1
|
Chen X, Zhu L, Zhang H, Wu G, Cheng L, Zhang Y. Unraveling cereal physical barriers composed of cell walls and protein matrix: Insights from structural changes and starch digestion. Int J Biol Macromol 2024; 279:135513. [PMID: 39260655 DOI: 10.1016/j.ijbiomac.2024.135513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/24/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Physical barriers composed of cell walls and protein matrix in cereals, as well as their cooking changes, play important roles in starch digestion. In this study, the physical barriers of native and cooked highland barley (HB), brown rice (BR), and oats (OA) kernels and their contribution to starch digestion were investigated. The resistant starch content was similar in cereal flours, but varied among cooked kernels (HB > BR > OA: 45.05 %, 10.30 %, and 24.71 %). The water adsorption, gelatinization enthalpy, and decrease in hardness of HB kernels were lower than those of OA and BR kernels. Microstructural observations of native kernels showed that HB had the thickest cell walls. After cooking, the lowest cell wall deformation and a dense continuous network developed from the protein matrix were observed in HB kernels. During digestion, undigested starch granules encapsulated by the stable cell walls and strong protein network were observed in HB kernels, but not in BR or OA kernels. Furthermore, the heavily milled HB kernels still had more resistant starch than the intact OA and BR kernels. Therefore, the physical barriers of HB kernels exhibited stronger inhibition of starch gelatinization and digestion. Differences in cereal physical barriers led to various inhibitory effects.
Collapse
Affiliation(s)
- Xiaoyu Chen
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lilin Cheng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yayuan Zhang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
2
|
Cheng W, Fu M, Xie K, Meng L, Gao C, Wu D, Feng X, Wang Z, Tang X. Insights into the effect mechanism of freeze-thaw cycles on starch gel structure and quality characteristics of frozen extruded whole buckwheat noodles. Int J Biol Macromol 2024; 278:134577. [PMID: 39122075 DOI: 10.1016/j.ijbiomac.2024.134577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The effects of freeze-thaw cycles (FTC) on starch gel structure and quality characteristics of frozen extruded whole buckwheat noodles (FEWBN) were studied. The repeated FTC treatments induced the retrogradation of amylose which increased the compactness, crystallinity, hardness, and cooking time of FEWBN. However, with the increasing number of freeze-thaw cycles, the larger volume of ice crystals formed in the noodles destroyed the starch gel network structure to a certain extent, and led to the dehydration and syneresis of the noodles, and the quality deterioration. However, moderate amylose retrogradation occurred during the FTC treatment was found to be beneficial for the quality of FEWBN. After one time of FTC treatment, the cooking loss of 3.53 % was even lower compared with that without FTC treatment (4.61 %). After seven times of FTC treatment, the cooking loss of FEWBN was 6.53 %, and the breaking rate was still 0, indicating that FEWBN could resist the damage caused by temperature fluctuations on the internal structure of frozen food to a certain extent, and maintain good quality. This study establishes a fundamental basis for the development of buckwheat noodles with good freeze-thaw stability and high cooking quality.
Collapse
Affiliation(s)
- Weiwei Cheng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Meixia Fu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Kaiwen Xie
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Linghan Meng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Chengcheng Gao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Di Wu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiao Feng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhenjiong Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
3
|
Zhou X, Chen J, Zheng H, An D, Obadi M, Xu B. Explaining the improving effect of dough crumb-sheet composite rolling on fresh noodle quality: From microstructure and moisture distribution perspective. J Texture Stud 2024; 55:e12836. [PMID: 38702990 DOI: 10.1111/jtxs.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 05/06/2024]
Abstract
A new technique known as dough crumb-sheet composite rolling (DC-SCR) was used to improve the quality of fresh noodles. However, there is a dearth of theoretical investigations into the optimal selection of specific parameters for this technology, and the underlying mechanisms are not fully understood. Therefore, the effects of dough crumb addition times in DC-SCR on the texture, cooking, and eating quality of fresh noodles were first studied. Then, the underlying regulation mechanism of DC-SCR technology on fresh noodles was analyzed in terms of moisture distribution and microstructure. The study demonstrated that the most significant enhancement in the quality of fresh noodles was achieved by adding dough crumbs six times. Compared with fresh noodles made without the addition of dough crumbs, the initial hardness and chewiness of fresh noodles made by adding six times of dough crumbs increased by 25.32% and 46.82%, respectively. In contrast, the cooking time and cooking loss were reduced by 28.45% and 29.69%, respectively. This quality improvement in fresh noodles made by DC-SCR came from the microstructural differences of the gluten network between the inner and outer layers of the dough sheet. A dense structure on the outside and a loose structure on the inside could endow the fresh noodles made by DC-SCR with higher hardness, a shortened cooking time, and less cooking loss. This study would provide a theoretical and experimental basis for creating high-quality fresh noodles.
Collapse
Affiliation(s)
- Xiaoqian Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haitao Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Di An
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
4
|
Feng Y, Zhu J, Li Y, Cheng Z. Effects of Grinding Methods of Tartary Buckwheat Leaf Powder on the Characteristics and Micromorphology of Wheat Dough. Foods 2024; 13:1233. [PMID: 38672905 PMCID: PMC11048881 DOI: 10.3390/foods13081233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The functional components in tartary buckwheat leaf powder can give flour products higher nutritional value. To comprehensively realize the high-value utilization of tartary buckwheat and its by-products, electric stone mill powder (EMP), ultra-fine mill powder (UMP), steel mill powder (SMP), and grain mill powder (GMP) from tartary buckwheat leaves were used in the preparation of wheat dough, and this was used to explore their effects on dough properties and protein microstructure. With an increase in tartary buckwheat leaf powder, the hydration characteristics, protein weakening rate, and starch gelatinization characteristics of the dough changed, and the water holding capacity and swelling capacity decreased. The retrogradation value increased, which could prolong the shelf life of related products. The water solubility of the dough showed an upward trend and was the lowest at 10% UMP. The addition of UMP produced a more uniform dough stability time and the lowest degree of protein weakening, which made the dough more resistant to kneading. An increasing amount of tartary buckwheat leaf powder augmented the free sulfhydryl content of the dough and decreased the disulfide bond content. The disulfide bond content of the dough containing UMP was higher than that of the other doughs, and the stability of the dough was better. The peaks of the infrared spectrum of the dough changed after adding 10% UMP and 20% EMP. The content of α-helical structures was the highest at 10% UMP, and the content of ordered structures was enhanced. The polymerization of low molecular weight proteins to form macromolecular polymers led to a reduction in surface hydrophobic regions and the aggregation of hydrophobic groups. The SEM results also demonstrated that at 10% tartary buckwheat leaf powder, the addition of UMP was significantly different from that of the other three leaf powders, and at 20%, the addition of EMP substantially altered the structure of the dough proteins. Considering the effects of different milling methods and different added amounts of tartary buckwheat leaf powder on various characteristics of dough, 10% UMP is the most suitable amount to add to the dough.
Collapse
Affiliation(s)
| | | | - Yunlong Li
- Institute of Functional Food of Shanxi, Shanxi Agricultural University, Taiyuan 030031, China; (Y.F.); (J.Z.); (Z.C.)
| | | |
Collapse
|
5
|
Li Y, Zheng H, Qi Y, Ashraf J, Zhu S, Xu B. Folding during sheeting improved qualities of dried noodles through gluten network proteins. J Texture Stud 2024; 55:e12826. [PMID: 38528687 DOI: 10.1111/jtxs.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/28/2024] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
The texture properties after cooking for 12 min were selected to optimize the sheeting parameters, and the results were verified using the comprehensive quality of dried noodles. The distribution of water, characteristics of gluten protein, and interaction between gluten network and starch were analyzed to clarify the mechanism of the quality of dried noodles. Results showed that the optimal folding angle was 45°, under this condition, the largest anti-extension displacement perpendicular to the rolling direction and the smallest cooking loss were obtained. The hardness and smoothness of cooked noodles increased by about 14% to 17%. Further, the transverse relaxation time of strongly bound water significantly decreased, while the relative content and binding strength increased. The hydrogen bonds and α-helix contents increased by about 68.8% and 53.1%, respectively. Folding and sheeting enhanced the combination of starch granules and gluten network causing, decreased in the average length and porosity of the gluten network. It is depicted from the results that the method of optimizing the sheeting process based on the texture of dried noodles cooked for 12 min was feasible. And the 45° folding and sheeting could help to improve the quality of dried noodles.
Collapse
Affiliation(s)
- Yaojia Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haitao Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yajing Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jawad Ashraf
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shuyun Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
6
|
Ding X, Quan ZY, Chang WP, Li L, Qian JY. Effect of egg white protein on the protein structure of highland barley noodles during processing. Food Chem 2024; 433:137320. [PMID: 37683472 DOI: 10.1016/j.foodchem.2023.137320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
The effect of egg white protein on the protein structure of highland barely noodles during processing was investigated, and the underlying mechanism was examined. Egg white protein significantly influenced the stress relaxation of highland barley dough. 1% and 2% egg white protein improved the cooking and textural properties of highland barely noodles. During mixing and sheeting, it improved the structure of the protein network by promoting protein aggregation and cross-linking, whereas its effect on non-covalent interactions was quite different. During cooking, egg white protein promoted protein aggregation and cross-linking via heat-induced polymerization, and the distribution regularity of the protein network was improved as its flexibility diminished. The protein structure of highland barely noodles during processing was closely related to the addition amount of egg white protein, and the cooking, textural, and chemical interactions of highland barely noodles during processing changed considerably when more than 3% egg white protein was added.
Collapse
Affiliation(s)
- Xiangli Ding
- School of Tourism and Culinary Science, Yangzhou University & Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Huayang Xilu 196, Yangzhou, Jiangsu 225127, PR China; Wuxi Awesomen Biotechnology Co., LTD, Yanyu Lu 506, Wuxi, Jiangsu 214122, PR China
| | - Zhen-Yang Quan
- School of Tourism and Culinary Science, Yangzhou University & Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Huayang Xilu 196, Yangzhou, Jiangsu 225127, PR China
| | - Wen-Ping Chang
- School of Tourism and Culinary Science, Yangzhou University & Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Huayang Xilu 196, Yangzhou, Jiangsu 225127, PR China
| | - Lun Li
- Wuxi Awesomen Biotechnology Co., LTD, Yanyu Lu 506, Wuxi, Jiangsu 214122, PR China
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, PR China.
| |
Collapse
|
7
|
Deng X, Chang X, Chen L, Ding W, Wang Y, Li J, Hao Z. Ultrasonic-assisted resting of Tartary buckwheat dough: Study on its effect and mechanism. ULTRASONICS SONOCHEMISTRY 2023; 101:106656. [PMID: 37918294 PMCID: PMC10643503 DOI: 10.1016/j.ultsonch.2023.106656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Utilizing natural hypoglycemic ingredients in staple foods is a safe and effective way to improve diabetes. High Tartary buckwheat noodles have garnered research interest due to their hypoglycemic properties. However, increasing the Tartary buckwheat content poses challenges in noodle processing and affects their edible quality. Effective resting is a critical link to improve the processing performance of noodle and edible quality of noodle. Therefore, research was conducted on ultrasound assisted resting of Tartary buckwheat dough (TBD) to explore its feasibility and mechanism in improving the quality of Tartary buckwheat noodle. The results indicated that ultrasound treatment effectively promoted the migration of weakly-bound water towards strongly-bound water, thereby enhancing the gluten protein network structure and increasing the α-helix and β-sheet contents significantly (p < 0.05). Furthermore, Texture analysis indicated decreased hardness and adhesion, and increased elasticity and stretching distance in the final noodles. Ultrasound-assisted maturation pre-treatment shortens TBD's dough's resting time and improves noodle quality, according to this study.
Collapse
Affiliation(s)
- Xiangze Deng
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xianhui Chang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Lei Chen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenping Ding
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuehui Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Jun Li
- Shanghai Jiujiangtang Food Sci-tech Co., Ltd, China
| | - Zhiwei Hao
- Shanghai Jiujiangtang Food Sci-tech Co., Ltd, China
| |
Collapse
|
8
|
Qi Y, Cheng J, Chen Y, Xu B. Effect of sodium carbonate on the properties of seventy percent of Tartary buckwheat composite flour-based doughs and noodles and the underlying mechanism. J Texture Stud 2023; 54:947-957. [PMID: 37661756 DOI: 10.1111/jtxs.12798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
The impact of Na2 CO3 on the properties of doughs and noodles containing 70% Tartary buckwheat flour was investigated. Low-field 1 H nuclear magnetic resonance showed the mobility of water in the doughs significantly declined with the addition content of alkali from 0% to 0.9%. Na2 CO3 promoted the transformation from free sulfhydryl groups to disulfide bonds in doughs because the sulfhydryl groups in cysteine preferred to form thiolate anion and then oxidate under alkaline conditions. As for non-covalent chemical interactions, a significant increase of hydrogen bonds and a decrease of hydrophobic interactions were observed after Na2 CO3 addition. Quantitative analysis of microstructure showed that more uniform and denser gluten networks with higher branching rate and shorter average protein length and width formed in the doughs with 0.3%-0.6% of Na2 CO3 . The aggregated glutenin macropolymer and enhanced protein structure led to significantly stronger tensile of Tartary buckwheat dough sheets, which could meet the demand of continuous processing in the factory. Dough with alkali had higher swelling power and pasting viscosities, contributing to higher water absorption, and improved textural attributes of cooked noodles. This study demonstrated the possibility of adding Na2 CO3 at a moderate level for promoting the sheeting, cooking, and eating properties of high Tartary buckwheat flour composite noodles.
Collapse
Affiliation(s)
- Yajing Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jiahao Cheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yu Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Jiang S, Xu C, Jiang Y, Xu B, Liu S. Cantilever beam bending as a potential method to determine the elasticity of cooked Udon noodles. J Texture Stud 2023. [PMID: 37926098 DOI: 10.1111/jtxs.12810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/22/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Elasticity is a critical measure of the eating quality of Udon noodles. To characterize the elasticity of Udon noodles, an instrumental method based on the cantilever beam bending test was established. Firstly, the optimum test parameters were determined. Then, texture profile analysis, compression, tension, and cantilever beam bending methods were used to measure the elasticity of 25 commercial Udon noodles with different shapes and sizes, and the correlations between elasticity obtained by the above instrumental methods and sensory evaluation were analyzed. Finally, how the shape and size of Udon noodles influenced their elasticity was discussed in detail. Within the deflection of 2.0 mm, the force increased approximately linearly with increasing deflection, and moderate loading speed (0.5-1.0 mm/s) should be used in the cantilever beam bending experiments to improve the accuracy of results. The bending stiffness obtained by the cantilever beam bending method exhibited a higher coefficient of variation and stronger correlation with the elasticity of sensory evaluation than other instrumental methods. Furthermore, the Udon noodle sample with a higher size, especially the thickness, had higher elasticity, and the Udon noodle sample with a rectangular cross-section showed higher elasticity than that with a circular cross-section. In conclusion, the bending stiffness determined by the cantilever beam bending method could be used to characterize the elasticity of cooked Udon noodles.
Collapse
Affiliation(s)
- Song Jiang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Congmei Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yiyi Jiang
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Shuyi Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Du Y, Dai Z, Hong T, Bi Q, Fan H, Xu X, Xu D. Effect of sourdough on the quality of whole wheat fresh noodles fermented with exopolysaccharide lactic acid bacteria. Food Res Int 2023; 172:113108. [PMID: 37689876 DOI: 10.1016/j.foodres.2023.113108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
In this study, the impact of exopolysaccharides (EPS)-positive strain Weissella cibaria (W. cibaria) fermented sourdough on the quality of whole wheat fresh noodles (WWNs) and its improvement mechanisms were studied. The optimal fermentation conditions were found to be 30% sucrose content, fermented at 25 °C for 12 h, which yielded the highest EPS, 28.06 g/kg, in the W. cibaria fermented sourdough with sucrose (DW+). During storage, the sourdough reduced polyphenol oxidase activities and delayed the browning rate of noodles. The DW+ increased the hardness by 11.98% from 2184.99 to 2446.83 g, and the adhesiveness increased by 19.60%, i.e., from 72.01 to 86.13 g∙s of the noodles. The EPS mitigated acidification of sourdough, prevented the disaggregation of glutenin macropolymers (GMP), and increased sourdough elastic modulus. In addition, scanning electron microscope and confocal laser scanning microscopy of noodles containing EPS sourdough also demonstrated the uniform distribution of gluten proteins. The starch granules were also closely embedded in the gluten network. Thus, the present work indicated that the EPS produced sourdough delayed browning and improved the WWNs texture, indicating its potential to enhance the quality of whole grain noodles.
Collapse
Affiliation(s)
- Yake Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Zhen Dai
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Tingting Hong
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Qing Bi
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Haoran Fan
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, PR China.
| | - Xueming Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Dan Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China.
| |
Collapse
|
11
|
Wang L, Tang H, Li Y, Guo Z, Zou L, Li Z, Qiu J. Milling of buckwheat hull to cell-scale: Influences on the behaviors of protein and starch in dough and noodles. Food Chem 2023; 423:136347. [PMID: 37207513 DOI: 10.1016/j.foodchem.2023.136347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/14/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
Superfine grinding of insoluble dietary fiber (IDF) is a promising method to improve the product quality by regulating the interaction between protein and starch. In this study, the effects of buckwheat-hull IDF powder, at cell-scale (50-10 μm) and tissue-scale (500-100 μm), on the dough rheology and noodle quality were investigated. Results showed that cell-scale IDF with higher exposure of active groups increased the viscoelasticity and deformation resistance of the dough, due to the aggregation of protein-protein and protein-IDF. Compared with the control sample, the addition of tissue-scale or cell-scale IDF significantly increased the starch gelatinization rate (β, C3-C2) and decreased the starch hot-gel stability. Cell-scale IDF increased the rigid structure (β-sheet) of protein, thus improving the noodle texture. The decreased cooking quality of cell-scale IDF-fortified noodles was related to the poor stability of rigid gluten matrix and the weakened interaction between water and macromolecules (starch and protein) during cooking.
Collapse
Affiliation(s)
- Lijuan Wang
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Hanqi Tang
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Yang Li
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Zicong Guo
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Zaigui Li
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China.
| | - Ju Qiu
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
12
|
Liu L, Hu X, Zou L. Wheat polysaccharides and gluten effects on water migration and structure in noodle doughs: An 1H LF-NMR study. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2023.103628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Screening for a rapid evaluation method for the sheeting effect on dough and explicating it from the view of three-dimensional gluten. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Guo L, Wang Q, Chen H, Wu D, Dai C, Chen Y, Ma Y, Wang Z, Li H, Cao X, Gao X. Moderate addition of B-type starch granules improves the rheological properties of wheat dough. Food Res Int 2022; 160:111748. [DOI: 10.1016/j.foodres.2022.111748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
|
15
|
Ge Z, Wang W, Xu M, Gao S, Zhao Y, Wei X, Zhao G, Zong W. Effects of Lactobacillus plantarum and Saccharomyces cerevisiae co-fermentation on the structure and flavor of wheat noodles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4697-4706. [PMID: 35191031 DOI: 10.1002/jsfa.11830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Although traditional fermented noodles possess high eating quality, it is difficult to realize large-scale industrialization as a result of the complexity of spontaneous fermentation. In present study, commercial Lactobacillus plantarum and Saccharomyces cerevisiae were applied in the preparation of fermented noodles. RESULTS The changes in the structural characteristics and aroma components of noodles after fermentation were investigated via scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), low-field magenetic resonance imaging, electronic nose, and simultaneous distillation and extraction/gas chromatography-mass spectrometry (GC-MS) analysis. SEM images revealed that co-fermentation of the L. plantarum and S. cerevisiae for 10-40 min enhanced the continuity of the gluten network and promoted the formation of pores. FTIR spectra analysis showed that the co-fermentation increased significantly (P < 0.05) the proportion of α-helices of noodles gluten protein, enhancing the orderliness of the molecular structure of protein. After fermentation for 10-40 min, the signal density of hydrogen protons increased from the surface to the core, indicating that the water in the noodles migrated inward during a short fermentation process. The results of multivariate statistical analysis demonstrated that the main aroma differences between unfermented and fermented noodles were mainly in hydrocarbons, aromatic compounds and inorganic sulfides. GC-MS analysis indicated that the main volatile compounds detected were 2, 4-di-tert-butylphenol, bis (2-ethylhexyl) adipate, butyl acetate, dibutyl phthalate, dioctyl terephthalate, bis (2-ethylhexyl) phthalate, pentanol and 2-pentylfuran, etc. CONCLUSION: Co-fermentation with L. plantarum and S. cerevisiae improved the structure of gluten network and imparted more desirable volatile components to wheat noodles. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhenzhen Ge
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Weijing Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- HaoXiangNi Health Food Co., Ltd, Zhengzhou, China
| | - Mingyue Xu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Shanshan Gao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuxiang Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xiaopeng Wei
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Guangyuan Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Wei Zong
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| |
Collapse
|
16
|
Zhang X, Hua Y, Liu Y, He M, Ju Z, Dai X. Wide belt sowing improves the grain yield of bread wheat by maintaining grain weight at the backdrop of increases in spike number. FRONTIERS IN PLANT SCIENCE 2022; 13:992772. [PMID: 36061798 PMCID: PMC9433909 DOI: 10.3389/fpls.2022.992772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Increasing the seeding belt width from 2 to 3 cm (conventional drilling sowing, CD) to 8-10 cm (wide belt sowing, WB) can markedly improve the grain yield of bread wheat. However, there are insufficient data to explain how WB affects dry matter (DM) remobilization, pre- and post-anthesis production, and ultimately grain weight and grain yield. In the present study, four bread wheat cultivars (Jimai44, Taishan27, Gaoyou5766, and Zhouyuan9369) with similar phenology characteristic were selected as experimental materials and two sowing patterns (CD and WB) were applied during the 2018-2019 and 2019-2020 growing seasons, to investigate the effects of sowing pattern on grain yield and its components of bread wheat. The results showed that WB increased the post-anthesis rate of canopy apparent photosynthesis (CAP) in comparison with CD, by 19.73-133.68%, across the two seasons and four bread wheat cultivars. Furthermore, WB significantly increased the activities of superoxide dismutase, peroxidase, and catalase, and decreased the malondialdehyde content of the flag and penultimate leaf, thereby extending the duration of the high-value CAP period by 1.95-2.51 days. The improved rate and duration of CAP in WB led to an increase in post-anthesis DM production of 13.33-23.58%, thus ensuring DM distribution to the grain of each bread wheat cultivar. Consequently, in WB, the grain weight was maintained, the grain yield was increased markedly by 9.65-15.80%, at the backdrop of increases in spike number and in turn grain number per unit area. In summary, WB could be applied widely to obtain a high yield of bread wheat.
Collapse
Affiliation(s)
- Xiu Zhang
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture and Rural of Affairs, Agronomy College of Shandong Agricultural University, Tai’an, China
| | - Yifan Hua
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture and Rural of Affairs, Agronomy College of Shandong Agricultural University, Tai’an, China
| | - Yunjing Liu
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture and Rural of Affairs, Agronomy College of Shandong Agricultural University, Tai’an, China
| | - Mingrong He
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture and Rural of Affairs, Agronomy College of Shandong Agricultural University, Tai’an, China
| | - Zhengchun Ju
- Shandong Provincial Department of Agriculture and Rural Affairs, Shandong Agricultural Technology Extension Center, Jinan, China
| | - Xinglong Dai
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture and Rural of Affairs, Agronomy College of Shandong Agricultural University, Tai’an, China
| |
Collapse
|
17
|
Wang J, Ding Y, Wang M, Cui T, Peng Z, Cheng J. Moisture Distribution and Structural Properties of Frozen Cooked Noodles with NaCl and Kansui. Foods 2021; 10:foods10123132. [PMID: 34945683 PMCID: PMC8701863 DOI: 10.3390/foods10123132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The effects of NaCl (1-3%) and kansui (0.5-1.5%) on the quality of frozen cooked noodles (FCNs) were investigated, which provided a reference for alleviating the quality deterioration of FCNs. Textural testing illustrated that the optimal tensile properties were observed in 2% NaCl (N-2) and the maximum hardness and chewiness were reached at 1% kansui (K-1). Compared to NaCl, the water absorption and cooking loss of recooked FCNs increased significantly with increasing kansui levels (p < 0.05). Rheological results confirmed NaCl and kansui improved the resistance to deformation and recovery ability of thawed dough; K-1 especially had the highest dough strength. SEM showed N-2 induced a more elongated fibrous protein network that contributed to the extensibility, while excessive levels of kansui formed a deformed membrane-like gluten network that increased the solid loss. Moisture analysis revealed that N-2 reduced the free water content, while K-1 had the lowest freezable water content and highest binding capacity for deeply adsorbed water. The N-2 and K-1 induced more ordered protein secondary structures with stronger intermolecular disulfide bonds, which were maximally improved in K-1. This study provides more comprehensive theories for the strengthening effect of NaCl and kansui on FCNs quality.
Collapse
|