1
|
Laika J, Sabatucci A, Sacchetti G, Di Michele A, Molina Hernandez JB, Ricci A, Dalla Rosa M, Chaves Lopez C, Neri L. Cold atmospheric plasma inactivation of polyphenol oxidase: Focus on the protective and boosting effect of mono- and disaccharides. J Food Sci 2024; 89:9283-9298. [PMID: 39674814 DOI: 10.1111/1750-3841.17599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/24/2024] [Accepted: 11/22/2024] [Indexed: 12/16/2024]
Abstract
Polyphenol oxidase (PPO) is among the most detrimental enzymes in processed plant foods, being responsible for enzymatic browning. To propose a "mild" alternative to traditional enzymatic inactivation methods, this study investigated the effect of cold atmospheric plasma (CAP) on PPO inactivation and highlighted the role of different sugars on both inactivation and structural modification of this enzyme. Different model systems were prepared in phosphate buffer using a purified PPO either alone or added with glucose, fructose, sucrose, and trehalose at different concentrations. CAP treatments (6 KV; 23 KHz; duty cycle 10%) were applied at times ranging from 5 to 30 min. Different spectroscopic analyses were conducted before and after treatments to evaluate the PPO activity and changes in tertiary and secondary structures. CAP induced a significant reduction (p < 0.05) in PPO activity across all systems, ranging from 70% to 94% after 30 min of treatment. Among sugars, fructose enhanced (p < 0.05) the PPO inactivation (+23% on average with respect to the phosphate buffer system), possibly by promoting the loss of secondary structures containing the copper-binding site of the catalytic pocket. The effect of other sugars on PPO inactivation was strictly dependent on their type and concentration; specifically, disaccharides at the highest concentrations and treatment times showed a protective effect on the structure and functionality of the protein. Thus, the results of this study highlight that sugars can modulate the effectiveness of CAP, offering promising perspectives for optimizing this food processing technology. PRACTICAL APPLICATION: Cold atmospheric plasma (CAP) is a promising nonthermal technology for food preservation. In particular, surface dielectric barrier discharge (SDBD) CAP could be applied as an alternative to chemical and thermal treatments to inactivate polyphenol oxidase (PPO), an enzyme responsible for browning reactions and quality loss in most processed fruit and vegetable products. However, as shown by this study, PPO inactivation induced by CAP is affected by sugars. Specifically, fructose can positively influence the inactivation of this enzyme. Therefore, CAP potentially could find main applications for the PPO stabilization of high fructose-content plants (e.g., pears, apples, bananas, grapes, peppers, and squashes).
Collapse
Affiliation(s)
- Jessica Laika
- Department of Bioscience and Technology for Agriculture, Food and Environment, University of Teramo, Teramo, Italy
| | - Annalaura Sabatucci
- Department of Bioscience and Technology for Agriculture, Food and Environment, University of Teramo, Teramo, Italy
| | - Giampiero Sacchetti
- Department of Bioscience and Technology for Agriculture, Food and Environment, University of Teramo, Teramo, Italy
| | | | - Junior Bernardo Molina Hernandez
- Department of Bioscience and Technology for Agriculture, Food and Environment, University of Teramo, Teramo, Italy
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Antonella Ricci
- Department of Bioscience and Technology for Agriculture, Food and Environment, University of Teramo, Teramo, Italy
| | - Marco Dalla Rosa
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Clemencia Chaves Lopez
- Department of Bioscience and Technology for Agriculture, Food and Environment, University of Teramo, Teramo, Italy
| | - Lilia Neri
- Department of Bioscience and Technology for Agriculture, Food and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
2
|
Potkule JB, Kahar SP, Kumar M, Annapure US. Impact of non-thermal techniques on enzyme modifications for their applications in food. Int J Biol Macromol 2024; 275:133566. [PMID: 38960264 DOI: 10.1016/j.ijbiomac.2024.133566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
The present review elaborates on the details of the enzyme, its structure, specificity, and the mechanism of action of selected enzymes as well as structural changes and loss or gain of activity after non-thermal treatments for food-based applications. Enzymes are biological catalysts found in various systems such as plants, animals, and microorganisms. Most of the enzymes have their optimum pH, temperature, and substrate or group of substrates. The conformational modification of enzymes either increases or decreases the rate of reaction at different pH, and temperature conditions. Enzymes are modified by different techniques to enhance the activity of enzymes for their commercial applications mainly due to the high cost of enzymes, stability, and difficulties that occur during the use of enzymes in different conditions. On the opposite, enzyme inactivation provides its application to extend the shelf life of fruits and vegetables by denaturation and partial inactivation of enzymes. Hence, the activation and inactivation of enzymes are studied by non-thermal techniques in both the model and the food system. The highly reactive species generated during non-thermal techniques cause chemical and structural modification. The enzyme modifications depend on the type and source of the enzyme, type of technique, and the parameters used.
Collapse
Affiliation(s)
- Jayashree B Potkule
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Suraj P Kahar
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Matunga, Mumbai, India
| | - Uday S Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India; Institute of Chemical Technology, Marathwada Campus, Jalna, India.
| |
Collapse
|
3
|
Cold Plasma Bubbling: Impact on Safety, Physicochemical Properties, and Nutritional Quality of Sesame Milk. FOOD AND BIOPRODUCTS PROCESSING 2023. [DOI: 10.1016/j.fbp.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
4
|
Liu W, Liang X, Cai W, Wang H, Liu X, Cheng L, Song P, Luo G, Han D. Isolation and Functional Analysis of VvWRKY28, a Vitis vinifera WRKY Transcription Factor Gene, with Functions in Tolerance to Cold and Salt Stress in Transgenic Arabidopsis thaliana. Int J Mol Sci 2022; 23:13418. [PMID: 36362205 PMCID: PMC9658438 DOI: 10.3390/ijms232113418] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 08/06/2023] Open
Abstract
The grape (Vitis vinifera L.) not only has a long history of cultivation, but also has rich nutritional value and high economic value. However, grapes often face many threats in the growth process. For example, low temperature and salt stress restrict the growth status, yield, and geographical distribution of grapes. WRKY, as one of the largest transcription factor (TF) families in plants, participates in the response of plants to stress. VvWRKY28, a new zinc finger type transcriptional regulator gene, was isolated from Beichun (V. vinifera × V.amurensis) in this study. From the subcellular localization results, it can be concluded that VvWRKY28 was localized in the nucleus. The expression of VvWRKY28 was enriched in leaves (young and mature leaves), and cold and high salt conditions can induce high expression of VvWRKY28. After being transferred into Arabidopsis, VvWRKY28 greatly improved the tolerance of Arabidopsis to low temperature and high salt and also changed many physiological and biochemical indicators of transgenic Arabidopsis to cope with cold and high salt stimulation. The content of malondialdehyde (MDA) was decreased, but for chlorophyll and proline, their content increased, and the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were improved. In addition, under cold stress, binding with cis-acting elements promotes the expression of downstream genes related to cold stress (RAB18, COR15A, ERD10, PIF4, COR47, and ICS1). Moreover, it also plays an active role in regulating the expression of genes related to salt stress (NCED3, SnRK2.4, CAT2, SOD1, SOS2, and P5CS1) under salt stress. Therefore, these results provide evidence that VvWRKY28 may play a role in the process of plant cold and salt stress tolerance.
Collapse
Affiliation(s)
- Wei Liu
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Xiaoqi Liang
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Weijia Cai
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Hao Wang
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Xu Liu
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Longfei Cheng
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Penghui Song
- Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Guijie Luo
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Deguo Han
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Luo J, Xia G, Liu L, Ji A, Luo Q. Fabrication of Chitosan/Hydroxyethyl Cellulose/TiO 2 Incorporated Mulberry Anthocyanin 3D-Printed Bilayer Films for Quality of Litchis. Foods 2022; 11:3286. [PMID: 37431032 PMCID: PMC9601993 DOI: 10.3390/foods11203286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 09/13/2022] [Indexed: 07/24/2023] Open
Abstract
In this study, a bilayer antibacterial chromogenic material was prepared using chitosan (CS) and hydroxyethyl cellulose (HEC) as inner substrate, mulberry anthocyanins (MA) as a natural tracer, and titanium dioxide nanoparticles (nano-TiO2)/CS:HEC as a bacteriostatic agent for the outer layer. By investigating their apparent viscosity and suitability for 3D printing links, the optimal ratio of the substrates was determined to be CS:HEC = 3:3. Viscosity of the CH was moderate. The printing process was consistent and exhibited no breakage or clogging. The printed image was highly stable and not susceptible to collapse and diffusion. Scanning electron microscopy and infrared spectroscopy indicated that intermolecular binding between the substances exhibited good compatibility. Titanium dioxide nanoparticles (nano-TiO2) were evenly distributed in the CH and no agglomeration was observed. The inner film fill rates affected the overall performance of the chromogenic material, with strong inhibitory effects against Escherichia coli and Staphylococcus aureus at different temperatures, as well as strong color stability. The experimental results indicated that the double-layer antibacterial chromogenic material can, to a certain extent, extend the shelf life of litchi fruit and determine the extent of its freshness. Therefore, from this study, we can infer that the research and development of active materials have a certain reference value.
Collapse
Affiliation(s)
- Jinjie Luo
- Correspondence: ; Tel.: +86-023-58105722
| | | | | | | | | |
Collapse
|
6
|
Wang J, Yu YD, Zhang ZG, Wu WC, Sun PL, Cai M, Yang K. Formation of sweet potato starch nanoparticles by ultrasonic—assisted nanoprecipitation: Effect of cold plasma treatment. Front Bioeng Biotechnol 2022; 10:986033. [PMID: 36185450 PMCID: PMC9523013 DOI: 10.3389/fbioe.2022.986033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Starch nanoparticles (SNPs) were produced from sweet potato starches by ultrasonic treatment combined with rapid nanoprecipitation. The starch concentration, ultrasonic time, and the ratio of starch solution to ethanol were optimized through dynamic light scattering (DLS) technique to obtain SNPs with a Z-average size of 64.51 ± 0.15 nm, poly dispersity index (PDI) of 0.23 ± 0.01. However, after freeze drying, the SNPs showed varying degrees of aggregation depending on the particle size of SNPs before freeze-drying. The smaller the particle size, the more serious the aggregation. Therefore, we tried to treat SNPs with dielectric barrier discharge cold plasma before freeze drying. Properties including morphological features, crystalline structure and apparent viscosity of various starches were measured by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and rheometer, respectively. The results showed that, after cold plasma (CP) treatment, the aggregation of SNPs during freeze drying was significantly inhibited. Compared to the native sweet potato starch, SNPs showed a higher relative crystallinity and a lower apparent viscosity. After CP treatment, the relative crystallinity of CP SNPs was further higher, and the apparent viscosity was lower. This work provides new ideas for the preparation of SNPs and could promote the development of sweet potato SNPs in the field of active ingredient delivery.
Collapse
Affiliation(s)
- Jian Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Yu-Die Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Zhi-Guo Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Wei-Cheng Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Pei-Long Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- *Correspondence: Ming Cai, ; Kai Yang,
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- *Correspondence: Ming Cai, ; Kai Yang,
| |
Collapse
|
7
|
Lin T, Zhou Z, Xing C, Zhou J, Fan G, Xie C. Effect of color protection treatment on the browning and enzyme activity of Lentinus edodes during processing. Food Sci Nutr 2022; 10:2989-2998. [PMID: 36171772 PMCID: PMC9469847 DOI: 10.1002/fsn3.2895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/26/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Fresh Lentinus edodes (L. edodes) are prone to browning (including enzymatic and nonenzymatic browning), which affects their quality and leads to economic losses during later processing. This study explored various effective color protection methods (color protection reagent and/or blanching) for inhibiting the browning of L. edodes. First, a single-factor experiment and a response surface method were used to optimize the concentration of the color retention reagent. The compound color retention reagent (comprising 0.1% phytic acid, 0.8% sodium citrate, and 0.5% d-sodium erythorbate) had the smallest total color difference (ΔE) value, suggesting that the compound color reagent had a better inhibiting effect than the single agent. Following this, the blanching conditions were studied; the polyphenol oxidase (PPO) activity was the lowest when the blanching temperature was 90°C and blanching time 180 s, indicating that browning is likely to be minimal. Finally, comparing the oxidase activity and total color difference (ΔE) revealed that combining the two color protection methods inhibits browning better than using a single method (color protection reagent or blanching). In addition, the polysaccharide and vitamin C (VC) contents of L. edodes under optimal color protection conditions were determined, which were 0.96 and 2.54 g/100 g fresh weight (FW), respectively. The results demonstrated that this color protection method effectively inhibits browning, reduces the nutritional loss, and improves the quality of L. edodes.
Collapse
Affiliation(s)
- Tong Lin
- College of Life ScienceLangfang Normal UniversityLangfangChina
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei ProvinceLangfangChina
- Edible and Medicinal Fungi Research and Development Center of Hebei UniversitiesLangfangChina
| | - Zhiguo Zhou
- College of Life ScienceLangfang Normal UniversityLangfangChina
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei ProvinceLangfangChina
- Edible and Medicinal Fungi Research and Development Center of Hebei UniversitiesLangfangChina
| | - Chunmiao Xing
- College of Life ScienceLangfang Normal UniversityLangfangChina
| | - Jiahui Zhou
- College of Life ScienceLangfang Normal UniversityLangfangChina
| | - Gongjian Fan
- College of Light Industry and Food EngineeringNanjing Forestry UniversityNanjingChina
| | - Chunyan Xie
- College of Life ScienceLangfang Normal UniversityLangfangChina
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei ProvinceLangfangChina
- Edible and Medicinal Fungi Research and Development Center of Hebei UniversitiesLangfangChina
| |
Collapse
|
8
|
Pre-Harvest Application of Multi-Walled Carbon Nanotubes Improves the Antioxidant Capacity of ‘Flame Seedless’ Grapes during Storage. SUSTAINABILITY 2022. [DOI: 10.3390/su14159568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As a widely distributed fruit, grapes are susceptible to oxidative damage during storage and transportation, resulting in declining quality and commodity value. This study aimed to investigate the effects of preharvest application of different concentrations of multi-walled carbon nanotubes (MWCNTs) on the postharvest quality of ‘Flame Seedless’ grapes. The results showed that low-concentration (25 and 50 mg L−1) MWCNTs treatments maintained the comprehensive quality index, firmness, soluble sugar, titratable acid, pH value, and ascorbic acid (AsA) content of grapes. MWCNTs at 25 and 50 mg L−1 increased the activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), and ascorbic acid (APX). Furthermore, MWCNTs reduced the malondialdehyde (MDA) content and decreased the accumulation of excessive reactive oxygen species (ROS) in grape peel and pulp tissues. In addition, transmission electron microscopy (TEM) images demonstrated that MWCNTs were absorbed by parenchymal cells in the grape peel and pulp through the epidermal cell layer. MWCNTs with a specific concentration can be used as a new inducer for the biosynthesis of antioxidants to reduce oxidative damage in grapes during storage.
Collapse
|
9
|
Jin T, Dai C, Xu Y, Chen Y, Xu Q, Wu Z. Applying Cold Atmospheric Plasma to Preserve the Postharvest Qualities of Winter Jujube (Ziziphus jujuba Mill. cv. Dongzao) During Cold Storage. Front Nutr 2022; 9:934841. [PMID: 35873432 PMCID: PMC9298523 DOI: 10.3389/fnut.2022.934841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Winter jujube (Ziziphus jujuba Mill. cv. Dongzao) is a very popular horticultural fruit worldwide, which contains a high number of bioactive compounds. Nevertheless, jujube is perishable by microbial contamination and has a short shelf life under non-controlled conditions. Cold atmospheric plasma (CAP) presents a great potential for food sterilization, maintain postharvest quality, and prolonged storage time. Herein, this study investigated the potential effect of CAP with different exposure times (0, 5, 10, and 20 min) on the physicochemical and biochemical changes in jujube during 15-day storage at 4°C and 90% relative humidity (RH). The results showed that CAP treatment could obviously delay ripening, but displayed no effects on the speed of weight loss and moisture content. Meanwhile, the total native aerobic bacterial count in each jujube group was restrained during whole storage. However, CAP treatment showed a time-dependent manner to improve gene expression (PAL, 4CL, DFR, ANS, LAR, and ANR) related to phenolic biosynthesis. As compared to other groups, 20-min CAP treatment can keep or increase total phenolic content (TPC), maintain antioxidant activity, and reduce oxidative damage. Furthermore, the hydrogen peroxide (H2O2) and malondialdehyde (MDA) content in jujube during middle storage were visibly reduced by 20-min CAP treatment. All in all, our findings concluded that appropriate CAP exposure time can be a promising candidate for the postharvest preservation of jujube.
Collapse
Affiliation(s)
- Tao Jin
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
- Joint Laboratory of Plasma Application Technology, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Chenwei Dai
- Anhui Academy of Medical Sciences, Hefei, China
| | - Yong Xu
- Anhui Academy of Medical Sciences, Hefei, China
| | - Yan Chen
- Joint Laboratory of Plasma Application Technology, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Qinghua Xu
- Anhui Academy of Medical Sciences, Hefei, China
- *Correspondence: Qinghua Xu,
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
- Joint Laboratory of Plasma Application Technology, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, China
- Zhengwei Wu,
| |
Collapse
|
10
|
Punia Bangar S, Trif M, Ozogul F, Kumar M, Chaudhary V, Vukic M, Tomar M, Changan S. Recent developments in cold plasma-based enzyme activity (browning, cell wall degradation, and antioxidant) in fruits and vegetables. Compr Rev Food Sci Food Saf 2022; 21:1958-1978. [PMID: 35080794 DOI: 10.1111/1541-4337.12895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022]
Abstract
According to the Food and Agriculture Organization of United Nations reports, approximately half of the total harvested fruits and vegetables vanish before they reach the end consumer due to their perishable nature. Enzymatic browning is one of the most common problems faced by fruit and vegetable processing. The perishability of fruits and vegetables is contributed by the various browning enzymes (polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase) and ripening or cell wall degrading enzyme (pectin methyl-esterase). In contrast, antioxidant enzymes (superoxide dismutase and catalase) assist in reversing the damage caused by reactive oxygen species or free radicals. The cold plasma technique has emerged as a novel, economic, and environmentally friendly approach that reduces the expression of ripening and browning enzymes while increasing the activity of antioxidant enzymes; microorganisms are significantly inhibited, therefore improving the shelf life of fruits and vegetables. This review narrates the mechanism and principle involved in the use of cold plasma technique as a nonthermal agent and its application in impeding the activity of browning and ripening enzymes and increasing the expression of antioxidant enzymes for improving the shelf life and quality of fresh fruits and vegetables and preventing spoilage and pathogenic germs from growing. An overview of hurdles and sustainability advantages of cold plasma technology is presented.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (Centiv) GmbH, Stuhr, Germany.,CENCIRA Agrofood Research and Innovation Centre, Cluj-Napoca, Romania
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Vandana Chaudhary
- Department of Dairy Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Milan Vukic
- Faculty of Technology Zvornik, University of East Sarajevo, Zvornik, Bosnia and Herzegovina
| | - Maharishi Tomar
- Seed Technology Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Sushil Changan
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| |
Collapse
|
11
|
Basak S, Annapure US. Recent trends in the application of cold plasma for the modification of plant proteins - A review. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
12
|
Zhao Z, Wang X, Ma T. Properties of plasma-activated water with different activation time and its effects on the quality of button mushrooms (Agaricus bisporus). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111633] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|