1
|
Sánchez-Quezada V, Velázquez-Guadarrama N, Mendoza-Elizalde S, Hernández-Iturriaga M, Landaverde PV, Loarca-Piña G. Bioaccessibility of bioactive compounds present in Persea americana Mill. seed ingredient during oral-gastric digestion with antibacterial capacity against Helicobacter pylori. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118259. [PMID: 38685366 DOI: 10.1016/j.jep.2024.118259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In ancient Mexican cultures, the Persea americana Mill seed has been used against gastrointestinal diseases, due to high concentrations of bioactive compounds. According to Traditional Mexican Medicine, P. americana seed aqueous infusion is used against roundworms, intestinal worms, parasites, and gastrointestinal problems, in a dose taken over three or four days. In addition, Mexican Society of Natural History indicates the traditional use of P. americana seed powder as an antiparasitic, and antibacterial. On the other hand, Helicobacter pylori infection is a factor associated with the development of gastric disease, peptic ulcers as well as some types of gastric lymphomas and gastric cancer in humans; in this way is necessary scientific evidence about P. americana seed effect in gastrointestinal disease. AIM OF THE STUDY The work aimed to evaluate bioactive compounds bioaccessibility and antimicrobial potential against Helicobacter pylori during oral-gastric digestion in vitro of food ingredient from Persea americana Mill. seed and elucidate the possible action mechanism using in silico tools. MATERIALS AND METHODS Initially, P. americana seed oil and aqueous extract of P. americana seed were obtained using ultrasound and maceration respectively, and the food ingredient from P. americana seed was obtained. The samples underwent oral-gastric digestions by the INFOGEST method, to continue identifying and quantifying the bioactive compounds by HPLC-DAD and GC-MS. The anti-Helicobacter pylori activity determination were used fourteen Helicobacter pylori clinical strains and reference strains by Susceptibility testing by Minimal Inhibition Concentration, Kinetics of Growth Inhibition of H. pylori, Urease Inhibitory Kinetic. Finally, to elucidate a possible action mechanism used in silico tools (Software AutoDock 4.2.6 and BioVia Discovery v.19.1.0.1.18287). RESULTS The lipophilic fraction of P. americana seed detected oleic acid, linoleic acid, and avocadenofuran compounds, and the phenolic fraction showed the presence of catechin, rutin, ellagic, and chlorogenic acid, among others. Phenolic compounds conformational changes during oral-gastric digestion due to mechanical and acid hydrolysis, while lipophilic compounds showed a 20% increase in the gastric phase. Persea americana Mill. seed ingredient (3.08 μg/mL) showed total in vitro inhibition of clinical and reference strains of H. pylori, likewise, the lipophilic fraction had a lower inhibition concentration (2.59 μg/mL) regardless of the strains. Among the mechanisms found in silico, inhibition of target proteins such as CagA, BabA, and MUC5 were observed, as virulence factors involving adherence and bacterial pathogenicity. CONCLUSIONS This research provides evidence that food ingredient from P. americana seed has antimicrobial in vitro potential against H. pylori clinical strains, through phenolic and mainly lipophilic compounds, opening new scientific evidence that supports the P. americana seed's traditional use.
Collapse
Affiliation(s)
- V Sánchez-Quezada
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Mexico.
| | - N Velázquez-Guadarrama
- Unidad de Investigación en Enfermedades Infecciosas, Área de Genética Bacteriana, Hospital Infantil de México Federico Gómez, Mexico.
| | - S Mendoza-Elizalde
- Unidad de Investigación en Enfermedades Infecciosas, Área de Genética Bacteriana, Hospital Infantil de México Federico Gómez, Mexico.
| | - M Hernández-Iturriaga
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Mexico.
| | - P Vázquez Landaverde
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA), Unidad Querétaro CICATA-IPN Querétaro, Mexico.
| | - G Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Mexico.
| |
Collapse
|
2
|
Pinheiro Pantoja KR, Melo Aires GC, Ferreira CP, de Lima MDC, Menezes EGO, de Carvalho Junior RN. Supercritical Technology as an Efficient Alternative to Cold Pressing for Avocado Oil: A Comparative Approach. Foods 2024; 13:2424. [PMID: 39123615 PMCID: PMC11311359 DOI: 10.3390/foods13152424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Avocado oil is rich in nutrients beneficial to human health, such as monounsaturated fatty acids, phenolic compounds, tocopherol, and carotenoids, with numerous possibilities for application in industry. This review explores, through a comparative approach, the effectiveness of the supercritical oil extraction process as an alternative to the conventional cold-pressing method, evaluating the differences in the extraction process steps through the effect of temperature and operating pressure on bioactive quality and oil yield. The results reveal that supercritical avocado oil has a yield like that of mechanical cold pressing and superior functional and bioactive quality, especially in relation to α-tocopherol and carotenoids. For better use and efficiency of the supercritical technology, the maturation stage, moisture content, fruit variety, and collection period stand out as essential factors to be observed during pre-treatment, as they directly impact oil yield and nutrient concentration. In addition, the use of supercritical technology enables the full use of the fruit, significantly reducing waste, and adds value to the agro-industrial residues of the process. It produces an edible oil free of impurities, microorganisms, and organic solvents. It is a green, environmentally friendly technology with long-term environmental and economic advantages and an interesting alternative in the avocado market.
Collapse
Affiliation(s)
- Kelly Roberta Pinheiro Pantoja
- Program of Post-Graduation in Natural Resources Engineering in the Amazon (PRODERNA), Federal University of Pará, 01 Augusto Corrêa Street, Belém 66075110, PA, Brazil;
| | - Giselle Cristine Melo Aires
- Program of Post-Graduation in Food Science and Technology (PPGCTA), Federal University of Pará, 01 Augusto Corrêa Street, Belém 66075110, PA, Brazil;
| | - Clara Prestes Ferreira
- Food Science and Technology Laboratory (LCTEA), Federal University of Pará, 01 Augusto Corrêa Street, Belém 66075110, PA, Brazil; (C.P.F.); (M.d.C.d.L.)
| | - Matheus da Costa de Lima
- Food Science and Technology Laboratory (LCTEA), Federal University of Pará, 01 Augusto Corrêa Street, Belém 66075110, PA, Brazil; (C.P.F.); (M.d.C.d.L.)
| | - Eduardo Gama Ortiz Menezes
- Department of Chemical Engineering, Federal Institute of Education, Science and Technology of Rondônia (IFRO), 4985 Calama Avenue, Porto Velho 76820441, RO, Brazil;
| | - Raul Nunes de Carvalho Junior
- Program of Post-Graduation in Food Science and Technology, Program of Post-Graduation in Natural Resources Engineering in the Amazon, Federal University of Pará, 01 Augusto Corrêa Street, Belém 66075110, PA, Brazil
| |
Collapse
|
3
|
Martínez C, Jiménez A, Garrigós MC, Valdés A. Oxidative Stability of Avocado Snacks Formulated with Olive Extract as an Active Ingredient for Novel Food Production. Foods 2023; 12:2382. [PMID: 37372593 DOI: 10.3390/foods12122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Analysis of the oxidative stability of novel avocado chips with added natural extracts was carried out with the aim of reducing the chemical additive content in their formulation. Two different natural extracts were initially evaluated and characterized: one obtained from olive pomace (OE) and other from pomegranate seed waste. OE was selected due to its better antioxidant potential according to FRAP, ABTS, and DPPH assays as well as its higher total phenolic content. The formulations used were 0, 1.5 wt.%, and 3 wt.% of OE. A gradual disappearance of the band found around 3009 cm-1 and related to unsaturated fatty acids was observed in the control sample in contrast to formulations with added OE. The band observed near 3299 cm-1 widened and intensified with time due to the oxidation degree of samples, with this effect being higher in the control chips. The observed changes in fatty acid and hexanal content with storage time underlined the higher extent of oxidation in the control samples. This fact could suggest an antioxidant protectant action of OE in avocado chips during thermal treatment, which was attributed to the presence of phenolic compounds. The obtained chips incorporating OE represent a viable option for the development of a natural, healthy, and clean-label avocado snack at competitive cost and with low environmental impacts.
Collapse
Affiliation(s)
- Carmen Martínez
- Analytical Chemistry, Nutrition & Food Sciences Department, University of Alicante, P.O. Box 99, 03080 Alicante, Spain
| | - Alfonso Jiménez
- Analytical Chemistry, Nutrition & Food Sciences Department, University of Alicante, P.O. Box 99, 03080 Alicante, Spain
| | - Maria Carmen Garrigós
- Analytical Chemistry, Nutrition & Food Sciences Department, University of Alicante, P.O. Box 99, 03080 Alicante, Spain
| | - Arantzazu Valdés
- Analytical Chemistry, Nutrition & Food Sciences Department, University of Alicante, P.O. Box 99, 03080 Alicante, Spain
| |
Collapse
|
4
|
Del-Castillo-Llamosas A, Rodríguez-Rebelo F, Rodríguez-Martínez B, Mallo-Fraga A, Del-Río PG, Gullón B. Valorization of Avocado Seed Wastes for Antioxidant Phenolics and Carbohydrates Recovery Using Deep Eutectic Solvents (DES). Antioxidants (Basel) 2023; 12:1156. [PMID: 37371886 DOI: 10.3390/antiox12061156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Avocado seeds represent the chief waste produced in avocado processing, leading not only to environmental problems regarding its elimination but to a loss of economic profitability. In fact, avocado seeds are known as interesting sources of bioactive compounds and carbohydrates, so their utilization may reduce the negative effect produced during the industrial manufacture of avocado-related products. In this sense, deep eutectic solvents (DES) are a novel greener alternative than organic solvents to extract bioactive polyphenols and carbohydrates. The study was based on a Box-Behnken experimental design to study the effect of three factors, temperature (40, 50, 60 °C), time (60, 120, 180 min) and water content (10, 30, 50% v/v) on the responses of total phenolic (TPC) and flavonoid content (TFC), antioxidant capacity (measured as ABTS and FRAP) and xylose content in the extract. The DES Choline chloride:glycerol (1:1) was used as solvent on avocado seed. Under optimal conditions, TPC: 19.71 mg GAE/g, TFC: 33.41 mg RE/g, ABTS: 20.91 mg TE/g, FRAP: 15.59 mg TE/g and xylose: 5.47 g/L were obtained. The tentative identification of eight phenolic compounds was assayed via HPLC-ESI. The carbohydrate content of the solid residue was also evaluated, and that solid was subjected to two different processing (delignification with DES and microwave-assisted autohydrolysis) to increase the glucan susceptibility to enzymes, and was also assayed reaching almost quantitative glucose yields. These results, added to the non-toxic, eco-friendly, and economic nature of DES, demonstrate that these solvents are an efficient alternative to organic solvents to recover phenolics and carbohydrates from food wastes.
Collapse
Affiliation(s)
| | - Fernando Rodríguez-Rebelo
- Departamento de Enxeñaría Química, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | | | - Adrián Mallo-Fraga
- Departamento de Enxeñaría Química, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Pablo G Del-Río
- Departamento de Enxeñaría Química, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
- Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Beatriz Gullón
- Departamento de Enxeñaría Química, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
5
|
Zhu L, Li M, Yang W, Zhang J, Yang X, Zhang Q, Wang H. Effects of Different Drying Methods on Drying Characteristics and Quality of Glycyrrhiza uralensis (Licorice). Foods 2023; 12:foods12081652. [PMID: 37107448 PMCID: PMC10137839 DOI: 10.3390/foods12081652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Large amounts of waste result from licorice mold rot; moreover, prompt drying directly influences product quality and value. This study compared various glycyrrhiza drying methods (Hot air drying (HAD), infrared combined hot air drying (IR-HAD), vacuum freeze drying (VFD), microwave vacuum drying (MVD), and vacuum pulsation drying (VPD)) that are used in the processing of traditional Chinese medicine. To investigate the effects of various drying methods on the drying characteristics and internal quality of licorice slices, their color, browning, total phenol, total flavonoid, and active components (liquiritin and glycyrrhizic acid) were chosen as qualitative and quantitative evaluation indices. Our results revealed that VFD had the longest drying time, but it could effectively maintain the contents of total phenol, total flavonoid, and liquiritin and glycyrrhizic acid. The results also showed that VFD samples had the best color and the lowest degree of browning, followed by HAD, IR-HAD, and VPD. We think that VFD is the best approach to ensure that licorice is dry.
Collapse
Affiliation(s)
- Lichun Zhu
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
| | - Mengqing Li
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
| | - Wenxin Yang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
| | - Junyi Zhang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
| | - Xuhai Yang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
- Engineering Research Center for Production Mechanization of Oasis Special Economic Crop, Ministry of Education, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery, Shihezi 832003, China
| | - Qian Zhang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
- Engineering Research Center for Production Mechanization of Oasis Special Economic Crop, Ministry of Education, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery, Shihezi 832003, China
| | - Huting Wang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
6
|
Vilca R, Espinoza-Silva C, Alfaro-Cruz S, Ponce-Ramírez JC, Quispe-Neyra J, Alvarado-Zambrano F, Cortés-Avendaño P, Condezo-Hoyos L. Hass and Fuerte avocado (Persea americana sp.) oils extracted by supercritical carbon dioxide: Bioactive compounds, fatty acid content, antioxidant capacity and oxidative stability. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Cuéllar-Torres EA, Aguilera-Aguirre S, del Carmen Bañuelos-González M, Xoca-Orozco LÁ, Ortiz-Basurto RI, Montalvo-González E, Vega-Arreguín J, Chacón-López MA. Postharvest application effect of agave fructans on anthracnose disease, defense-related enzyme activities, and quality attributes in avocado fruit. Food Sci Biotechnol 2022; 31:1411-1421. [PMID: 36060563 PMCID: PMC9433478 DOI: 10.1007/s10068-022-01135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/17/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
The postharvest application of high degree of polymerization agave fructans (HDPAF) was tested, evaluating anthracnose disease, defense-related enzyme activities, and quality attributes in avocado fruit. Application of a 20% HDPAF solution showed a reduction in anthracnose severity (60%) and incidence (34%) compared to the other concentrations evaluated and the water-treated control. Polyphenoloxidase activity increased 4.6 times more 24 h after treatment. In addition, peroxidase and phenylalanine ammonia-lyase enzyme activity was 4.34 and 1.7 times higher than the control at 0.5 h after treatment. HDPAF retrieves the deceleration of both firmness loss and physiological weight loss compared to the control. Regarding quality parameters such as color, pH, total soluble solids, and titratable acidity, no significant differences were observed between treatments compared to the control; therefore, these parameters were not negatively affected by HDPAF treatments, but a positive effect on the induction of the defense system is shown.
Collapse
|
8
|
Özbek HN, Koç B, Koçak Yanık D, Göğüş F. Hot air‐assisted radiofrequency drying of avocado: Drying behavior and the associated effect on the characteristics of avocado powder. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hatice Neval Özbek
- Department of Food Engineering, Faculty of Engineering Gaziantep University Gaziantep Turkey
| | - Banu Koç
- Gastronomy and Culinary Arts Department, Faculty of Tourism Gaziantep University Gaziantep Turkey
| | - Derya Koçak Yanık
- Department of Food Engineering, Faculty of Engineering Gaziantep University Gaziantep Turkey
| | - Fahrettin Göğüş
- Department of Food Engineering, Faculty of Engineering Gaziantep University Gaziantep Turkey
| |
Collapse
|
9
|
Zuñiga-Martínez BS, Domínguez-Avila JA, Wall-Medrano A, Ayala-Zavala JF, Hernández-Paredes J, Salazar-López NJ, Villegas-Ochoa MA, González-Aguilar GA. Avocado paste from industrial byproducts as an unconventional source of bioactive compounds: characterization, in vitro digestion and in silico interactions of its main phenolics with cholesterol. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01117-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|