1
|
Dotou M, L'honoré A, Moumné R, El Amri C. Amide Alkaloids as Privileged Sources of Senomodulators for Therapeutic Purposes in Age-Related Diseases. JOURNAL OF NATURAL PRODUCTS 2024; 87:617-628. [PMID: 38436272 DOI: 10.1021/acs.jnatprod.3c01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Nature is an important source of bioactive compounds and has continuously made a large contribution to the discovery of new drug leads. Particularly, plant-derived compounds have long been identified as highly interesting in the field of aging research and senescence. Many plants contain bioactive compounds that have the potential to influence cellular processes and provide health benefits. Among them, Piper alkaloids have emerged as interesting candidates in the context of age-related diseases and particularly senescence. These compounds have been shown to display a variety of features, including antioxidant, anti-inflammatory, neuroprotective, and other bioactive properties that may help counteracting the effects of cellular aging processes. In the review, we will put the emphasis on piperlongumine and other related derivatives, which belong to the Piper alkaloids, and whose senomodulating potential has emerged during the last several years. We will also provide a survey on their potential in therapeutic perspectives of age-related diseases.
Collapse
Affiliation(s)
- Mazzarine Dotou
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256 CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252 Paris, France
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005 Paris, France
| | - Aurore L'honoré
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256 CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252 Paris, France
| | - Roba Moumné
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005 Paris, France
| | - Chahrazade El Amri
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256 CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252 Paris, France
| |
Collapse
|
2
|
Song R, Hu M, Qin X, Qiu L, Wang P, Zhang X, Liu R, Wang X. The Roles of Lipid Metabolism in the Pathogenesis of Chronic Diseases in the Elderly. Nutrients 2023; 15:3433. [PMID: 37571370 PMCID: PMC10420821 DOI: 10.3390/nu15153433] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Lipid metabolism plays crucial roles in cellular processes such as hormone synthesis, energy production, and fat storage. Older adults are at risk of the dysregulation of lipid metabolism, which is associated with progressive declines in the physiological function of various organs. With advancing age, digestion and absorption commonly change, thereby resulting in decreased nutrient uptake. However, in the elderly population, the accumulation of excess fat becomes more pronounced due to a decline in the body's capacity to utilize lipids effectively. This is characterized by enhanced adipocyte synthesis and reduced breakdown, along with diminished peripheral tissue utilization capacity. Excessive lipid accumulation in the body, which manifests as hyperlipidemia and accumulated visceral fat, is linked to several chronic lipid-related diseases, including cardiovascular disease, type 2 diabetes, obesity, and nonalcoholic fatty liver disease. This review provides a summary of the altered lipid metabolism during aging, including lipid digestion, absorption, anabolism, and catabolism, as well as their associations with age-related chronic diseases, which aids in developing nutritional interventions for older adults to prevent or alleviate age-related chronic diseases.
Collapse
Affiliation(s)
- Rui Song
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.S.); (M.H.); (X.Q.); (L.Q.)
| | - Mengxiao Hu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.S.); (M.H.); (X.Q.); (L.Q.)
| | - Xiyu Qin
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.S.); (M.H.); (X.Q.); (L.Q.)
| | - Lili Qiu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.S.); (M.H.); (X.Q.); (L.Q.)
| | - Pengjie Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (X.Z.); (R.L.)
| | - Xiaoxu Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (X.Z.); (R.L.)
| | - Rong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (X.Z.); (R.L.)
| | - Xiaoyu Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.S.); (M.H.); (X.Q.); (L.Q.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (X.Z.); (R.L.)
| |
Collapse
|
3
|
Suppression of Lipid Accumulation in the Differentiation of 3T3-L1 Preadipocytes and Human Adipose Stem Cells into Adipocytes by TAK-715, a Specific Inhibitor of p38 MAPK. Life (Basel) 2023; 13:life13020412. [PMID: 36836769 PMCID: PMC9965126 DOI: 10.3390/life13020412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Excessive preadipocyte differentiation is linked with obesity. Although previous studies have shown that p38 MAPK is associated with adipogenesis, the regulation of preadipocyte differentiation by TAK-715, an inhibitor of p38 mitogen-activated protein kinase (MAPK), remains unclear. Interestingly, TAK-715 at 10 μM vastly suppressed the accumulation of lipid and intracellular triglyceride (TG) content with no cytotoxicity during 3T3-L1 preadipocyte differentiation. On mechanistic levels, TAK-715 significantly decreased the expressions of the CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor gamma (PPAR-γ), fatty acid synthase (FAS), and perilipin A. Similarly, the phosphorylation of the signal transducer and activator of transcription-3 (STAT-3) in differentiating 3T3-L1 cells was also reduced with TAK-715 treatment. Moreover, TAK-715 significantly blocked the phosphorylation of activating transcription factor-2 (ATF-2), a p38 MAPK downstream molecule, during 3T3-L1 preadipocyte differentiation. Of importance, TAK-715 also markedly impeded the phosphorylation of p38 MAPK and suppressed lipid accumulation during the adipocyte differentiation of human adipose stem cells (hASCs). Concisely, this is the first report that TAK-715 (10 μM) has potent anti-adipogenic effects on the adipogenesis process of 3T3-L1 cells and hASCs through the regulation of the expression and phosphorylation of p38 MAPK, C/EBP-α, PPAR-γ, STAT-3, FAS, and perilipin A.
Collapse
|
4
|
Quirós Cognuck S, Reis WL, Silva M, Debarba LK, Mecawi AS, de Paula FJ, Rodrigues Franci C, Elias LL, Antunes‐Rodrigues J. Sex differences in body composition, metabolism-related hormones, and energy homeostasis during aging in Wistar rats. Physiol Rep 2020; 8:e14597. [PMID: 33075214 PMCID: PMC7571994 DOI: 10.14814/phy2.14597] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
Aging affects the body composition and balance of energy metabolism. Here, we collected in a single work several physiological parameters to show how aging and sex differences can influence energy homeostasis. Body mass index (BMI), Lee index, glucose tolerance, glycemia, and lipidogram in fasting were measured in male and female Wistar rats at the ages of 2, 6, 9, 12, and 18 months. We also measured the lipid profile, free fatty acids, glycerol, glycemia, leptin, adiponectin, insulin, corticosterone (CORT), prolactin (PRL), thyroid stimulated hormone, and triiodothyronine (T3) in 3- and 18-month-old rats of both sexes, fed ad libitum. Animals were classified as obese beginning at 2 months in males and 6 months in females. Aged male rats showed hyperglycemia and glucose intolerance compared to young males and old females. In the ad libitum condition, the 18-month males presented higher serum levels of triglycerides, total cholesterol, and free fatty acids than females. The 18-month-old females had higher PRL and CORT concentration than males, but insulin and T3 were higher in 18-month-old males than females. Our work demonstrated that aging processes on energy metabolism in rats is sex specific, with a better lipid profile and glucose tolerance in aged females.
Collapse
Affiliation(s)
- Susana Quirós Cognuck
- Physiology DepartmentRibeirao Preto Medicine School, University of Sao PauloRibeirao Preto, Sao PauloBrazil
| | - Wagner L. Reis
- Department of Physiological ScienceCenter of Biological SciencesFederal University of Santa CatarinaFlorianópolosBrazil
| | - Marcia Silva
- Physiology DepartmentRibeirao Preto Medicine School, University of Sao PauloRibeirao Preto, Sao PauloBrazil
| | - Lucas K. Debarba
- Physiology DepartmentRibeirao Preto Medicine School, University of Sao PauloRibeirao Preto, Sao PauloBrazil
| | - Andre S. Mecawi
- Laboratory of NeuroendocrinologyDepartment of BiophysicsEscola Paulista de MedicinaUniversidade Federal de Sao PauloSao PauloBrazil
| | - Francisco J.A. de Paula
- Medical Clinic DepartmentRibeirao Preto Medicine SchoolUniversity of Sao PauloRibeirao Preto, Sao PauloBrazil
| | - Celso Rodrigues Franci
- Physiology DepartmentRibeirao Preto Medicine School, University of Sao PauloRibeirao Preto, Sao PauloBrazil
| | - Lucila L.K. Elias
- Physiology DepartmentRibeirao Preto Medicine School, University of Sao PauloRibeirao Preto, Sao PauloBrazil
| | - Jose Antunes‐Rodrigues
- Physiology DepartmentRibeirao Preto Medicine School, University of Sao PauloRibeirao Preto, Sao PauloBrazil
| |
Collapse
|
5
|
Abstract
Stem cell aging is a process in which stem cells progressively lose their ability to self-renew or differentiate, succumb to senescence or apoptosis, and eventually become functionally depleted. Unresolved oxidative stress and concomitant oxidative damages of cellular macromolecules including nucleic acids, proteins, lipids, and carbohydrates have been recognized to contribute to stem cell aging. Excessive production of reactive oxygen species and insufficient cellular antioxidant reserves compromise cell repair and metabolic homeostasis, which serves as a mechanistic switch for a variety of aging-related pathways. Understanding the molecular trigger, regulation, and outcomes of those signaling networks is critical for developing novel therapies for aging-related diseases by targeting stem cell aging. Here we explore the key features of stem cell aging biology, with an emphasis on the roles of oxidative stress in the aging process at the molecular level. As a concept of cytoprotection of stem cells in transplantation, we also discuss how systematic enhancement of endogenous antioxidant capacity before or during graft into tissues can potentially raise the efficacy of clinical therapy. Finally, future directions for elucidating the control of oxidative stress and developing preventive/curative strategies against stem cell aging are discussed.
Collapse
Affiliation(s)
- Feng Chen
- 1 State Key Discipline of Infectious Diseases and Chemical Biology Laboratory for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Yingxia Liu
- 1 State Key Discipline of Infectious Diseases and Chemical Biology Laboratory for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Nai-Kei Wong
- 1 State Key Discipline of Infectious Diseases and Chemical Biology Laboratory for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Jia Xiao
- 1 State Key Discipline of Infectious Diseases and Chemical Biology Laboratory for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China.,2 Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- 3 GMH Institute of CNS Regeneration, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Gene pathways associated with mitochondrial function, oxidative stress and telomere length are differentially expressed in the liver of rats fed lifelong on virgin olive, sunflower or fish oils. J Nutr Biochem 2017; 52:36-44. [PMID: 29144994 DOI: 10.1016/j.jnutbio.2017.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/08/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022]
Abstract
This study investigates the effect of lifelong intake of different fat sources rich in monounsaturated (virgin olive oil), n6 polyunsaturated (sunflower oil) or n3 polyunsaturated (fish oil) fatty acids in the aged liver. Male Wistar rats fed lifelong on diets differing in the fat source were killed at 6 and at 24 months of age. Liver histopathology, mitochondrial ultrastructure, biogenesis, oxidative stress, mitochondrial electron transport chain, relative telomere length and gene expression profiles were studied. Aging led to lipid accumulation in the liver. Virgin olive oil led to the lowest oxidation and ultrastructural alterations. Sunflower oil induced fibrosis, ultrastructural alterations and high oxidation. Fish oil intensified oxidation associated with age, lowered electron transport chain activity and enhanced the relative telomere length. Gene expression changes associated with age in animals fed virgin olive oil and fish oil were related mostly to mitochondrial function and oxidative stress pathways, followed by cell cycle and telomere length control. Sunflower oil avoided gene expression changes related to age. According to the results, virgin olive oil might be considered the dietary fat source that best preserves the liver during the aging process.
Collapse
|
7
|
Guo D, Zhang X, Li Q, Qian L, Xu J, Lu M, Hu X, Zhu M, Chang CCY, Song B, Chang T, Xiong Y, Li B. The ACAT2 expression of human leukocytes is responsible for the excretion of lipoproteins containing cholesteryl/steryl esters. Acta Biochim Biophys Sin (Shanghai) 2016; 48:990-997. [PMID: 27688150 PMCID: PMC5091290 DOI: 10.1093/abbs/gmw095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/24/2016] [Accepted: 06/30/2016] [Indexed: 12/19/2022] Open
Abstract
Acyl-coenzymeA:cholesterol acyltransferase 2 (ACAT2) is abundantly expressed in intestine and fetal liver of healthy human. Our previous studies have shown that in monocytic cells the low-level expression of human ACAT2 gene with specific CpG-hypomethylated promoter is regulated by the CCAAT/enhancer binding protein (C/EBP) transcription factors. In this study, we further report that the ACAT2 gene expression is attributable to the C/EBPs in the human leukocytes and correlated with the excretion of fluorescent lipoproteins containing the ACAT2-catalyzed NBD22-steryl esters. Moreover, this lipoprotein excretion can be inhibited by the ACAT2 isoform-selective inhibitor pyripyropene A (PPPA) in a dose-dependent manner, and employed to determine the half maximum inhibitory concentration (IC50) values of PPPA. Significantly, it is found that the differentiation-inducing factor all-trans retinoic acid, but not the proinflammatory cytokine tumor necrosis factor-α, enhances this ACAT2-dependent lipoprotein excretion. These data demonstrate that the ACAT2 expression of human leukocytes is responsible for the excretion of lipoproteins containing cholesteryl/steryl esters (CE/SE), and suggest that the excretion of lipoproteins containing the ACAT2-catalyzed CS/SE may avoid cytotoxicity through decreasing the excess intracellular cholesterols/sterols (especially various oxysterols), which is essential for the action of the human leukocytes.
Collapse
Affiliation(s)
- Dongqing Guo
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaowei Zhang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qin Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Qian
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiajia Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Lu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xihan Hu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Zhu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Catherine C Y Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | - Baoliang Song
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Tayuan Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | - Ying Xiong
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Boliang Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
8
|
Liu H, Mu L, Tang J, Shen C, Gao C, Rong M, Zhang Z, Liu J, Wu X, Yu H, Lai R. A potential wound healing-promoting peptide from frog skin. Int J Biochem Cell Biol 2014; 49:32-41. [PMID: 24441016 DOI: 10.1016/j.biocel.2014.01.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/03/2014] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
Abstract
Cutaneous wound healing is a dynamic, complex, and well-organized process that requires the orchestration of many different cell types and cellular processes. Transforming growth factor β1 is an important factor that plays a key role during wound healing. Amphibian skin has been proven to possess excellent wound healing ability, whilst no bioactive substrate related to it has ever been identified. Here, a potential wound healing-promoting peptide (AH90, ATAWDFGPHGLLPIRPIRIRPLCG) was identified from the frog skin of Odorrana grahami. It showed potential wound healing-promoting activity in a murine model with full thickness dermal wound. AH90 promoted release of transforming growth factor β1 through activation of nuclear factor-κB and c-Jun NH2-terminal kinase mitogen-activated protein kinases signaling pathways, while inhibitors of nuclear factor-κB and c-Jun NH2-terminal kinase inhibited the process. In addition, the effects of AH90 on Smads family proteins, key regulators in transforming growth factor β1 signaling pathways, could also be inhibited by transforming growth factor β1 antibody. Altogether, this indicated that AH90 promoted wound healing by inducing the release of transforming growth factor β1. This current study may facilitate the understanding of effective factors involved in the wound repair of amphibians and the underlying mechanisms as well. Considering its favorable traits as a small peptide that greatly promoting generation of endogenous wound healing agents (transforming growth factor β1) without mitogenic effects, AH90 might be an excellent template for the future development of novel wound-healing agents.
Collapse
Affiliation(s)
- Han Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100009, China
| | - Lixian Mu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100009, China
| | - Jing Tang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100009, China
| | - Chuanbin Shen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100009, China
| | - Chen Gao
- College of Veterinary Medicine of Jiangsu Animal Husbandry & Veterinary College, Taizhou 225300, Jiangsu, China
| | - Mingqiang Rong
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China
| | - Zhiye Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100009, China
| | - Jie Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100009, China
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Haining Yu
- Institute of Marine Biological Technology, School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China.
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China.
| |
Collapse
|
9
|
Sabaretnam T, O’Reilly J, Kritharides L, Le Couteur DG. The effect of old age on apolipoprotein E and its receptors in rat liver. AGE (DORDRECHT, NETHERLANDS) 2010; 32:69-77. [PMID: 19809892 PMCID: PMC2829642 DOI: 10.1007/s11357-009-9115-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 08/16/2009] [Indexed: 05/28/2023]
Abstract
Apolipoprotein E (apoE) is associated with aging and some age-related diseases. The majority of apoE is produced by hepatocytes for the receptor-mediated uptake of lipoproteins. Here, the effects of age on the hepatic expression and distribution of apoE and its receptors were determined using immunofluorescence, Western blots, and quantitative PCR in rat liver tissue and isolated hepatocytes. The expression of apoE mRNA and protein was not influenced significantly by aging. Immunofluorescence studies in isolated hepatocytes showed that apoE was more likely to be co-localized with early endosomes, golgi, and microtubules in isolated old hepatocytes. The mRNA expression of the receptor involved in sequestration of apoE, heparan sulfate proteoglycan was reduced in old age, without any significant effect on the expression of either the low-density lipoprotein receptor or low density-lipoprotein receptor-related protein. Old age is associated with changes in hepatic apoE intracellular trafficking and heparan sulfate proteoglycan expression that might contribute to age-related disease.
Collapse
Affiliation(s)
- Tharani Sabaretnam
- ANZAC Research Institute, University of Sydney, Sydney, Australia
- Department of Cardiology, Concord Hospital, Sydney, Australia
- Centre for Education and Research on Aging (CERA), University of Sydney, Sydney, Australia
| | - Jennifer O’Reilly
- ANZAC Research Institute, University of Sydney, Sydney, Australia
- Centre for Education and Research on Aging (CERA), University of Sydney, Sydney, Australia
| | - Leonard Kritharides
- ANZAC Research Institute, University of Sydney, Sydney, Australia
- Department of Cardiology, Concord Hospital, Sydney, Australia
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - David G. Le Couteur
- ANZAC Research Institute, University of Sydney, Sydney, Australia
- Centre for Education and Research on Aging (CERA), University of Sydney, Sydney, Australia
- Centre for Education and Research on Ageing, Concord RG Hospital, Hospital Road, Concord, Sydney, NSW 2139 Australia
| |
Collapse
|
10
|
Senthil Kumaran V, Arulmathi K, Sundarapandiyan R, Kalaiselvi P. Attenuation of the inflammatory changes and lipid anomalies by epigallocatechin-3-gallate in hypercholesterolemic diet fed aged rats. Exp Gerontol 2009; 44:745-51. [DOI: 10.1016/j.exger.2009.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/17/2009] [Accepted: 08/27/2009] [Indexed: 10/20/2022]
|
11
|
Kung HN, Yang MJ, Chang CF, Chau YP, Lu KS. In vitro and in vivo wound healing-promoting activities of β-lapachone. Am J Physiol Cell Physiol 2008; 295:C931-43. [DOI: 10.1152/ajpcell.00266.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Impaired wound healing is a serious problem for diabetic patients. Wound healing is a complex process that requires the cooperation of many cell types, including keratinocytes, fibroblasts, endothelial cells, and macrophages. β-Lapachone, a natural compound extracted from the bark of the lapacho tree ( Tabebuia avellanedae), is well known for its antitumor, antiinflammatory, and antineoplastic effects at different concentrations and conditions, but its effects on wound healing have not been studied. The purpose of the present study was to investigate the effects of β-lapachone on wound healing and its underlying mechanism. In the present study, we demonstrated that a low dose of β-lapachone enhanced the proliferation in several cells, facilitated the migration of mouse 3T3 fibroblasts and human endothelial EAhy926 cells through different MAPK signaling pathways, and accelerated scrape-wound healing in vitro. Application of ointment with or without β-lapachone to a punched wound in normal and diabetic ( db/ db) mice showed that the healing process was faster in β-lapachone-treated animals than in those treated with vehicle only. In addition, β-lapachone induced macrophages to release VEGF and EGF, which are beneficial for growth of many cells. Our results showed that β-lapachone can increase cell proliferation, including keratinocytes, fibroblasts, and endothelial cells, and migration of fibroblasts and endothelial cells and thus accelerate wound healing. Therefore, we suggest that β-lapachone may have potential for therapeutic use for wound healing.
Collapse
|
12
|
Nikolova-Karakashian M, Karakashian A, Rutkute K. Role of neutral sphingomyelinases in aging and inflammation. Subcell Biochem 2008; 49:469-86. [PMID: 18751923 DOI: 10.1007/978-1-4020-8831-5_18] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging is characterized by changes in the organism's immune functions and stress response, which in the elderly leads to increased incidence of complications and mortality following inflammatory stress. Alterations in the neuro-endocrine axes and overall decline in the immune system play an essential role in this process. Overwhelming evidence however suggests that many cellular cytokine signaling pathways are also affected, thus underscoring the idea that both, "cellular" and "systemic" changes contribute to aging. IL-1beta for example, induces more potent cellular responses in hepatocytes isolated from aged animals then in hepatocytes from young rats. This phenomenon is referred to as IL-1b hyperresponsiveness and is linked to abnormal regulation of various acute phase proteins during aging.Evidence has consistently indicated that activation of neutral sphingomyelinase and the resulting accumulation of ceramide mediate cellular responses to LPS, IL-1beta, and TNFalpha in young animals. More recent studies identified the cytokine-inducible neutral sphingomyelinase with nSMase2 (smpd3) that is localized in the plasma membrane and mediates cellular responses to IL-1beta and TNFalpha. Intriguingly, constitutive up-regulation of nSMase2 occurs in aging and it underlies the hepatic IL-1b hyperresponsiveness. The increased activity of nSMases2 in aging is caused by a substantial decline in hepatic GSH content linking thereby oxidative stress to the onset of pro-inflammatory state in liver. nSMase2 apparently follows a pattern of regulation consisting with "developmental-aging" continuum, since in animal models of delayed aging, like calorie-restricted animals, the aging-associated changes in NSMase activity and function are reversed.
Collapse
|
13
|
Involvement of oxidative stress and caspase 2-mediated intrinsic pathway signaling in age-related increase in muscle cell apoptosis in mice. Apoptosis 2008; 13:822-32. [PMID: 18461459 DOI: 10.1007/s10495-008-0216-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Apoptosis has been implicated as a mechanism of loss of muscle cells in normal aging and plays an important role in age-related sarcopenia. To test the hypothesis that caspase 2 and c-Jun NH(2)-terminal kinase (JNK)-mediated intrinsic pathway signaling contribute to skeletal muscle cell apoptosis in aging, we compared activation of caspase 2 and JNK and the in vivo expression of 4-hydroxynonenal protein adducts (4-HNE), inducible nitric oxide synthase (iNOS), glucose-6-phosphate dehydrogenase (G6PDH), B-cell lymphoma-2 (BCL-2), BAX, and phospho-BCL-2 in gastrocnemius muscles of young (5 months old) and old (25 months old) mice. A distinct age-related increase in 4-HNE and iNOS expression was readily detected in mice. Increased oxidative stress and iNOS induction were further accompanied by a decrease in G6PDH expression, activation of caspase 2 and JNK, and inactivation of BCL-2 through phosphorylation at serine 70, and caspase 9 activation. Regression analysis further revealed that increased muscle cell death in aging was significantly correlated with changes in the levels of these molecules. Taken together, our data indicate that caspase 2 and JNK-mediated intrinsic pathway signaling is one of the mechanisms involved in age-related increase in muscle cell apoptosis.
Collapse
|
14
|
Carlson ME, Silva HS, Conboy IM. Aging of signal transduction pathways, and pathology. Exp Cell Res 2008; 314:1951-61. [PMID: 18474281 DOI: 10.1016/j.yexcr.2008.03.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 03/26/2008] [Accepted: 03/29/2008] [Indexed: 12/15/2022]
Abstract
The major cell signaling pathways, and their specific mechanisms of transduction, have been a subject of investigation for many years. As our understanding of these pathways advances, we find that they are evolutionarily well-conserved not only individually, but also at the level of their crosstalk and signal integration. Productive interactions within the key signal transduction networks determine success in embryonic organogenesis, and postnatal tissue repair throughout adulthood. However, aside from clues revealed through examining age-related degenerative diseases, much remains uncertain about imbalances within these pathways during normal aging. Further, little is known about the molecular mechanisms by which alterations in the major cell signal transduction networks cause age-related pathologies. The aim of this review is to describe the complex interplay between the Notch, TGFbeta, WNT, RTK-Ras and Hh signaling pathways, with a specific focus on the changes introduced within these networks by the aging process, and those typical of age-associated human pathologies.
Collapse
Affiliation(s)
- Morgan E Carlson
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720-1762, USA.
| | | | | |
Collapse
|
15
|
Martini C, Pallottini V. Cholesterol: from feeding to gene regulation. GENES & NUTRITION 2007; 2:181-93. [PMID: 18850174 PMCID: PMC2474947 DOI: 10.1007/s12263-007-0049-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 11/16/2006] [Indexed: 01/20/2023]
Abstract
We present here a brief description of the path that cholesterol covers from its intestinal absorption to its effects exerted on gene regulation. In particular, the relationship between cholesterol and the protein complexes involved in the intricate gene regulation mechanism implicated in cholesterol homeostasis will be discussed. In addition, a new target role for the pharmacological interventions of one of these factors, the insulin-induced gene (Insig) protein, will be introduced.
Collapse
Affiliation(s)
- C. Martini
- Department of Biology, University of Rome “Roma Tre”, Viale Marconi, 446, 00146 Rome, Italy
| | - V. Pallottini
- Department of Biology, University of Rome “Roma Tre”, Viale Marconi, 446, 00146 Rome, Italy
| |
Collapse
|
16
|
Rutkute K, Asmis RH, Nikolova-Karakashian MN. Regulation of neutral sphingomyelinase-2 by GSH: a new insight to the role of oxidative stress in aging-associated inflammation. J Lipid Res 2007; 48:2443-52. [PMID: 17693623 PMCID: PMC3010975 DOI: 10.1194/jlr.m700227-jlr200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidative stress and inflammation are fundamental for the onset of aging and appear to be causatively linked. Previously, we reported that hepatocytes from aged rats, compared with young rats, are hyperresponsive to interleukin-1beta (IL-1beta) stimulation and exhibit more potent c-Jun N-terminal kinase (JNK) activation and attenuated interleukin-1 receptor-associated kinase-1 (IRAK-1) degradation. An age-related increase in the activity of neutral sphingomyelinase-2 (NSMase-2), a plasma membrane enzyme, was found to be responsible for the IL-1beta hyperresponsiveness. The results reported here show that increased NSMase activity during aging is caused by a 60-70% decrease in hepatocyte GSH levels. GSH, at concentrations typically found in hepatocytes from young animals, inhibits NSMase activity in a biphasic dose-dependent manner. Inhibition of GSH synthesis in young hepatocytes activates NSMase, causing increased JNK activation and IRAK-1 stabilization in response to IL-1beta, mimicking the hyperresponsiveness typical for aged hepatocytes. Vice versa, increased GSH content in hepatocytes from aged animals by treatment with N-acetylcysteine inhibits NSMase activity and restores normal IL-1beta response. Importantly, the GSH decline, NSMase activation, and IL-1beta hyperresponsiveness are not observed in aged, calorie-restricted rats. In summary, this report demonstrates that depletion of cellular GSH during aging plays an important role in regulating the hepatic response to IL-1beta by inducing NSMase-2 activity.
Collapse
Affiliation(s)
- Kristina Rutkute
- Department of Physiology, University of Kentucky, A. B. Chandler Medical Center, Lexington, KY 40536
| | - Reto H. Asmis
- Division of Nephrology, University of Texas Health Science Center at San Antonio and Audie Murphy Veterans Hospital, San Antonio, TX 78284
| | - Mariana N. Nikolova-Karakashian
- Department of Physiology, University of Kentucky, A. B. Chandler Medical Center, Lexington, KY 40536
- To whom correspondence should be addressed.
| |
Collapse
|
17
|
Abstract
Cell proliferation is an important process in life for growth of normal and cancer cells. The signal transduction pathways activated during this process are strictly regulated. This editorial focuses on the role of nicotine, a mitogen, in the induction of signaling pathways resulting in proliferation of pancreatic tumor cells and compares these events with those in normal acinar cells isolated from the rat pancreas. The data shows striking similarities between these two cellular systems. In addition, the editorial reviews very recent literature of the contribution of MAPK signaling in cell lines associated with human diseases. A prospective cellular model of nicotine induced activation of MAPK cascade is presented.
Collapse
Affiliation(s)
- Parimal Chowdhury
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W Markham Street, Little Rock, Arkansas 72205, United States.
| | | |
Collapse
|