1
|
Hao J, Xu H, Yan P, Yang M, Mintah BK, Dai C, Zhang R, Ma H, He R. Application of fixed-frequency ultrasound in the cultivation of Saccharomyces cerevisiae for rice wine fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6417-6430. [PMID: 38506633 DOI: 10.1002/jsfa.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/20/2024] [Accepted: 03/20/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Rice wine (RW) fermentation is limited by its long fermentation time, weak taste and unpleasant flavors such as oil and odor. In this study, a novel ultrasound technology of Saccharomyces cerevisiae was used with the aim of improving fermentation efficiency and volatile flavor quality of RW. RESULTS The results showed that fixed-frequency ultrasonic treatment (28 kHz, 45 W L-1, 20 min) of S. cerevisiae seed culture at its logarithmic metaphase significantly increased the biomass and alcohol yield by 31.58% and 26.45%, respectively, and reduced fermentation time by nearly 2 days. Flavor analysis indicated that the flavor compounds in RW, specifically the esters and alcohols, were also increased in quantity after the ultrasonic treatment of S. cerevisiae seed liquid. Isobutyl acetate, ethyl butyrate, ethyl hexanoate and phenethyl acetate contents were increased by 78.92%, 129.19%, 7.79% and 97.84%, respectively, as compared to the control. CONCLUSION Ultrasonic treatment of S. cerevisiae reduced fermentation time and enhanced the flavor profile of RW. This study could provide a theoretical and/or technological basis for the research and development of RW. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Hao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haining Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Pengfei Yan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Mengyuan Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | | | - Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Rong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Xie M, Ma Y, An F, Yu M, Zhang L, Tao X, Pan G, Liu Q, Wu J, Wu R. Ultrasound-assisted fermentation for antioxidant peptides preparation from okara: Optimization, stability, and functional analyses. Food Chem 2024; 439:138078. [PMID: 38086234 DOI: 10.1016/j.foodchem.2023.138078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024]
Abstract
This study investigated the effects of ultrasound-assisted fermentation (UAF) on the preparation of antioxidant peptides (UAFP) from okara and examined their content, chemical structures, and antioxidant activity. After the optimal ultrasonic processing (time, 20 min; frequency, 45 KHz; power, 120 W/L), the peptide content yield reached the maximum of 12.36 ± 0.02 mg/mL, and their DPPH free radical scavenging rate was 65.15 ± 0.32 %. UAF increased the number of globular aggregates with deeper gullies, a looser structure, and higher porosity. The experiments conducted using the oxidative stress injury model of HepG2 cells showed that okara UAFP promoted cell growth and exerted a protective effect. Moreover, ultrasonic treatment remarkably improved the environmental stability (NaCl, glucose, sodium benzoate, temperature, pH, metal ions) and antioxidant activity of UAFP. Concisely, optimal ultrasonic processing can aid the fermentation of agroindustrial by-products to prepare antioxidant peptides, such as natural food antioxidant peptides from soybean waste.
Collapse
Affiliation(s)
- Mengxi Xie
- Food and Processing Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, PR China
| | - Yuanyuan Ma
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Feiyu An
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Miao Yu
- Food and Processing Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, PR China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Xinyu Tao
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Guoyang Pan
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Qu Liu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China.
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China.
| |
Collapse
|
3
|
Betchem G, Dabbour M, Tuly JA, Lu F, Liu D, Monto AR, Dusabe KD, Ma H. Effect of magnetic field-assisted fermentation on the in vitro protein digestibility and molecular structure of rapeseed meal. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3883-3893. [PMID: 38270454 DOI: 10.1002/jsfa.13269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/08/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND There has been a significant growth in demand for plant-derived protein, and this has been accompanied by an increasing need for sustainable animal-feed options. The aim of this study was to investigate the effect of magnetic field-assisted solid fermentation (MSSF) on the in vitro protein digestibility (IVPD) and functional and structural characteristics of rapeseed meal (RSM) with a mutant strain of Bacillus subtilis. RESULTS Our investigation demonstrated that the MSSF nitrogen release rate reached 86.3% after 96 h of fermentation. The soluble protein and peptide content in magnetic field feremented rapeseed meal reached 29.34 and 34.49 mg mL-1 after simulated gastric digestion, and the content of soluble protein and peptide in MF-FRSM reached 61.81 and 69.85 mg mL-1 after simulated gastrointestinal digestion, which significantly increased (p > 0.05) compared with the fermented rapeseed meal (FRSM). Studies of different microstructures - using scanning electron microscopy (SEM) and atomic force microscopy (AFM) - and protein secondary structures have shown that the decline in intermolecular or intramolecular cross-linking leads to the relative dispersion of proteins and improves the rate of nitrogen release. The smaller number of disulfide bonds and conformational alterations suggests that the IVPD of RSM was improved. CONCLUSIONS Magnetic field-assisted solid fermentation can be applied to enhance the nutritional and protein digestibility of FRSM. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Garba Betchem
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Mokhtar Dabbour
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Jamila Akter Tuly
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Feng Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Dandan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Abdul Razak Monto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Zhu J, Lu F, Liu D, Zhao X, Chao J, Wang Y, Luan Y, Ma H. The process of solid-state fermentation of soybean meal: antimicrobial activity, fermentation heat generation and nitrogen solubility index. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3228-3234. [PMID: 38072810 DOI: 10.1002/jsfa.13209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Bacillus amyloliquefaciens has excellent protease production ability and holds great prospects for application in the solid-state fermentation of soybean meal (SBM). RESULTS Among eight strains of bacteria, Bacillus amyloliquefaciens subsp. plantarum CICC 10265, which exhibited higher protease production, was selected as the fermentation strain. The protease activity secreted by this strain reached 106.41 U mL-1 . The microbial community structure differed significantly between natural fermentation and inoculation-enhanced fermented soybean meal (FSBM), with the latter showing greater stability and inhibition of miscellaneous bacterial growth. During fermentation, the temperature inside the soybean meal increased, and the optimal environmental temperature for FSBM was found to be between 35 and 40 °C. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and nitrogen solubility index (NSI) results demonstrated that solid-state fermentation had a degrading effect on highly denatured proteins in SBM, resulting in an NSI of 67.1%. CONCLUSION Bacillus amyloliquefaciens subsp. plantarum CICC 10265 can enhance the NSI of SBM in solid-state fermentation and inhibit the growth of miscellaneous bacteria. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junsong Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Feng Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Dandan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Xiaoxue Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jiapin Chao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yucheng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Yu Luan
- Zhenjiang Food and Drug Supervision and Inspection Center, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Ruan S, Li Y, Lu F, Liu X, Zhou A, Ma H. Low-intensity ultrasound-assisted adaptive laboratory evolution of Bacillus velezensis for enhanced production of peptides. ULTRASONICS SONOCHEMISTRY 2024; 103:106805. [PMID: 38354424 PMCID: PMC10876604 DOI: 10.1016/j.ultsonch.2024.106805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
This work aimed to explore low-intensity ultrasound-assisted adaptive laboratory evolution (US-ALE) of Bacillus velezensis and fermentation performance of mutant strains were investigated by nitrogen transformation metabolism. Results showed ultrasound accelerated the process of adaptive evolution and enhanced cell dry weight, amylase and protease activity of mutant strains, accompanied with the improved transformation abilities of NO-3-N to NH4+-N. Compared with original strain, the total peptide-N, peptide-N (<3 kDa) and autolytic peptide-N of mutant strains increased by the maximum 23.17%, 66.07% and 30.30%, respectively, based on ideal fermentation medium. According to the actual liquid-state fermentation of soybean meal and corn gluten meal with mutant strains, the highest peptide yields of 50.63% and 23.67% were noticed in mutant strain US-ALE-BV3, accompanied with the improved amino acid composition by bacterial autolysis technology. Thus, this study showed that low-intensity ultrasound could accelerate the process of adaptive evolution and US-ALE will provide more possibilities for modifying fermentation strains.
Collapse
Affiliation(s)
- Siyu Ruan
- College of Tea and Food Science Technology, Jiangsu Polytechnic College of Agriculture and Forestry, 19 Wenchangdong Road, Jurong, Jiangsu 212400, PR China
| | - Yunliang Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| | - Feng Lu
- Medical Enzyme Engineering Center, CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Xiaoshuang Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Anqi Zhou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
6
|
Dai C, Shu Z, Xu X, Yan P, Dabbour M, Kumah Mintah B, Huang L, He R, Ma H. Enhancing the growth of thermophilic Bacillus licheniformis YYC4 by low-intensity fixed-frequency continuous ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 100:106611. [PMID: 37757602 PMCID: PMC10550775 DOI: 10.1016/j.ultsonch.2023.106611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
The effect of low-intensity fixed-frequency continuous ultrasound (LIFFCU) on the growth of Bacillus licheniformis YYC4 was investigated. The changes in morphology and activity of the organism, contributing to the growth were also explored. Compared with the control, a significant increase (48.95%) in the biomass of B. licheniformis YYC4 (at the logarithmic metaphase) was observed following the LIFFCU (28 kHz, 1.5 h and 120 W (equivalent to power density of 40 W/L)) treatment. SEM images showed that ultrasonication caused sonoporation, resulting in increased membrane permeability, evidenced by increase in cellular membrane potential, electrical conductivity of the culture, extracellular protein and nucleic acid, and intracellular Ca2+ content. Furthermore, LIFFCU action remarkably increased the extracellular protease activity, volatile components of the culture medium, microbial metabolic activity, and spore germination of the strain. Therefore, LIFFCU could be used to efficiently promote the growth of targeted microorganisms.
Collapse
Affiliation(s)
- Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Zhenzhen Shu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xueting Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Pengfei Yan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | | | - Liurong Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
7
|
Du T, Huang J, Xiong S, Zhang L, Xu X, Xu Y, Peng F, Huang T, Xiao M, Xiong T. Effects of enzyme treatment on the antihypertensive activity and protein structure of black sesame seed (Sesamum indicum L.) after fermentation pretreatment. Food Chem 2023; 428:136781. [PMID: 37418882 DOI: 10.1016/j.foodchem.2023.136781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
Effects of enzyme treatment on the hypertensive potential and protein structure of black sesame seed (BSS) were investigated. Compared with BSS, Angiotensin-converting enzyme (ACE) inhibition of fermented black sesame seed (FBSS) has significantly improved after acid protease processing and reached 75.39% at 2 U/g in 3 h. Meanwhile, the zinc chelating ability and antioxidant activity of FBSS hydrolysate as well as surface hydrophobicity, free sulfhydryl content, and peptide content of FBSS protein, were significantly increased. The results illustrated that this strategy promoted the protein unfolding and exposure of hydrophobic residues, thus contributing toward enzymatic hydrolysis. Secondary structure results indicated that the α-helix of FBSS protein and β-sheet of BSS protein decreased after hydrolyzing. The differences in ACE inhibition may also result from the difference in peptide sequence except for peptide content. In conclusion, the combination of fermentation pretreatment and enzyme treatment is an effective method to enhance the antihypertensive potential of BSS.
Collapse
Affiliation(s)
- Tonghao Du
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Jinqing Huang
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, No. 602 Nanlian Road, Nanchang 330200, China
| | - Shijin Xiong
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Linli Zhang
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Xiaoyan Xu
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yazhou Xu
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Fei Peng
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Tao Huang
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330052, China
| | - Muyan Xiao
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330052, China
| | - Tao Xiong
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
8
|
Yu Y, Yu W, Jin Y. Peptidomics analysis of Jiang-Flavor Daqu from high-temperature fermentation to mature and in different preparation season. J Proteomics 2023; 273:104804. [PMID: 36587731 DOI: 10.1016/j.jprot.2022.104804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/23/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022]
Abstract
Jiang-Flavor Daqu (JFDQ) is a grain-type fermented starter for brewing Chinese liquor. Peptides, the metabolites of proteins in JFDQ, are important for the quality and flavor of JFDQ or even the liquor. The peptide variations in the progress of JFDQ preparation were investigated using RPLC-MS/MS. The JFDQ after high-temperature fermenting (HTF_SU) and after ripening (M_SU), as well as the mature JFDQ prepared in spring (M_SP) and in summer (M_SU), were compared respectively. These two groups were investigated from peptides, precursor proteins, abundance, interactions, and potential antimicrobial peptides (pAMPs). A total of 177, 158, and 262 peptides from HTF_SU, M_SP, and M_SU were identified, respectively. Significant differences (P < 0.01) in the abundance of shared peptides were found in different fermentation stage group (HTF_M), and stronger positive correlations were observed in different preparation season group (MSP_MSU). The interactions of the shared peptides in HTF_M and in MSP_MSU were investigated respectively. In addition, 8 pAMPs in HTF_SU, 5 in M_SP, and 22 in M_SU were predicted using CAMPR3, and their core functional regions were analyzed. This systematic study demonstrated the influences of fermentation stage and preparation season on the peptide profiles in JFDQ, which would provide theoretical guidance and be helpful for JFDQ production. SIGNIFICANCE: Peptidomics analysis showed that the peptide profiles of JFDQ varied in different fermentation stages and different preparation seasons, which mainly resulted from the peptides with high abundance, high interaction degrees, and potential antimicrobial activity, as well as the important precursor proteins such as glutens. This systematic study would benefit for the insufficiency of peptide research of JFDQ till now, and provide theoretical guidance for JFDQ production.
Collapse
Affiliation(s)
- Yang Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Wenhao Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yan Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.
| |
Collapse
|
9
|
Tian L, Zhang Q, Cong Y, Yan W. Preparation, Identification and Application of β-Lactoglobulin Hydrolysates with Oral Immune Tolerance. Foods 2023; 12:foods12020307. [PMID: 36673400 PMCID: PMC9857568 DOI: 10.3390/foods12020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
To reveal, for the first time, the mechanism of T cell epitope release from β-lactoglobulin that induces oral immune tolerance, a strategy for the prediction, preparation, identification and application of β-lactoglobulin hydrolysate with oral immune tolerance was established using the bioinformatics method, hydrolysis, mass spectrometry, T cell proliferation assays and animal experiments. Some T cell epitope peptides of β-lactoglobulin were identified for the first time. The hydrolysates of trypsin, protamex and papain showed oral tolerance, among which the hydrolysates of protamex and papain have been reported for the first time. Although the neutral protease hydrolysate contained T cell epitopes, it still had allergenicity. The mechanism behind oral immune tolerance induction by T cell epitopes needs to be further revealed. In addition, the trypsin hydrolysate with abundant T cell epitopes was added to whey protein to prepare the product for oral immune tolerance. Overall, this study provides insights into the development of new anti-allergic milk-based products and their application in the clinical treatment of milk allergies.
Collapse
Affiliation(s)
- Linghan Tian
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Qianqian Zhang
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yanjun Cong
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Correspondence:
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| |
Collapse
|
10
|
Screening and Characteristics of Marine Bacillus velezensis Z-1 Protease and Its Application of Enzymatic Hydrolysis of Mussels to Prepare Antioxidant Active Substances. Molecules 2022; 27:molecules27196570. [PMID: 36235106 PMCID: PMC9572009 DOI: 10.3390/molecules27196570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Bacillus velezensis is a type of microorganism that is beneficial to humans and animals. In this work, a protease-producing B. velezensis strain Z-1 was screened from sludge in the sea area near Qingdao (deposit number CGMCC No. 25059). The response surface methodology was used to analyze protease production, and the optimal temperature was 37.09 °C and pH 7.73 with the addition of 0.42% NaCl, resulting in maximum protease production of 17.64 U/mL. The optimum reaction temperature and pH of the protease of strain Z-1 were 60 °C and 9.0, respectively. The protease had good temperature and pH stability, and good stability in solvents such as methanol, ethanol and Tween 80. Ammonium, NH4+,and Mn2+ significantly promoted enzyme activity, while Zn2+ significantly inhibited the enzyme activity. The protease produced by strain Z-1 was used for the enzymolysis of mussel meat. The mussel hydrolysate exhibited good antioxidant function, with a DPPH free radical removal rate of 75.3%, a hydroxyl free radical removal rate of 75.9%, and a superoxide anion removal rate of 84.4%. This study provides a reference for the application of B. velez protease and the diverse processing applications of mussel meat.
Collapse
|