1
|
Kumoro AC, Wardhani DH, Kusworo TD, Djaeni M, Azis YMF, Alhanif M, Ping TC. Ultrasound pretreatment and solvent extraction parameters effects on the nutritional characteristics of Indonesian shortfin eel ( Anguilla bicolor bicolor) protein concentrate. Food Chem X 2025; 25:102103. [PMID: 39810951 PMCID: PMC11732468 DOI: 10.1016/j.fochx.2024.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Protein concentrate (PC) is a potential solution to address the global protein shortage, with Indonesian shortfin eel being a suitable raw material. This research investigates the impact of ultrasound pretreatment and extraction parameters on the nutritional quality of eel protein concentrate (EPC). The study involved ultrasonic pretreatment at different times and power, and solvent extraction with different solvents, temperature, and solvent-solid-feed-ratio (SSFR). The results showed that the recommended conditions for EPC preparation were a mixture of ethanol-hexane, ultrasonic pretreatment at 250 W for 25 min, extraction temperature and SSFR of 40 °C and 6:1 v/w. The protein content of EPC increased gradually with the increase of SSFR until it reached a ratio of 6:1, further increase in SSFR promoted the development of a pseudo-homogeneous system, leading to a reduction in the solvent-eel flesh contact and the relative velocity between the extracting solvent and eel flesh, and consequently decreased the extraction yield. The prepared EPC is classified as type B EPC, with a protein content of 89.62 %w.b. and a lipid content of 2.21 %w.b. The EPC contains five types of peptides with a molecular weight of 5.00-76.00 kDa, with the main fraction having a MW ranging from 10.00 to 15.00 kDa, indicating potential for functional food products.
Collapse
Affiliation(s)
- Andri Cahyo Kumoro
- Department of Chemical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
| | - Dyah Hesti Wardhani
- Department of Chemical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
| | - Tutuk Djoko Kusworo
- Department of Chemical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
| | - Mohamad Djaeni
- Department of Chemical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
| | | | - Misbahudin Alhanif
- Chemical Engineering Study Program, Faculty of Industrial Technology, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia
| | - Tan Chin Ping
- Department of Food Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
2
|
Jin Y, Zhou P, Zhu C, Liu Y, Zhao Z. Preparation of Antioxidant Peptides from Chicken Bone Proteins and the Influence of Their Compositional Characteristics on Antioxidant Activity. Foods 2024; 13:4171. [PMID: 39767113 PMCID: PMC11675203 DOI: 10.3390/foods13244171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Antioxidants play an important role in maintaining health and enhancing food stability by neutralizing free radicals. This study aimed to extract antioxidant peptides from white-feathered chicken bones through enzymatic hydrolysis, optimize the enzymatic hydrolysis conditions, and further investigate the relevance between the amino acid composition, molecular weight, and antioxidant activity of the resulting chicken bone hydrolysate. Alcalase was the most effective enzyme for hydrolyzing cooked chicken bones compared with papain, pepsin, and trypsin, yielding hydrolysates with the highest DH and ABTS radical scavenging activity. The enzymatic conditions were optimized using single-factor experiments and response surface methodology (RSM). The optimal conditions were a substrate concentration of 10%, an enzyme-substrate ratio of 502.75 U/g, a hydrolysis temperature of 48.48 °C, and a hydrolysis time of 1.13 h. Under these conditions, the ABTS radical scavenging activity reached 83.43%. Amino acid composition analysis revealed that peptides from chicken bones were rich in glycine, glutamic acid, alanine, proline, and aspartic acid, which were associated with antioxidant functions. Among these peptides, those with a molecular weight below 3 kDa exhibited the highest antioxidant effects through membrane filtration. In summary, chicken bone hydrolysate exhibits potent antioxidant activity, nominating them for potential application as natural antioxidants investible in novel functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Yitong Jin
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China;
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (P.Z.); (C.Z.)
| | - Peng Zhou
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (P.Z.); (C.Z.)
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chengzhi Zhu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (P.Z.); (C.Z.)
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China;
| | - Zhijun Zhao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (P.Z.); (C.Z.)
| |
Collapse
|
3
|
Peres Fabbri L, Cavallero A, Vidotto F, Gabriele M. Bioactive Peptides from Fermented Foods: Production Approaches, Sources, and Potential Health Benefits. Foods 2024; 13:3369. [PMID: 39517152 PMCID: PMC11545331 DOI: 10.3390/foods13213369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Microbial fermentation is a well-known strategy for enhancing the nutraceutical attributes of foods. Among the fermentation outcomes, bioactive peptides (BAPs), short chains of amino acids resulting from proteolytic activity, are emerging as promising components thanks to their bioactivities. Indeed, BAPs offer numerous health benefits, including antimicrobial, antioxidant, antihypertensive, and anti-inflammatory properties. This review focuses on the production of bioactive peptides during the fermentation process, emphasizing how different microbial strains and fermentation conditions influence the quantity and quality of these peptides. Furthermore, it examines the health benefits of BAPs from fermented foods, highlighting their potential in disease prevention and overall health promotion. Additionally, this review addresses the challenges and future directions in this field. This comprehensive overview underscores the promise of fermented foods as sustainable and potent sources of bioactive peptides, with significant implications for developing functional foods and nutraceuticals.
Collapse
Affiliation(s)
| | | | | | - Morena Gabriele
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy (A.C.); (F.V.)
| |
Collapse
|
4
|
Li H, Liu L, Fan H, Li M, Luo P, Zhou Y, Lu K, Zhu Q, Wu J. Antioxidant and anti-inflammatory peptides in dry-fermented sausages fermented with Staphylococcus simulans QB7. Food Funct 2024; 15:10339-10349. [PMID: 39311641 DOI: 10.1039/d4fo03659j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
This study focused on investigating the impacts of Staphylococcus simulans QB7 (S. simulans QB7) on the generation of antioxidant and anti-inflammatory peptides in dry-fermented sausages and the associated mechanisms by in silico. S. simulans QB7 remarkably increased (P < 0.05) the peptide concentration, antioxidant, and anti-inflammatory capacity of peptide extracts. There were 29 peptide sequences with potential activities of antioxidation and anti-inflammation according to BIOPEP-UWM prediction. Molecular docking results indicated that peptide GPGPWG can bind to Kelch-like ECH-associated protein 1 (Keap1) with highest interaction energy, while peptide ANPILEAFG showed highest interaction energy towards p65, I kappa B kinase 2 (IKK-β), c-Jun N-terminal kinases (JNK), and p38 kinases (p38) due to form salt bridge, h-bond, and pi-alkyl. These results suggested that S. simulans QB7 promoted antioxidant and anti-inflammatory peptide generation within dry-fermented sausages.
Collapse
Affiliation(s)
- Hongying Li
- Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China.
- School of Liquor and Food Engineering, Guizhou University, Guizhou, Guiyang, 550025, China.
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| | - Linggao Liu
- School of Liquor and Food Engineering, Guizhou University, Guizhou, Guiyang, 550025, China.
| | - Hongbing Fan
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky 40546, USA.
| | - Mingming Li
- School of Liquor and Food Engineering, Guizhou University, Guizhou, Guiyang, 550025, China.
| | - Peng Luo
- Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China.
| | - Ying Zhou
- School of Liquor and Food Engineering, Guizhou University, Guizhou, Guiyang, 550025, China.
| | - Kuan Lu
- School of Liquor and Food Engineering, Guizhou University, Guizhou, Guiyang, 550025, China.
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guizhou, Guiyang, 550025, China.
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
5
|
Li M, Zhang X, Yin Y, Li J, Qu C, Liu L, Zhang Y, Zhu Q, Wang S. Perspective of sodium reduction based on endogenous proteases via the strategy of sodium replacement in conjunction with mediated-curing. Crit Rev Food Sci Nutr 2024; 64:9353-9364. [PMID: 37216477 DOI: 10.1080/10408398.2023.2212287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
NaCl is the main curing agent in dry-cured meat products, and a large amount of NaCl addition leads to high salt content of final products. Salt content and composition are important factors affecting the activity of endogenous proteases, which in turn could affect proteolysis as well as the quality of dry-cured meat products. With the increasing emphasis on the relationship between diet and health, reducing sodium content without sacrificing quality and safety of products is a great challenge for dry-cured meat industry. In this review, the change of endogenous proteases activity during processing, the potential relationship between sodium reduction strategy, endogenous proteases activity, and quality were summarized and discussed. The results showed that sodium replacement strategy and mediated-curing had a complementary advantage in influencing endogenous proteases activity. In addition, mediated-curing had the potential to salvage the negative effects of sodium substitution by affecting endogenous proteases. Based on the results, a sodium reduction strategy that sodium replacement in conjunction with mediated-curing based on endogenous proteases was proposed for the future perspective.
Collapse
Affiliation(s)
- Mingming Li
- China Meat Research Center, Beijing, China
- School of Liquor & Food Engineering, Guizhou University/Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Xin Zhang
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Sciences, Beijing, China
| | - Yantao Yin
- School of Liquor & Food Engineering, Guizhou University/Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Jiapeng Li
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Sciences, Beijing, China
| | - Chao Qu
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Sciences, Beijing, China
| | - Linggao Liu
- School of Liquor & Food Engineering, Guizhou University/Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | | | - Qiujin Zhu
- School of Liquor & Food Engineering, Guizhou University/Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Shouwei Wang
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Sciences, Beijing, China
| |
Collapse
|
6
|
Nan YD, Mu BD, Ge CX, Chen SQ, Cui MX, Li HM, Zhao CC, Wang J, Piao CX, Li GH. Exploring the novel antioxidant peptides in low-salt dry-cured ham: Preparation, purification, identification and molecular docking. Food Chem 2024; 446:138697. [PMID: 38402773 DOI: 10.1016/j.foodchem.2024.138697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024]
Abstract
Dry-cured ham is important source of bioactive peptides. In this study, the antioxidant activities of peptides and components from low and fully salted dry-cured hams were compared by peptidomics. And novel antioxidant peptides were identified and characterized. The results showed that the peptides (<3 KDa) extracted from low-salt dry-cured ham had higher antioxidant activity. Therefore, the antioxidant peptides in low-salt dry-cured ham were further characterized and the mechanism of their antioxidant activity was investigated. From the five candidate peptides selected, we found DWPDARGIWHND (DD12) to be highly stable, non-sensitizing, and non-toxic with the highest free radical scavenging activity. Molecular docking predicted that DD12 interacted with Keap1 through hydrogen-bond formation and hydrophobic interactions, suggesting that DD12 had good cellular antioxidant activity. DD12 peptide can bind to DPPH• and ABTS•+, resulting in strong free radical scavenging activity. Our findings support the development and application of natural antioxidant peptides in dry-cured ham.
Collapse
Affiliation(s)
- Ying-Dao Nan
- Integration Science College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China.
| | - Bai-de Mu
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China
| | - Chang-Xin Ge
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China
| | - Si-Qi Chen
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China
| | - Ming-Xun Cui
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China
| | - Hong-Mei Li
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China
| | - Chang-Cheng Zhao
- Life Sciences College, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Juan Wang
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China
| | - Chun-Xiang Piao
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China.
| | - Guan-Hao Li
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China.
| |
Collapse
|
7
|
Li XM, Che LH, Zhang WD, Huang QL, Li C, Xu BC. Insight into the autochthonous bacterial strains as starter cultures for improving the flavor profiles of dry-cured duck: Changes in microbial diversity and metabolic profiles. Food Chem 2024; 443:138446. [PMID: 38281415 DOI: 10.1016/j.foodchem.2024.138446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
The purpose of this study was to reveal the effect of inoculating autochthonous bacterial strains (Lactobacillus and Staphylococcus simulans) on the flavor profiles, microbial community, and metabolites, and to elucidate the potential mechanism of flavor formation in dry-cured duck. The results indicated that the inoculation of bacterial strains could improve the amount of lactic acid bacteria and Staphylococcus and reduce the counts of Enterobacteria. There was a significant difference in flavor profiles between samples inoculated with different strains. Hexanal-D, acetone, 3-methyl-1-butanol-D, thiophene, hexanal-M, propanal, pentanal, (Z)-2-penten-1-ol and ethanol-D were the potential biomarkers. A total of 70 differential metabolites were screened and identified. Amino acid metabolism and lipid metabolism were the key pathways for the production of flavor and metabolites in dry-cured duck. The results of this study will improve our understanding of the mechanism of flavor formation regarding the inoculation of autochthonous starter cultures.
Collapse
Affiliation(s)
- Xiao-Min Li
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Lie-Hua Che
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Wen-di Zhang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Qian-Li Huang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Cong Li
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Bao-Cai Xu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
8
|
Wang D, Wei G, Yang Y, Zou Y, Li X, Shi Y, Huang A. Identification and molecular mechanism of novel bifunctional peptides from Duroc × (Landrace × Yorkshire) pig dry-cured ham: A peptidomics and in silico analysis. Food Res Int 2024; 180:114066. [PMID: 38395557 DOI: 10.1016/j.foodres.2024.114066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Duroc × (Landrace × Yorkshire) pigs are popular in the Chinese market because of their rapid growth, leanness, and economic value. Despite their widespread use in dry-cured ham processing, there is a lack of research on the bioactive peptides of Duroc × (Landrace × Yorkshire) pig ham (DLYH). This study aimed to investigate the presence of peptides with antioxidant and α-glucosidase inhibitory activities in DLYH using peptidomics and in silico analysis. A total of 453 peptides were identified from DLYH, originating mainly from myosin, actin, and the EF-hand domain-containing protein. Notably, two peptides, YDEAGPSIVH (YH10) and FAGDDAPRAVF (FF11), emerged as novel bioactive peptides with antioxidant and α-glucosidase inhibitory activities. Among these peptides, YH10 exhibited a high DPPH radical scavenging activity (IC50 = 1.93 mM), ABTS radical scavenging activity (IC50 = 0.10 mM), α-glucosidase inhibitory activity (IC50 = 2.13 mM), and good gastrointestinal tolerance. Molecular docking analysis showed that YH10 was bound to the ABTS and DPPH radicals and the active site of α-glucosidase (3A4A) primarily through hydrogen bonding and hydrophobic interactions. Furthermore, molecular dynamics (MD) simulation indicated that the YH10-3A4A complexes maintained stable and compact conformations. In conclusion, our findings indicated that peptide YH10 derived from DLYH possesses bifunctional properties of α-glucosidase inhibition and antioxidant activity, which could be beneficial for maintaining ham quality and promoting human health.
Collapse
Affiliation(s)
- Daodian Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Guangqiang Wei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yanying Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yanling Zou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xiang Li
- Yunnan Dong Heng Economic and Trade Group Co., Ltd., Qujing 655000, Yunnan, China
| | - Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
9
|
Maky MA, Zendo T. Identification of a Novel Bioactive Peptide Derived from Frozen Chicken Breast Hydrolysate and the Utilization of Hydrolysates as Biopreservatives. BIOLOGY 2023; 12:1218. [PMID: 37759617 PMCID: PMC10525312 DOI: 10.3390/biology12091218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Frozen chicken breast was hydrolyzed by treatment with thermolysin enzyme to obtain a chicken hydrolysate containing bioactive peptides. After that, a peptide was purified from the chicken hydrolysate utilizing a Sep-Pak C18 cartridge and reversed-phase high-performance liquid chromatography (RP-HPLC). The molecular weight of the chicken peptide was 2766.8. Protein sequence analysis showed that the peptide was composed of 25 amino acid residues. The peptide, designated as C25, demonstrated an inhibitory action on the angiotensin-converting enzyme (ACE) with a half maximal inhibitory concentration (IC50) value of 1.11 µg/mL. Interestingly, C25 showed antimicrobial activity against multi-drug resistant bacteria Proteus vulgaris F24B and Escherichia coli JM109, both with MIC values of 24 µg/mL. The chicken hydrolysate showed antioxidant activity with an IC50 value of 348.67 µg/mL. Furthermore, the proliferation of aerobic bacteria and Enterobacteriaceae as well as lipid oxidation were significantly reduced when the chicken hydrolysate was used as a natural preservative during cold storage of chicken breasts. Hydrolysates derived from muscle sources have the potential to be used in formulated food products and to contribute positively to human health.
Collapse
Affiliation(s)
- Mohamed Abdelfattah Maky
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Takeshi Zendo
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| |
Collapse
|
10
|
Wei G, Li X, Wang D, Zhao B, Shi Y, Huang A. Discovery of specific antioxidant peptide from Chinese Dahe black pig and hybrid pig dry-cured hams based on peptidomics strategy. Food Res Int 2023; 166:112610. [PMID: 36914354 DOI: 10.1016/j.foodres.2023.112610] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
The quality of hams obtained from different pig breeds can vary depending on endogenous antioxidant peptides in the hams. The aims of this study were (i) to investigate the specific peptides in Chinese Dahe black pig ham (DWH) and hybrid pig ham (Yorkshire × Landrace × Dahe black ham, YLDWH) and their antioxidant activity, and (ii) to elucidate the relationship between ham quality and antioxidant peptides. iTRAQ quantitative peptidomic method was used to discover specific peptides of DWH and YLDWH. In addition, in vitro assays were performed to evaluate their antioxidant activity. A total of 73 specific peptides were identified from DWH and YLDWH by LC-MS/MS. Forty-four specific peptides in DWH were primarily hydrolysed from myosin and myoglobin by endopeptidases, while 29 specific peptides in YLDWH were primarily hydrolysed from myosin and troponin-T. Six specific peptides that were statistically significantly different based on their fold changes and P-values were selected for the identification of DWH and YLDWH. DWH-derived specific peptide AGAPDERGPGPAAR (AR14), which had high stability and was non-toxic, had the highest DPPH• and ABTS•+ scavenging activity (IC50 = 1.657 mg/mL and 0.173 mg/mL, respectively) and cellular antioxidant capacity. Molecular docking showed that AR14 interacted with Val369, and Val420 of Keap1 via hydrogen bonds. Furthermore, AR14 bound to DPPH and ABTS through hydrogen bonding and hydrophobic interactions. Together, our results demonstrate that the DWH-derived antioxidant peptide AR14 exhibits the free radical scavenging and cellular antioxidant activity and can be used to preserve ham quality and promote human health.
Collapse
Affiliation(s)
- Guangqiang Wei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, PR China
| | - Xiang Li
- Yunnan Dong Heng Economic and Trade Group Co., Ltd., Qujing 655000, Yunnan, PR China
| | - Daodian Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, PR China
| | - Bo Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, PR China
| | - Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, PR China.
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, PR China.
| |
Collapse
|
11
|
Li M, Zhang X, Li J, Liu L, Zhu Q, Qu C, Zhang Y, Wang S. Identification and In Silico Simulation on Inhibitory Platelet-Activating Factor Acetyl Hydrolase Peptides from Dry-Cured Pork Coppa. Foods 2023; 12:foods12061190. [PMID: 36981115 PMCID: PMC10048671 DOI: 10.3390/foods12061190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The unique processing technology of dry-cured meat products leads to strong proteolysis, which produces numerous peptides. The purpose of this investigation was the systematic isolation, purification, and identification of potentially cardioprotective bioactive peptides from dry-cured pork coppa during processing. According to the results of anti-platelet-activating factor acetyl hydrolase activity and radical scavenging ability in vitro, the inhibitory effect of M1F2 in purified fractions on cardiovascular inflammation was higher than that of M2F2. The peptide of M1F2 was identified by nano-liquid chromatography–tandem mass spectrometry. A total of 30 peptides were identified. Based on bioinformatics methods, including in silico analysis and molecular docking, LTDKPFL, VEAPPAKVP, KVPVPAPK, IPVPKK, and PIKRSP were identified as the most promising potential platelet-activating factor acetyl hydrolase inhibitory peptides. Overall, bioactive peptides produced during dry-cured pork coppa processing demonstrate positive effects on human health.
Collapse
Affiliation(s)
- Mingming Li
- School of Liquor & Food Engineering, Guizhou University/Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550025, China
- China Meat Research Center, Beijing 100068, China
| | - Xin Zhang
- China Meat Research Center, Beijing 100068, China
- Beijing Academy of Food Sciences, Beijing 100068, China
| | - Jiapeng Li
- China Meat Research Center, Beijing 100068, China
- Beijing Academy of Food Sciences, Beijing 100068, China
| | - Linggao Liu
- School of Liquor & Food Engineering, Guizhou University/Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550025, China
| | - Qiujin Zhu
- School of Liquor & Food Engineering, Guizhou University/Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550025, China
- Correspondence: (Q.Z.); (S.W.)
| | - Chao Qu
- China Meat Research Center, Beijing 100068, China
- Beijing Academy of Food Sciences, Beijing 100068, China
| | - Yunhan Zhang
- China Meat Research Center, Beijing 100068, China
| | - Shouwei Wang
- China Meat Research Center, Beijing 100068, China
- Beijing Academy of Food Sciences, Beijing 100068, China
- Correspondence: (Q.Z.); (S.W.)
| |
Collapse
|
12
|
Muñoz-Rosique B, Hernández-Correas N, Abellán A, Bueno E, Gómez R, Tejada L. Influence of Pig Genetic Line and Salt Reduction on Peptide Production and Bioactivity of Dry-Cured Hams. Foods 2023; 12:foods12051022. [PMID: 36900539 PMCID: PMC10000787 DOI: 10.3390/foods12051022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Ham (Jamón) is a product of great value in Spanish gastronomy, although experts have recommended reducing its consumption due to its high salt content and its relationship with cardio-vascular diseases due to the increase in blood pressure it may cause. Therefore, the objective of this study was to evaluate how the reduction of salt content and the pig genetic line influence bioactivity in boneless hams. For this purpose, 54 hams were studied, 18 boneless Iberian hams (RIB), 18 boneless white hams from commercial cross-bred pigs (RWC), and 18 salted and traditionally processed Iberian hams (TIB) to check if the pig genetic line (RIB vs. RWC) or the processing (RIB vs. TIB) affect the peptide production and bioactivity of the hams. The pig genetic line significantly affected the activity of ACE-I and DPPH, with RWC having the highest ACE-I activity and RIB having the highest antioxidative activity. This coincides with the results obtained in the identification of the peptides and the bioactivity analysis performed. Salt reduction positively affected the different hams, influencing their proteolysis and increasing their bioactivity in traditionally cured hams.
Collapse
Affiliation(s)
- Beatriz Muñoz-Rosique
- Departamento de Calidad, AromaIbérica Serrana, S.L. Ctra. Fuente Álamo, Km 17.4, 30332 Murcia, Spain
| | - Noelia Hernández-Correas
- Departamento de Tecnología de la Alimentación y Nutrición, Universidad Católica de Murcia, Campus de los Jerónimos, 30107 Murcia, Spain
- Correspondence:
| | - Adela Abellán
- Departamento de Tecnología de la Alimentación y Nutrición, Universidad Católica de Murcia, Campus de los Jerónimos, 30107 Murcia, Spain
| | - Estefanía Bueno
- Departamento de Tecnología de la Alimentación y Nutrición, Universidad Católica de Murcia, Campus de los Jerónimos, 30107 Murcia, Spain
| | - Rafael Gómez
- Departamento de Bromatología y Tecnología de los Alimentos, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, 14014 Córdoba, Spain
| | - Luis Tejada
- Departamento de Tecnología de la Alimentación y Nutrición, Universidad Católica de Murcia, Campus de los Jerónimos, 30107 Murcia, Spain
| |
Collapse
|
13
|
Bioactive peptides derived from fermented foods: Preparation and biological activities. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
14
|
Bioactive and Sensory Di- and Tripeptides Generated during Dry-Curing of Pork Meat. Int J Mol Sci 2023; 24:ijms24021574. [PMID: 36675084 PMCID: PMC9866438 DOI: 10.3390/ijms24021574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Dry-cured pork products, such as dry-cured ham, undergo an extensive proteolysis during manufacturing process which determines the organoleptic properties of the final product. As a result of endogenous pork muscle endo- and exopeptidases, many medium- and short-chain peptides are released from muscle proteins. Many of them have been isolated, identified, and characterized, and some peptides have been reported to exert relevant bioactivity with potential benefit for human health. However, little attention has been given to di- and tripeptides, which are far less known, although they have received increasing attention in recent years due to their high potential relevance in terms of bioactivity and role in taste development. This review gathers the current knowledge about di- and tripeptides, regarding their bioactivity and sensory properties and focusing on their generation during long-term processing such as dry-cured pork meats.
Collapse
|
15
|
The Changes Occurring in Proteins during Processing and Storage of Fermented Meat Products and Their Regulation by Lactic Acid Bacteria. Foods 2022; 11:foods11162427. [PMID: 36010427 PMCID: PMC9407609 DOI: 10.3390/foods11162427] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Protein, which is the main component of meat, is degraded and oxidized during meat fermentation. During fermentation, macromolecular proteins are degraded into small peptides and free amino acids, and oxidation leads to amino acid side chain modification, molecular crosslinking polymerization, and peptide chain cleavage. At different metabolic levels, these reactions may affect the protein structure and the color, tenderness, flavor, and edible value of fermented meat products. Lactic acid bacteria are currently a research hotspot for application in the fermented meat industry. Its growth metabolism and derivative metabolites formed during the fermentation of meat products regulate protein degradation and oxidation to a certain extent and improve product quality. Therefore, this paper mainly reviews the changes occurring in proteins in fermented meat products and their effects on the quality of the products. Referring to studies on the effects of lactic acid bacteria on protein degradation and oxidation from all over the world, this review aims to provide a relevant reference for improving the quality of fermented meat products.
Collapse
|