Lin Z, Wang G, Zhang K, Jiang S, Li S, Yang H. Metabolomics investigation of global responses of Cronobacter sakazakii against common sanitizing in infant formula processing environments.
Food Res Int 2023;
172:113162. [PMID:
37689917 DOI:
10.1016/j.foodres.2023.113162]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
Cronobacter sakazakii, an opportunistic bacterium, has raised a serious outbreak in powdered infant formula recent years. In this work, four sanitizing strategies used during infant formula processing, including chlorine, quaternary ammonium chloride (QAC), 60 °C heating, and malic acid (MA), were utilized against C. sakazakii among planktonic, air-dried (A), and air-dried & washed (AW) state, followed by an exploration of the metabolic responses induced by these treatments via a dual-platform metabolomics analysis with the ultra-high performance liquid chromatography-mass spectrometry and nuclear magnetic resonance. In the planktonic state, MA was the most effective in inhibiting bacterial growth, followed by chlorine, QAC, and 60 °C heating. Under A state, the efficacy of heating improved considerably, compared to that in the planktonic state, and remained unaltered under AW state. Chlorine and QAC were ineffective to control bacterial growth under A state, but their efficacy rose under AW state. Furthermore, the metabolomic analysis revealed chlorine induces amino acids catabolism, membrane lysis, and depression in carbohydrate and nucleotide metabolism in both planktonic and AW states, while the initiation of antioxidation mechanism was only found under AW state. Although the metabolic change caused by QAC in the planktonic state was similar to chlorine, the accumulation of osmoprotectant and membrane phospholipids within the AW cells reflected the effort to restore intracellular homeostasis upon QAC. Heating was characterized by considerable amino acid anabolism, along with mildly perturbed carbohydrate and nucleotide metabolism for heat shock protein preparation in both states. Lastly, MA promoted amino acid-dependent acid resistance under the planktonic state, and the regulation of antioxidation and osmoprotection under AW state. The metabolomics study elucidated the intracellular perturbation induced by common sanitizing, as well as the bacterial response, which provides insights for novel sanitization development.
Collapse