1
|
Wei Y, Rui H, Wang X, Chang C, Wang Y, Gu L, Su Y, Yang Y, Li J. The role of defatted hydrolyzed egg yolk powder in protecting DHA algal oil. Food Chem 2025; 473:143088. [PMID: 39884233 DOI: 10.1016/j.foodchem.2025.143088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
This study comprehensively investigated DHA algal oil emulsions and microcapsules prepared with different egg yolk hydrolysates (DHYP). Dual-enzyme (phospholipase A1 and protease) treatment enhanced emulsion stability by boosting protein adsorption, reducing particle size, and increasing zeta potential. For microcapsules, EF-DUAL, treated with dual-enzymes, had improved solubility, dispersibility, and wall material compactness, effectively protecting DHA from oxidation. During accelerated storage, EF-DUAL had the lowest oxidation levels and maintained a high DHA retention rate of 22.08 % after 12 days at 60 °C, extending DHA algal oil's shelf life by 300 %. Linear regression analysis indicated that the oxidation of DHA algal oil followed first-order kinetics, whereas microcapsule powders exhibited higher zero-order coefficients. Overall, this study underscores the potential of DHYP, particularly dual-enzyme hydrolyzed egg yolk powder, as a wall material for DHA microencapsulation.
Collapse
Affiliation(s)
- Yingxin Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Huan Rui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xuechun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yi Wang
- Xipa Food Research Institute, Bole, Xinjiang, 833400, PR China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Junhua Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
2
|
Siddiquy M, Al-Maqtari QA, Ghamry M, Othman N, Li J, Hlaing KSS, Zhang L. Microencapsulation using a novel wall material prepared via Maillard reaction-derived mung bean protein-peach gum conjugates to enhance stability and functionality of chia seed oil. Int J Biol Macromol 2025; 298:139959. [PMID: 39824431 DOI: 10.1016/j.ijbiomac.2025.139959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/30/2024] [Accepted: 01/15/2025] [Indexed: 01/20/2025]
Abstract
This study investigated the potential of Maillard reaction products (MRPs) derived from mung bean protein isolate (MBPI) and peach gum (PG) conjugates as wall materials for microencapsulating chia seed oil (CSO). Four formulations (MMRP1%-4%) were prepared using spray-drying and compared to a commercial sample (CMMRP). The MMRP4% formulation exhibited the highest encapsulation yield (91 %) and encapsulation efficiency (96 %), along with favorable physical properties, including a spherical shape and smooth surface. All formulation showed significantly greater stability during storage at 4 °C compared to 25 °C. After 30 days of storage, the MMRP4% formulation exhibited significantly higher oxidative stability, as evidenced by lowest peroxide values (0.3 and 0.24 mEq O2/kg CSO at 4 °C and 25 °C, respectively). Furthermore, the MMRP4% formulation displayed the slowest decrease in DPPH radical scavenging activity, reaching 6.6 % at 4 °C and 10.4 % at 25 °C after 30 days, compared to 14.2 % and 20.9 % for CMMRP samples, correspondingly. Molecular dynamics simulations confirmed the effectiveness of MRPs as encapsulants for CSO. Overall, the results suggest that CSO microencapsulated with MRPs of MBPI-PG can be a valuable addition to various food products for long-term storage.
Collapse
Affiliation(s)
- Mahbuba Siddiquy
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Qais Ali Al-Maqtari
- Micro-Pollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor, Malaysia; Department of Food Science and Nutrition, Faculty of Agriculture, Food and Environment, Sana'a University, Sana'a, Yemen
| | - Mohamed Ghamry
- Food Technology Department, Faculty of Agriculture, 13736 Moshtohor, Benha University, Egypt; College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Norzila Othman
- Micro-Pollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| | - Jian Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Khin Su Su Hlaing
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
3
|
Li X, Shen A, Xiao M, Li S, Yang W. New insights on health benefits, interactions with food components and potential application of marine-derived sulfated polysaccharides: A review. Int J Biol Macromol 2025; 294:139516. [PMID: 39761889 DOI: 10.1016/j.ijbiomac.2025.139516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/15/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Sulfated polysaccharides refer to polysaccharides containing sulfate groups on sugar units. In nature, sulfated polysaccharides are widely distributed in marine organisms, and the variation in sulfation sites, monosaccharide composition, and branched chain distribution among different species results in differences in the physicochemical properties and biological activities. From the latest perspective, this review summarized the types, structural characteristics, and potential health benefits of sulfated polysaccharides in marine foods. In recent years, marine-derived sulfated polysaccharides have been widely used as stabilizers and antimicrobial agents applied in nutraceutical delivery systems and food packaging, which depend on their interactions with food components. Hence, we outlined the non-covalent/covalent interactions of marine-derived sulfated polysaccharides with food components (e.g., proteins, polysaccharides, and polyphenols) as well as the application in food industry. Additionally, the prospects and potential development for sulfated polysaccharides are concluded, aiming to provide a deep understanding of marine-derived sulfated polysaccharides to promote the industrial application in food health.
Collapse
Affiliation(s)
- Xiquan Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Ao Shen
- Department of Food Science, Shenyang Medical college, Shenyang, Liao Ning 110034, PR China
| | - Miaorong Xiao
- Department of Food Science, Shenyang Medical college, Shenyang, Liao Ning 110034, PR China
| | - Shuzhen Li
- Department of Immunology, Shenyang Medical college, Shenyang, Liao Ning 110034, PR China.
| | - Weiwei Yang
- Department of Food Science, Shenyang Medical college, Shenyang, Liao Ning 110034, PR China.
| |
Collapse
|
4
|
Du L, Liu M, Weng H, Zhang Y, Chen J, Xiao A, Xiao Q. A novel Pickering emulsion stabilized solely by agar-glycine Maillard conjugates. Int J Biol Macromol 2025:140711. [PMID: 39920927 DOI: 10.1016/j.ijbiomac.2025.140711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
A novel Pickering emulsifier was developed through the Maillard reaction between acidolyzed agar and glycine. The resulting agar-glycine (Agar-Gly) Maillard product particles effectively stabilized a long-term Pickering emulsion at low pH (as low as 3) and medium oil content (40 %-50 %) with a particle concentration of 1 %. Microstructural analysis revealed that Agar-Gly particles adsorbed around the droplets, forming a typical O/W Pickering emulsion. The formation of a dense and regular three-dimensional gel network around the droplets was crucial in restricting droplet movement and ensuring emulsion stability. This stability was significantly superior to emulsions stabilized solely with agar or a mixture of agar and glycine (Agar+Gly), owing to synergistic effects between particle interfacial layers and spatial site resistance. Incorporating the Agar-Gly Maillard product into low-fat mayonnaise not only markedly reduces its greasiness but also provides consumers with a low-fat, healthy alternative. Furthermore, Agar-Gly used as a Pickering stabilizer, it offers an easy mode of application for agar that does not require dissolution at elevated temperatures. This provides a straightforward and promising avenue for the use of agar in the high-value food industry.
Collapse
Affiliation(s)
- Lipeng Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Meixi Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Huifen Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Yonghui Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Jun Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Anfeng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China.
| | - Qiong Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China.
| |
Collapse
|
5
|
Siddiquy M, Al-Maqtari QA, Ghamry M, Golshany H, Othman N, Mahdi AA, Nushrat YM, Iqbal MW, Zhang L. Maillard-derived mung bean protein-peach gum conjugates: A novel emulsifier to improve stability, antioxidants, and physicochemical properties of chia seed oil nanoemulsion. Food Res Int 2025; 201:115564. [PMID: 39849713 DOI: 10.1016/j.foodres.2024.115564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/14/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
This research is designed to enhance the physio-chemical properties, constancy, and antioxidant activities of water-in-oil (W/O) emulsions containing chia seed oil (CSO) by utilizing mung bean protein isolate (MBPI)-peach gum (PG) conjugates, which were created through the Maillard reaction (MR), as the emulsifying agents. The emulsions were prepared using MBPI-PG produced through the Maillard reaction (EMRP) at concentrations of 0.5 %, 1 %, and 1.5 %. Another set of emulsions, serving as control samples, was prepared using MBPI-PG without the MR (EC) at the same concentrations. The EMRP samples demonstrated optimum characteristics during storage over 30 days at 25 °C, particularly at 1 % concentration, including the droplet size (176.37 nm), PDI (0.3), zeta potential (-47.52 Mv), quantity of absorbed protein (63.48 %), creaming index (22.99 %), and viscosity compared to EC. The emulsions prepared with MRP exhibited significantly lower POV (1.45 mM/kg oil) and TBARS (59.17 mM/kg oil) formation rates than EC. The EMRP1% formulation displayed the lowest release of antioxidant compounds among all formulations, suggesting low release control during storage. Molecular docking results confirmed that adding EMRP1% to the CSO emulsion significantly improved its quality and stability. This emulsifier could hold significant promise for future advancements in the food industry.
Collapse
Affiliation(s)
- Mahbuba Siddiquy
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qais Ali Al-Maqtari
- Micro-Pollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor, Malaysia; Department of Food Science and Nutrition, Faculty of Agriculture, Food and Environment, Sana'a University, Sana'a, Yemen
| | - Mohamed Ghamry
- Food Technology Department, Faculty of Agriculture, Benha University, 13736 Moshtohor, Egypt; College of Marin Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Hazem Golshany
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Food Science Department, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Norzila Othman
- Micro-Pollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| | - Amer Ali Mahdi
- Department of Food Science and Nutrition, Faculty of Agriculture, Food and Environment, Sana'a University, Sana'a, Yemen
| | - Yiasmin Mst Nushrat
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Muhammad Waheed Iqbal
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014,China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Kouravand F, Shahidi F, Fathi M, Koocheki A, Roshanak S. Physicochemical stability and controlled release of vitamin D 3-loaded emulsions stabilised by whey protein isolate-basil seed gum conjugates. J Microencapsul 2024; 41:770-781. [PMID: 39565049 DOI: 10.1080/02652048.2024.2418615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024]
Abstract
AIM The present study was conducted to produce a new carrier containing whey protein isolate-basil seed gum (WPI-BSG) conjugate to achieve superior physicochemical stability of emulsions containing vitamin D3 (Vit-D3). METHODS Zeta-potential and particle size analysis, spectrophotometric method, encapsulation efficiency, loading capacity and dialysis bag method were used to examined physicochemical stability and Vit-D3 release from the emulsions. RESULTS The conjugate-stabilised emulsion showed maximum encapsulation efficiency (87.05 ± 3.37% (w/w)) and loading capacity (5.43 ± 0.08% (w/w)) at the Vit-D3 concentration of 200 and 300 mg/kg. This emulsion also demonstrated good physical stability after 30 days of storage with the zeta potential and mean droplet size of -79.60 ± 0.62 mV and 1346.82 ± 5.95 nm, respectively. Additionally, the conjugate-stabilised emulsion had a maximum Vit-D3 retention (chemical stability) of 72.79 ± 3.58% after a 15-day storage period. CONCLUSION Our findings suggest that the conjugate-stabilised emulsion has a good stabilising capacity as a carrier for hydrophobic compounds such as Vit-D3.
Collapse
Affiliation(s)
- Farzaneh Kouravand
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Fakhri Shahidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Milad Fathi
- Department of Food Science and Technology, Collage of Agriculture, Isfahan University of Technology (IUT), Isfahan, Iran
| | - Arash Koocheki
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Sahar Roshanak
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| |
Collapse
|
7
|
Dursun Capar T, Yalcin H. Conjugation prepared by wet-Maillard reactions improves the stability and properties of lutein and lycopene loaded nanoparticles. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2008-2019. [PMID: 39285990 PMCID: PMC11401807 DOI: 10.1007/s13197-024-05976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 09/19/2024]
Abstract
In this study, lutein and lycopene were encapsulated in plant protein (faba bean protein concentrate, (FPC))-carrageenan (Car) conjugates prepared by Maillard reaction in an aqueous media. The conjugation improved encapsulation yield that reached to 82.69% and 93.07%, for lycopene and lutein, respectively. The mean particle diameters for lutein loaded nanoparticles observed smaller in FPC-Car conjugates (66.60 nm) than FPC (71.49 nm). Scanning electron microscopy images showed that FPC-Car conjugates were more spherical and no fractures or fissures on the surface, revealing that wall materials provided better protection and retention for core materials. The diameter of lycopene nanoparticles coated with FPC remained constant between pH 3-4 and 7-9 but increased to 220 nm at pH 4-6. Even though the diameter of lutein nanoparticles coated with FPC remains steady between pH 5 and 9, increased to 953 nm at pH 3. The bioaccessibility of the lutein or lycopene samples encapsulated by FPC were found as higher than FPC-Car conjugates. These findings suggest that protein-polysaccharide conjugates could be used as a wall material to encapsulate lipophilic lutein and lycopene in order to improve their stability, property and bioaccessibility. As a result, FPC-Car conjugates may be an alternative for the formation of functional beverages as well as other nutraceutical products. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05976-4.
Collapse
Affiliation(s)
- Tugba Dursun Capar
- Food Engineering Department, Engineering Faculty, Erciyes University, Kayseri, Turkey
| | - Hasan Yalcin
- Food Engineering Department, Engineering Faculty, Erciyes University, Kayseri, Turkey
| |
Collapse
|
8
|
Du L, Ru Y, Weng H, Zhang Y, Chen J, Xiao A, Xiao Q. Agar-gelatin Maillard conjugates used for Pickering emulsion stabilization. Carbohydr Polym 2024; 340:122293. [PMID: 38858005 DOI: 10.1016/j.carbpol.2024.122293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/19/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024]
Abstract
A few protein- and polysaccharide-based particles have shown promising potential as stabilizers in multi-phase food systems. By incorporating polymer-based particles and modifying the wettability of colloidal systems, it is possible to create particle-stabilized emulsions with excellent stability. A Pickering emulsifier (AGMs) with better emulsifying properties was obtained by the Maillard reaction between acid-hydrolysed agar and gelatin. Laser confocal microscopy imaging revealed that AGMs particles can be used as solid emulsifiers to produce a typical O/W Pickering emulsion, with AGMs adsorbing onto the droplet surface to form a dense interfacial layer. Cryo-scanning electron microscopy analysis showed that AGMs self-assembled into a three-dimensional network structure, which prevented droplets aggregation through strong spatial site resistance, contributing to emulsion stabilization. These emulsions exhibited stability within a pH range of 1 to 11, NaCl concentrations not exceeding 300 mM, and at temperatures below 80 °C. The most stable emulsion oil-water ratio was 6:4 at a particle concentration of 0.75 % (w/v). AGMs-stabilized Pickering emulsion was utilized to create a semi-solid mayonnaise as a replacement for hydrogenated oil. Rheological analysis demonstrated that low-fat mayonnaise stabilized with AGMs exhibited similar rheological behavior to traditional mayonnaise, offering new avenues for the application of Pickering emulsions in the food industry.
Collapse
Affiliation(s)
- Lipeng Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Yi Ru
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Huifen Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Yonghui Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Jun Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Anfeng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China.
| | - Qiong Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China.
| |
Collapse
|
9
|
Kim YJ, Yong HI, Chun YG, Kim BK, Lee MH. Physicochemical characterization and environmental stability of a curcumin-loaded Pickering nanoemulsion using a pea protein isolate-dextran conjugate via the Maillard reaction. Food Chem 2024; 436:137639. [PMID: 37890346 DOI: 10.1016/j.foodchem.2023.137639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/17/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
This study investigated pea protein isolate (PPI) and dextran (DX) conjugates produced via the Maillard reaction as Pickering stabilizers for various food applications. The results found that as heating time increased (0-5 h), the grafting degree heightened. The PPI-DX conjugate exhibited a rough porous surface in contrast to native PPI, accompanied by changes in molecular weight and secondary structure. Additionally, the aggregation of low-solubility PPI was partially inhibited due to the contribution of increased solubility and reduced surface hydrophobicity by glycation. Curcumin-loaded Pickering nanoemulsions stabilized with PPI-DX had smaller droplets and higher curcumin encapsulation (greater than80 %) than PPI-stabilized nanoemulsions. PPI-DX adsorbed on the interface showed improved physical stability compared to PPI alone, even after various pH conditions and three heat treatments. The nanoemulsion stabilized with PPI-DX demonstrated improved apparent viscosity and dispersion stability. These findings highlight the effectiveness of PPI-DX conjugates as stabilizers for developing stable and functional Pickering nanoemulsions.
Collapse
Affiliation(s)
- Yun Jeong Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hae In Yong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yong Gi Chun
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Bum-Keun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Min Hyeock Lee
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
10
|
Amiratashani F, Yarmand MS, Kiani H, Askari G, Naeini KK, Parandi E. Comprehensive structural and functional characterization of a new protein-polysaccharide conjugate between grass pea protein (Lathyrus sativus) and xanthan gum produced by wet heating. Int J Biol Macromol 2024; 254:127283. [PMID: 37806423 DOI: 10.1016/j.ijbiomac.2023.127283] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
The purpose of this work was to use a controlled wet-heating process to promote Maillard reaction (MR) between grass pea protein (GPPI) and xanthan gum (XG), and then analyse structural, functional and antioxidant properties of the conjugate (GPPI-XGCs). During heating, the degree of glycation of all conjugated samples was raised (up to 37.43 %) and, after heating for 24 h, the lightness of the samples decreased by 24.75 %. Circular dichroism showed changes in secondary structure with lower content of α-helix and random coil in conjugates. XRD patterns showed that MR destroyed the crystalline structure of the protein. In addition, Lys and Arg content of the produced conjugates decreased by 16.94 % and 6.17 %, respectively. Functional properties including foaming capacity and stability were increased by 45.17 % and 37.17 %, and solubility reached 98.88 %, due to the protein unfolding driven by MR. GPPI-XGCs showed significantly higher antioxidant activities with maximum ABTS-RS value of 49.57 %. This study revealed how MR can improve GPPI's properties, which can aid the food industry in producing a wide range of plant-based foods. Especially, among other characteristics, the foaming properties were significantly improved and the final product can be introduced as a promising foaming agent to be used in food formulation.
Collapse
Affiliation(s)
- Farzane Amiratashani
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran
| | - Mohammad Saeid Yarmand
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran.
| | - Hossein Kiani
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran.
| | - Gholamreza Askari
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran
| | - Kiana Kassaeian Naeini
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran
| | - Ehsan Parandi
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran.
| |
Collapse
|
11
|
Cui L, Guo J, Meng Z. A review on food-grade-polymer-based O/W emulsion gels: Stabilization mechanism and 3D printing application. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
12
|
Recovery and Utilization of Pea Albumins as Acidic Emulsion Stabilizer by Complexation with Dextran Sulfate. Foods 2022; 11:foods11233784. [PMID: 36496592 PMCID: PMC9741183 DOI: 10.3390/foods11233784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
In this work, pea albumins (PAs) were efficiently recovered by complexation with dextran sulfate (DS), and the emulsifying ability and stability of PA/DS complexes were studied. The largest amounts of PAs (81.25%) were recovered at r = 5:1 and pHmax (pH 3.41) by forming insoluble complexes; and only soluble complexes were formed at r = 2:1 and over the whole pH range (2.0-7.0). The emulsions stabilized by PA/DS soluble complexes remained stable under acidic conditions due to the highly negatively charge (from -45.10 ± 0.40 to -57.23 ± 0.66 mV) and small particle size (0.168 ± 0.010-0.448 ± 0.004 μm), while emulsions stabilized by PAs alone generated a strong creaming and serum separation at pH 5 and 6. In terms of emulsifying stability, all PA emulsions and unheated PA/DS emulsions became unstable with different creaming index after 14 days storage. SDS-PAGE results showed that the interface adsorption proteins of unheated emulsions mainly consisted of PA1a, which was unfavorable to the stability of the interface. On the contrary, heat treatment (95 °C, 30 min) and complexation (PA/DS = 2:1) enhanced the adsorption of PA2 and lectin at the interface, inhibiting the aggregation of PA2 and lectin. This resulted in long-term stability of the PA/DS emulsions under acidic conditions.
Collapse
|
13
|
Jiang Y, Zang Data analysis K, Xu L, Zeng XA, Li H, Brennan C, Zhao D, Sun J. Co-delivery of riboflavin and rhein based on properties improved Jiuzao glutelin: binding mechanism, stability, and antioxidant activities. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Seo CW, Yoo B. Effect of Milk Protein Isolate/κ-Carrageenan Conjugates on Rheological and Physical Properties of Whipping Cream: A Comparative Study of Maillard Conjugates and Electrostatic Complexes. Food Sci Anim Resour 2022; 42:889-902. [PMID: 36133636 PMCID: PMC9478977 DOI: 10.5851/kosfa.2022.e42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/17/2022] [Accepted: 08/04/2022] [Indexed: 11/06/2022] Open
Abstract
With increasing consumer demand for “clean label” products, the use of natural ingredients is required in the food industry. Protein/polysaccharide complexes are considered good alternatives to synthetic emulsifiers and stabilizers for formulating stable emulsion-based foods. Milk protein and carrageenan are widely used to improve the physical properties and stability of dairy food products. In a previous study, milk protein isolate (MPI) was conjugated with κ-carrageenan (κ-Car) in a wet-heating system through the Maillard reaction, and the Maillard conjugates (MC) derived from MPI and κ-Car effectively improved the stability of oil-in-water emulsions. Therefore, MPI/κ-Car conjugates were used in whipping cream as natural emulsifiers in this study, and the physical and rheological properties of whipping creams stabilized using MPI/κ-Car MC and MPI/κ-Car electrostatic complexes (EC) were investigated. The whipping creams stabilized with MPI/κ-Car MC have lower rheological parameters (ηa,50, K, G′, and G″) than those of whipping creams stabilized with MPI/κ-Car EC. Although the overrun value was slightly reduced owing to the addition of MPI/κ-Car MC, the stability of the whipped creams with MC was effectively improved due to enhanced water-holding ability by conjugation.
Collapse
Affiliation(s)
- Chan Won Seo
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang 10326, Korea
- R&D Center, Seoul Dairy Cooperative, Ansan 15407, Korea
- Corresponding author: Chan Won Seo, R&D Center, Seoul Dairy Cooperative, Ansan 15407, Korea, Tel: +82-31-481-0146, Fax: +82-31-491-9179, E-mail:
| | - Byoungseung Yoo
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang 10326, Korea
| |
Collapse
|
15
|
Yao X, McClements DJ, Su Y, Li J, Chang C, Wang J, Yang Y, Gu L. Fabrication, Structural and Emulsifying Properties of Egg White Protein-Dextran Conjugates through Maillard Reaction. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09745-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Wang ZJ, Xu JJ, Ji FY, Luo SZ, Li XJ, Mu DD, Jiang ST, Zheng Z. Fabrication and characterization of soy β-conglycinin-dextran-polyphenol nanocomplexes: Improvement on the antioxidant activity and sustained-release property of curcumin. Food Chem 2022; 395:133562. [PMID: 35763923 DOI: 10.1016/j.foodchem.2022.133562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/04/2022]
Abstract
In this study, glycated soy β-conglycinin (β-CG) stabilized curcumin (Cur) composites were fabricated by a unique reversible self-assembly character of β-conglycinin-dextran conjugates (β-CG-DEX). Intrinsic fluorescence and far-UV CD spectra revealed that glycation did not affect the self-assembly property of β-CG in the pH-shifting treatment. The structure of β-CG-DEX could be unfolded at pH 12.0 and reassembled during acidification (from pH 12.0 to 7.0). Meanwhile, β-CG-DEX-3d, which was incubated at 60 °C for 3 days, exhibited a high loading capacity (123.4 mg/g) for curcumin, which far exceeds that (74.90 mg/g) of β-CG-Cur. Moreover, the reassembled β-CG-DEX-3d-Cur showed eminent antioxidant activity of approximately 1.5 times higher than that of free curcumin. During the simulated gastrointestinal condition, compared with β-CG-Cur, β-CG-DEX-3d-Cur nanoparticles showed a more stable and sustained release of curcumin. Thus, β-CG-DEX has immense potential to become a new delivery carrier for hydrophobic food components by means of a self-assembly strategy.
Collapse
Affiliation(s)
- Zi-Jun Wang
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Jing-Jing Xu
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Fu-Yun Ji
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Shui-Zhong Luo
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Xing-Jiang Li
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Dong-Dong Mu
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Shao-Tong Jiang
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
17
|
Seo CW, Oh NS. Functional application of Maillard conjugate derived from a κ-carrageenan/milk protein isolate mixture as a stabilizer in ice cream. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Molecular structure and functional properties of glycinin conjugated to κ-carrageenan and guar gum: A comparative study. Food Chem 2022; 386:132810. [PMID: 35364496 DOI: 10.1016/j.foodchem.2022.132810] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
Abstract
Molecular structure and functional properties of glycinin conjugated to κ-carrageenan and guar gum using a dry-heating method were comparatively analyzed. Glycosylation was confirmed by analyzing the degree of grafting, protein subunit composition, infrared absorption profile, and changes in contents of protein secondary structures. K-carrageenan was proven to possess a greater susceptibility to be grafted to glycinin than guar gum due to its relatively low molecular weight and negatively charged characteristics. The improvement of solubility by glycosylation with guar gum near the isoelectric point of glycinin was better than that by glycosylation with κ-carrageenan. Glycinin glycosylated with both polysaccharides exhibited enhanced emulsifying activity and stability. The enhanced apparent viscosity, elastic modulus, and viscous modulus also demonstrated that glycosylation promoted the appearance of stable elastic network structure. In summary, glycosylation with these two polysaccharides conferred glycinin superior emulsifying and rheological properties, and κ-carrageenan exhibited a better performance compared to guar gum.
Collapse
|
19
|
Impact of pea protein-inulin conjugates prepared via the Maillard reaction using a combination of ultrasonic and pH-shift treatments on physical and oxidative stability of algae oil emulsions. Food Res Int 2022; 156:111161. [DOI: 10.1016/j.foodres.2022.111161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022]
|
20
|
Maillard-Type Protein-Polysaccharide Conjugates and Electrostatic Protein-Polysaccharide Complexes as Delivery Vehicles for Food Bioactive Ingredients: Formation, Types, and Applications. Gels 2022; 8:gels8020135. [PMID: 35200516 PMCID: PMC8871776 DOI: 10.3390/gels8020135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/29/2022] Open
Abstract
Due to their combination of featured properties, protein and polysaccharide-based carriers show promising potential in food bioactive ingredient encapsulation, protection, and delivery. The formation of protein–polysaccharide complexes and conjugates involves non-covalent interactions and covalent interaction, respectively. The common types of protein–polysaccharide complex/conjugate-based bioactive ingredient delivery systems include emulsion (conventional emulsion, nanoemulsion, multiple emulsion, multilayered emulsion, and Pickering emulsion), microcapsule, hydrogel, and nanoparticle-based delivery systems. This review highlights the applications of protein–polysaccharide-based delivery vehicles in common bioactive ingredients including polyphenols, food proteins, bioactive peptides, carotenoids, vitamins, and minerals. The loaded food bioactive ingredients exhibited enhanced physicochemical stability, bioaccessibility, and sustained release in simulated gastrointestinal digestion. However, limited research has been conducted in determining the in vivo oral bioavailability of encapsulated bioactive compounds. An in vitro simulated gastrointestinal digestion model incorporating gut microbiota and a mucus layer is suggested for future studies.
Collapse
|
21
|
Shen K, Long J, Li X, Hua Y, Chen Y, Kong X, Zhang C. Complexation of pea protein isolate with dextran sulphate and interfacial adsorption behaviour and O/W emulsion stability at acidic conditions. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kejie Shen
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Jie Long
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Xingfei Li
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| |
Collapse
|
22
|
Kan X, Chen G, Zhou W, Zeng X. Application of protein-polysaccharide Maillard conjugates as emulsifiers: Source, preparation and functional properties. Food Res Int 2021; 150:110740. [PMID: 34865759 DOI: 10.1016/j.foodres.2021.110740] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 01/13/2023]
Abstract
The protein-polysaccharide conjugates formed by Maillard reaction can be used as novel emulsifiers in the food industry. Proteins and polysaccharides have extensive sources, and their emulsifying properties are highly dependent on their structural features. The Maillard conjugates can be prepared from conventional and novel methods, and these methods have different advantages and limitations in industrial applications. After an appropriate glycation, the conjugates show some modified or enhanced functional properties, including solubility, emulsifying property, thermal stability, foaming capacity, and gelation property. However, the research on the structure-function relationship of both proteins and polysaccharides is limited. It is necessary to well understand the characteristics of these biopolymers, and select appropriate conditions to control the process of Maillard reaction. Overall, the Maillard conjugates show great potential as the emulsifiers and stabilizers in the emulsion system. This review introduces the sources and structural characteristics of commonly used proteins and polysaccharides for Maillard reaction, outlines the methods (dry-heating, wet-heating, electrospinning, ultrasound, pulsed electric field, and microwave) for preparing Maillard conjugates and focuses on the improved functional properties (solubility, emulsifying, foaming and thermal properties) and the potential mechanisms.
Collapse
Affiliation(s)
- Xuhui Kan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wangting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
23
|
Dursun Capar T, Yalcin H. Protein/polysaccharide conjugation via Maillard reactions in an aqueous media: Impact of protein type, reaction time and temperature. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Zhao J, Dai Y, Gao J, Deng Q, Wan C, Li B, Zhou B. Desalted duck egg white nanogels combined with κ‐carrageenan as stabilisers for food‐grade Pickering emulsion. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jingyun Zhao
- Key Laboratory of Fermentation Engineering Ministry of Education National “111” Center for Cellular Regulation and Molecular Pharmaceutics Hubei Key Laboratory of Industrial Microbiology School of Biological Engineering and Food Hubei University of Technology Wuhan 430068 China
| | - Yalei Dai
- Key Laboratory of Fermentation Engineering Ministry of Education National “111” Center for Cellular Regulation and Molecular Pharmaceutics Hubei Key Laboratory of Industrial Microbiology School of Biological Engineering and Food Hubei University of Technology Wuhan 430068 China
| | - Jin Gao
- Key Laboratory of Fermentation Engineering Ministry of Education National “111” Center for Cellular Regulation and Molecular Pharmaceutics Hubei Key Laboratory of Industrial Microbiology School of Biological Engineering and Food Hubei University of Technology Wuhan 430068 China
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing Ministry of Agriculture and Rural Affairs Wuhan 430062 China
| | - Chuyun Wan
- Key Laboratory of Oilseeds Processing Ministry of Agriculture and Rural Affairs Wuhan 430062 China
| | - Bin Li
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education College of Food Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Bin Zhou
- Key Laboratory of Fermentation Engineering Ministry of Education National “111” Center for Cellular Regulation and Molecular Pharmaceutics Hubei Key Laboratory of Industrial Microbiology School of Biological Engineering and Food Hubei University of Technology Wuhan 430068 China
| |
Collapse
|
25
|
Xiang J, Liu F, Wang B, Chen L, Liu W, Tan S. A Literature Review on Maillard Reaction Based on Milk Proteins and Carbohydrates in Food and Pharmaceutical Products: Advantages, Disadvantages, and Avoidance Strategies. Foods 2021; 10:foods10091998. [PMID: 34574107 PMCID: PMC8472807 DOI: 10.3390/foods10091998] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/13/2023] Open
Abstract
Milk has two main components that have high nutritional value—milk protein (casein and whey protein), and lactose. These components are extensively used in various areas, especially in food, i.e., as sweeteners, stabilizers, functional food ingredients, nutritional fortifiers, etc. Non-enzymatic browning refers to a series of chemical reactions between sugars and proteins that make food more appetizing. Non-enzymatic browning reactions include degradation of ascorbic acid, lipid peroxidation, caramel reaction, and the Maillard reaction (MR). The MR, as one of the four non-enzymatic browning reactions, has been well studied and utilized in food fields. Milk protein and lactose, as two main components of milk, have high chemical activities; they are used as reactants to participate in the MR, generating Maillard reaction products (MRPs). The MR involves a condensation reaction between carbonyl groups of various sugars and amino groups of amino acids/proteins. These MRPs have different applications in various areas, including food flavor, food oxidation resistance, drug carriers, etc. This work presents the positive and negative effects of the MR, based on the two main components of milk, used in food and medicine, as well as avoidance approaches to prevent the occurrence of negative effects.
Collapse
|
26
|
Low Molecular Weight Kappa-Carrageenan Based Microspheres for Enhancing Stability and Bioavailability of Tea Polyphenols. Processes (Basel) 2021. [DOI: 10.3390/pr9071240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tea polyphenols (TP) are a widely acknowledged bioactive natural product, however, low stability and bioavailability have restricted their application in many fields. To enhance the stability and bioavailability of TP under certain moderate conditions, encapsulation technique was applied. Kappa–Carrageenan (KCG) was initially degraded to a lower molecular weight KCG (LKCG) by H2O2, and was selected as wall material to coat TP. The obtained LKCG (Mn = 13,009.5) revealed narrow dispersed fragments (DPI = 1.14). FTIR and NMR results demonstrated that the main chemical structure of KCG remained unchanged after degradation. Subsequently, LK-CG and TP were mixed and homogenized to form LK-CG-TP microspheres. SEM images of the microspheres revealed a regular spherical shape and smooth surface with a mean diameter of 5–10 μM. TG and DSC analysis indicated that LK-CG-TP microspheres exhibited better thermal stability as compared to free TP. The release profile of LK-CG-TP in simulated gastric fluid (SGF) showed a slowly release capacity during the tested 180 min with the final release rate of 88.1% after digestion. Furthermore, in vitro DPPH radical scavenging experiments revealed that LK-CG-TP had an enhanced DPPH scavenging rate as compared to equal concentration of free TP. These results indicated that LK-CG-TP microspheres were feasible for protection and delivery of TP and might have extensive potential applications in other bioactive components.
Collapse
|