Santos, 1233, Campo Mourão, PR CEP 87301-899 Brazil
| | - Thaysa Fernandes Moya Moreira
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology–Paraná–UTFPR, Campus Campo Mourão, via Rosalina Maria dos Santos, 1233, Campo Mourão, PR CEP 87301-899 Brazil
- Post-Graduation Program of Food Science (PPC), Department of Animal Science, State University of Maringá, Av. Colombo, 5790, Maringá, PR CEP 87030-121 Brazil
| | - Anielle de Oliveira
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology–Paraná–UTFPR, Campus Campo Mourão, via Rosalina Maria dos Santos, 1233, Campo Mourão, PR CEP 87301-899 Brazil
- Post-Graduation Program of Food Science (PPC), Department of Animal Science, State University of Maringá, Av. Colombo, 5790, Maringá, PR CEP 87030-121 Brazil
| | - Amarilis Santos de Carvalho
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology–Paraná–UTFPR, Campus Campo Mourão, via Rosalina Maria dos Santos, 1233, Campo Mourão, PR CEP 87301-899 Brazil
| | - Jéssica Lima de Menezes
- Post-Graduation Program of Food Science (PPC), Department of Animal Science, State University of Maringá, Av. Colombo, 5790, Maringá, PR CEP 87030-121 Brazil
| | - Odinei Hess Gonçalves
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology–Paraná–UTFPR, Campus Campo Mourão, via Rosalina Maria dos Santos, 1233, Campo Mourão, PR CEP 87301-899 Brazil
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Benício Alves de Abreu Filho
- Post-Graduation Program of Food Science (PPC), Department of Animal Science, State University of Maringá, Av. Colombo, 5790, Maringá, PR CEP 87030-121 Brazil
| | - Fernanda Vitória Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology–Paraná–UTFPR, Campus Campo Mourão, via Rosalina Maria dos Santos, 1233, Campo Mourão, PR CEP 87301-899 Brazil
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
3
|
Zhou W, Sarpong F, Zhou C. Use of Ultrasonic Cleaning Technology in the Whole Process of Fruit and Vegetable Processing. Foods 2022; 11:foods11182874. [PMID: 36141006 PMCID: PMC9498452 DOI: 10.3390/foods11182874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
In an era of rapid technological development, ultrasound technology is being used in a wide range of industries. The use of ultrasound technology in fruit and vegetable processing to improve production efficiency and product quality has been an important research topic. The cleaning of whole fresh fruits and vegetables is an important part of fruit and vegetable processing. This paper discusses the development process of components of the ultrasonic equipment, the application of ultrasonic technology in fruit and vegetable cleaning, and the research advances in ultrasonic cleaning technology. Moreover, the feasibility of ultrasonication of fruits and vegetables for cleaning from the perspectives of microbial inactivation, commodity storage, and sensory analysis were discussed. Finally, the paper identified the inevitable disadvantages of cavitation noise, erosion, and tissue damage in fruit and vegetable processing and points out the future directions of ultrasonic fruit and vegetable cleaning technology.
Collapse
Affiliation(s)
- Wenhao Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Frederick Sarpong
- Value Addition Division, CSIR-Oil Palm Research Institute, Kade P.O. Box 74, Ghana
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Correspondence: ; Tel.: +86-511-88780201
| |
Collapse
|
4
|
Enciso-Martínez Y, González-Aguilar GA, Martínez-Téllez MA, González-Pérez CJ, Valencia-Rivera DE, Barrios-Villa E, Ayala-Zavala JF. Relevance of tracking the diversity of Escherichia coli pathotypes to reinforce food safety. Int J Food Microbiol 2022; 374:109736. [DOI: 10.1016/j.ijfoodmicro.2022.109736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022]
|
5
|
Huang X, Tian S, Chen X, Han B, Xue Y. Planktonic Growth and Biofilm Formation by Providencia rettgeri and Subsequent Effect of Tannic Acid Treatment under Food-Related Environmental Stress Conditions. J Food Prot 2022; 85:849-858. [PMID: 35271716 DOI: 10.4315/jfp-21-289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Providencia rettgeri is an opportunistic foodborne pathogen with a strong biofilm-forming ability in low-nutrition environments. However, information regarding the impact of simulated food processing conditions on P. rettgeri planktonic growth and biofilm formation is limited. Using response surface methodology (RSM), the combined effects of temperature (19 to 37°C), pH (5 to 9), and sodium chloride (NaCl) concentration (0.50 to 2.0%, w/v) were applied to construct planktonic growth and biofilm formation models for P. rettgeri. For both RSM models, an increase in NaCl concentration restricted P. rettgeri growth. Planktonic growth and biofilm formation were maximum at 27.83 and 25.41°C, respectively. Tannic acid (TA) is a highly effective antibacterial agent that inhibited planktonic and biofilm P. rettgeri under optimal growth conditions. The viability of P. rettgeri cells was decreased by TA treatment, which caused destruction of the cell membrane and production of endogenous reactive oxygen species. TA significantly inactivated P. rettgeri biofilms, as verified by observation. The obtained models in this study may be useful for describing the impact of temperature, pH, and NaCl concentration on the growth by P. rettgeri in the food processing environment and better understanding the impacts of food-related conditions on bacterial planktonic growth and biofilm formation. These results obtained for P. rettgeri planktonic cells and biofilms can provide a framework for removal strategies for other foodborne pathogens. HIGHLIGHTS
Collapse
Affiliation(s)
- Xiaoning Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | - Simin Tian
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | - Xiaoxue Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | - Beizhong Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | - Yansong Xue
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| |
Collapse
|
6
|
Ultrasound and Its Combination with Natural Antimicrobials: Effects on Shelf Life and Quality Stability of a Fruit and Vegetable Smoothie. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02745-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Wang J, Huang K, Wu Z, Yu Y. Effects of ultrasound-assisted low-concentration chlorine washing on ready-to-eat winter jujube (Zizyphus jujuba Mill. cv. Dongzao): Cross-contamination prevention, decontamination efficacy, and fruit quality. ULTRASONICS SONOCHEMISTRY 2022; 82:105905. [PMID: 34974393 PMCID: PMC8799748 DOI: 10.1016/j.ultsonch.2021.105905] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 12/28/2021] [Indexed: 05/09/2023]
Abstract
Wash water is circulated for use in the minimal processing industry, and inefficient disinfection methods can lead to pathogen cross-contamination. Moreover, few disinfection strategies are available for ready-to-eat fruits that do not need to be cut. In this study, the use of chlorine and ultrasound, two low-cost disinfection methods, were evaluated to disinfect winter jujube, a delicious, nutritious, and widely sold fruit in China. Ultrasound treatment (28 kHz) alone could not decrease the cross-contamination incidence of Escherichia coli O157:H7, non-O157 E. coli, and Salmonella Typhimurium, and free chlorine treatment at 10 ppm decreased the incidence from 55.00% to 5.00% for E. coli O157:H7, 65.00% to 6.67% for non-157 E. coli, and 70.00% to 6.67% for S. Typhimurium. The cross-contamination incidence was completely reduced (pathogens were not detected in sample) when the treatments were combined. The counts of aerobic mesophiles, aerobic psychrophiles, molds, yeasts, and three pathogens in the group subjected to combination treatment (28 kHz ultrasound + 10 ppm free chlorine) were significantly lower than those in the control, chlorine-treated, and ultrasound-treated groups during storage (0-7 d at 4 °C). Analysis of weight loss, sensory quality (crispness, color, and flavor), instrument color (a*/b*), soluble matter contents (total soluble solids, reducing sugar, total soluble sugar, and titratable acid), and nutritional properties (ascorbic acid and polyphenolic contents) indicated that treatment with ultrasound, chlorine, and their combination did not lead to additional quality loss compared with properties of the control. Additionally, the activities of phenylalanine ammonia-lyase and polyphenol oxidase were not significantly increased in the treatment group, consistent with the quality analysis results. These findings provide insights into disinfection of uncut ready-to-eat fruits using a minimum dose of disinfectant for cross-contamination prevention under ultrasonication. The use of ultrasound alone to decontaminate fresh produce is accompanied by a high risk of pathogen contamination, and the use of sanitizers to decrease cross-contamination incidence is recommended.
Collapse
Affiliation(s)
- Jiayi Wang
- Key Laboratory of New Eco-liquor-making Technology and Application of Hunan Universities, College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China.
| | - Kun Huang
- Key Laboratory of New Eco-liquor-making Technology and Application of Hunan Universities, College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China
| | - Yougui Yu
- Key Laboratory of New Eco-liquor-making Technology and Application of Hunan Universities, College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| |
Collapse
|
8
|
Chakraborty S, Dutta H. Use of nature‐derived antimicrobial substances as safe disinfectants and preservatives in food processing industries: A review. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Himjyoti Dutta
- Department of Food Technology Mizoram University Aizawl India
| |
Collapse
|
9
|
Combination of vaporized ethyl pyruvate and non-thermal atmospheric pressure plasma for the inactivation of bacteria on lettuce surfaces. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Yang S, Yuan Z, Aweya JJ, Huang S, Deng S, Shi L, Zheng M, Zhang Y, Liu G. Low-intensity ultrasound enhances the antimicrobial activity of neutral peptide TGH2 against Escherichia coli. ULTRASONICS SONOCHEMISTRY 2021; 77:105676. [PMID: 34315058 PMCID: PMC8326391 DOI: 10.1016/j.ultsonch.2021.105676] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/27/2021] [Accepted: 07/17/2021] [Indexed: 05/12/2023]
Abstract
In recent years, foodborne diseases caused by Escherichia coli are a major threat to the food industry and consumers. Antimicrobial peptides (AMPs) and ultrasound both have good inhibitory effects on E. coli. In this work, the mechanism of action and synergistic effect of an in silico predicted AMP, designated as TGH2 (AEFLREKLGDKCTDRHV), from the C-terminal sequence of Tegillarca granosa hemoglobin, combined with low-intensity ultrasound was explored. The minimal inhibitory concentration (MIC) of TGH2 on E. coli decreased by 4-fold to 31.25 μg/mL under 0.3 W/cm2 ultrasound treatment, while the time kill curve analysis showed that low-intensity ultrasound combined with peptide TGH2 had an enhanced synergistic bactericidal effect after 0.5 h. The permeability on E. coli cell membrane increased progressively during combined treatment with peptide TGH2 and low-intensity ultrasound, resulting in the leakage of intracellular solutes, as shown by transmission electron microscopy (TEM). Structural analysis using circular dichroism (CD) revealed that peptide TGH2 has an α-helical structure, showing a slight untwisting effect under 0.3 W/cm2 ultrasound treatment for 0.5 h. The findings here provide new insight into the potential application of ultrasound and AMPs combination in food preservation.
Collapse
Affiliation(s)
- Shen Yang
- College of Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Zijin Yuan
- College of Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Jude Juventus Aweya
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, China
| | - Shiying Huang
- College of Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China
| | - Linfan Shi
- College of Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Mingjing Zheng
- College of Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Yueling Zhang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, China.
| | - Guangming Liu
- College of Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China.
| |
Collapse
|
11
|
Yoon JH, Jeong DY, Lee SB, Choi S, Jeong MI, Lee SY, Kim SR. Decontamination of Listeria monocytogenes in king oyster mushrooms (Pleurotus eryngii) by combined treatments with organic acids, nisin, and ultrasound. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111207] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|