1
|
Li W, Xu B, Huang Y, Wang X, Yu D. Rodent models in sensorineural hearing loss research: A comprehensive review. Life Sci 2024; 358:123156. [PMID: 39442868 DOI: 10.1016/j.lfs.2024.123156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Sensorineural hearing loss (SNHL) constitutes a major global health challenge, affecting millions of individuals and substantially impairing social integration and quality of life. The complexity of the auditory system and the multifaceted nature of SNHL necessitate advanced methodologies to understand its etiology, progression, and potential therapeutic interventions. This review provides a comprehensive overview of the current animal models used in SNHL research, focusing on their selection based on specific characteristics and their contributions to elucidating pathophysiological mechanisms and evaluating novel treatment strategies. It discusses the most commonly used rodent models in hearing research, including mice, rats, guinea pigs, Mongolian gerbils, and chinchillas. Through a comparative analysis, this review underscores the importance of selecting models that align with specific research objectives in SNHL studies, discussing the advantages and limitations of each model. By advocating for a multidisciplinary approach that leverages the strengths of various animal models with technological advancements, this review aims to facilitate significant advancements in the prevention, diagnosis, and treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
2
|
Kessler L, Koo C, Richter CP, Tan X. Hearing loss during chemotherapy: prevalence, mechanisms, and protection. Am J Cancer Res 2024; 14:4597-4632. [PMID: 39417180 PMCID: PMC11477841 DOI: 10.62347/okgq4382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024] Open
Abstract
Ototoxicity is an often-underestimated sequela for cancer patients undergoing chemotherapy, with an incidence rate exceeding 50%, affecting approximately 4 million individuals worldwide each year. Despite the nearly 2,000 publications on chemotherapy-related ototoxicity in the past decade, the understanding of its prevalence, mechanisms, and preventative or therapeutic measures remains ambiguous and subject to debate. To date, only one drug, sodium thiosulfate, has gained FDA approval for treating ototoxicity in chemotherapy. However, its utilization is restricted. This review aims to offer clinicians and researchers a comprehensive perspective by thoroughly and carefully reviewing available data and current evidence. Chemotherapy-induced ototoxicity is characterized by four primary symptoms: hearing loss, tinnitus, vertigo, and dizziness, originating from both auditory and vestibular systems. Hearing loss is the predominant symptom. Amongst over 700 chemotherapeutic agents documented in various databases, only seven are reported to induce hearing loss. While the molecular mechanisms of the hearing loss caused by the two platinum-based drugs are extensively explored, the pathways behind the action of the other five drugs are primarily speculative, rooted in their therapeutic properties and side effects. Cisplatin attracts the majority of attention among these drugs, encompassing around two-thirds of the literature regarding ototoxicity in chemotherapy. Cisplatin ototoxicity chiefly manifests through the loss of outer hair cells, possibly resulting from damages directly by cisplatin uptake or secondary effects on the stria vascularis. Both direct and indirect influences contribute to cisplatin ototoxicity, while it is still debated which path is dominant or where the primary target of cisplatin is located. Candidates for hearing protection against cisplatin ototoxicity are also discussed, with novel strategies and methods showing promise on the horizon.
Collapse
Affiliation(s)
- Lexie Kessler
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Chail Koo
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Claus-Peter Richter
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Biomedical Engineering, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Communication Sciences and Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| | - Xiaodong Tan
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| |
Collapse
|
3
|
Ege T, Tao L, North BJ. The Role of Molecular and Cellular Aging Pathways on Age-Related Hearing Loss. Int J Mol Sci 2024; 25:9705. [PMID: 39273652 PMCID: PMC11396656 DOI: 10.3390/ijms25179705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Aging, a complex process marked by molecular and cellular changes, inevitably influences tissue and organ homeostasis and leads to an increased onset or progression of many chronic diseases and conditions, one of which is age-related hearing loss (ARHL). ARHL, known as presbycusis, is characterized by the gradual and irreversible decline in auditory sensitivity, accompanied by the loss of auditory sensory cells and neurons, and the decline in auditory processing abilities associated with aging. The extended human lifespan achieved by modern medicine simultaneously exposes a rising prevalence of age-related conditions, with ARHL being one of the most significant. While our understanding of the molecular basis for aging has increased over the past three decades, a further understanding of the interrelationship between the key pathways controlling the aging process and the development of ARHL is needed to identify novel targets for the treatment of AHRL. The dysregulation of molecular pathways (AMPK, mTOR, insulin/IGF-1, and sirtuins) and cellular pathways (senescence, autophagy, and oxidative stress) have been shown to contribute to ARHL. However, the mechanistic basis for these pathways in the initiation and progression of ARHL needs to be clarified. Therefore, understanding how longevity pathways are associated with ARHL will directly influence the development of therapeutic strategies to treat or prevent ARHL. This review explores our current understanding of the molecular and cellular mechanisms of aging and hearing loss and their potential to provide new approaches for early diagnosis, prevention, and treatment of ARHL.
Collapse
Affiliation(s)
- Tuba Ege
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Litao Tao
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Brian J North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
4
|
Wu Q, Liu M, Ma T, Hu Q, Yuan C, Zhang X, Zhang T. Research trends and hotspot analysis of age-related hearing loss: A bibliometric analysis from 2019 to 2023. Exp Gerontol 2024; 194:112489. [PMID: 38936439 DOI: 10.1016/j.exger.2024.112489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Age-related hearing loss (ARHL) - also termed presbycusis - is prevalent among older adults, leading to a range of issues. Although considerable progress in the understanding of ARHL over the decades, available reports lack data from recent years and do not comprehensively reflect the latest advancements and trends. Therefore, our study sought to assess research hotspots and trends in ARHL over the past 5 years to provide the basis for future research. MATERIALS AND METHODS The Web of Science Core Collection database was searched and screened from January 1, 2019 to October 21, 2023, according to the inclusion criteria. CiteSpace (5.8.R3), VOSviewer (1.6.19), and Microsoft Excel 2019 were employed for bibliometric analysis and visualization. RESULTS 3084 articles from 92 countries led by the United States and China were included. There has been a steady upward trend in the number of publications from 2019 to 2023. The most productive institutions, authors, and journals are Johns Hopkins University (n = 113), Lin FR (n = 66), and Ear and Hearing (n = 135), respectively. Trend topic analyses revealed that "cochlear synaptopathy" and "dementia" were the predominant foci. Keywords, including "individuals" and "national health", began to appear. CONCLUSION Over the past 5 years, the annual number of publications has increased significantly and will continue to do so. Research on the mechanism of ARHL, represented by "oxidative stress", is a continuing focus. Emerging topics such as "individual differences" and "national health" may be potential future hotspots in this field.
Collapse
Affiliation(s)
- Qilong Wu
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Mengting Liu
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Tianyu Ma
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Qi Hu
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Chenyang Yuan
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Xiaopeng Zhang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Tianhong Zhang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
5
|
Spinelli S, Remigante A, Liuni R, Mantegna G, Legname G, Marino A, Morabito R, Dossena S. Oxidative stress-related cellular aging causes dysfunction of the Kv3.1/KCNC1 channel reverted by melatonin. Aging Cell 2024; 23:e14185. [PMID: 38725150 PMCID: PMC11320344 DOI: 10.1111/acel.14185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/21/2024] [Accepted: 04/18/2024] [Indexed: 08/15/2024] Open
Abstract
The voltage-gated Kv3.1/KCNC1 channel is abundantly expressed in fast-spiking principal neurons and GABAergic inhibitory interneurons throughout the ascending auditory pathway and in various brain regions. Inactivating mutations in the KCNC1 gene lead to forms of epilepsy and a decline in the expression of the Kv3.1 channel is involved in age-related hearing loss. As oxidative stress plays a fundamental role in the pathogenesis of epilepsy and age-related hearing loss, we hypothesized that an oxidative insult might affect the function of this channel. To verify this hypothesis, the activity and expression of endogenous and ectopic Kv3.1 were measured in models of oxidative stress-related aging represented by cell lines exposed to 100 mM d-galactose. In these models, intracellular reactive oxygen species, thiobarbituric acid reactive substances, sulfhydryl groups of cellular proteins, and the activity of catalase and superoxide dismutase were dysregulated, while the current density of Kv3.1 was significantly reduced. Importantly, the antioxidant melatonin reverted all these effects. The reduction of function of Kv3.1 was not determined by direct oxidation of amino acid side chains of the protein channel or reduction of transcript or total protein levels but was linked to reduced trafficking to the cell surface associated with Src phosphorylation as well as metabolic and endoplasmic reticulum stress. The data presented here specify Kv3.1 as a novel target of oxidative stress and suggest that Kv3.1 dysfunction might contribute to age-related hearing loss and increased prevalence of epilepsy during aging. The pharmacological use of the antioxidant melatonin can be protective in this setting.
Collapse
Affiliation(s)
- Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Raffaella Liuni
- Institute of Pharmacology and ToxicologyParacelsus Medical UniversitySalzburgAustria
| | - Gianluca Mantegna
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of NeuroscienceScuola Internazionale Superiore di Studi Avanzati (SISSA)TriesteItaly
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Silvia Dossena
- Institute of Pharmacology and ToxicologyParacelsus Medical UniversitySalzburgAustria
- Research and Innovation Center Regenerative Medicine and Novel Therapies (FIZ RM and NT)Paracelsus Medical UniversitySalzburgAustria
| |
Collapse
|
6
|
Tsai Do BS, Bush ML, Weinreich HM, Schwartz SR, Anne S, Adunka OF, Bender K, Bold KM, Brenner MJ, Hashmi AZ, Kim AH, Keenan TA, Moore DJ, Nieman CL, Palmer CV, Ross EJ, Steenerson KK, Zhan KY, Reyes J, Dhepyasuwan N. Clinical Practice Guideline: Age-Related Hearing Loss Executive Summary. Otolaryngol Head Neck Surg 2024; 170:1209-1227. [PMID: 38682789 DOI: 10.1002/ohn.749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE Age-related hearing loss (ARHL) is a prevalent but often underdiagnosed and undertreated condition among individuals aged 50 and above. It is associated with various sociodemographic factors and health risks including dementia, depression, cardiovascular disease, and falls. While the causes of ARHL and its downstream effects are well defined, there is a lack of priority placed by clinicians as well as guidance regarding the identification, education, and management of this condition. PURPOSE The purpose of this clinical practice guideline is to identify quality improvement opportunities and provide clinicians trustworthy, evidence-based recommendations regarding the identification and management of ARHL. These opportunities are communicated through clear actionable statements with an explanation of the support in the literature, the evaluation of the quality of the evidence, and recommendations on implementation. The target patients for the guideline are any individuals aged 50 years and older. The target audience is all clinicians in all care settings. This guideline is intended to focus on evidence-based quality improvement opportunities judged most important by the Guideline Development Group (GDG). It is not intended to be a comprehensive, general guide regarding the management of ARHL. The statements in this guideline are not intended to limit or restrict care provided by clinicians based on their experience and assessment of individual patients. ACTION STATEMENTS The GDG made strong recommendations for the following key action statements (KASs): (KAS 4) If screening suggests hearing loss, clinicians should obtain or refer to a clinician who can obtain an audiogram. (KAS 8) Clinicians should offer, or refer to a clinician who can offer, appropriately fit amplification to patients with ARHL. (KAS 9) Clinicians should refer patients for an evaluation of cochlear implantation candidacy when patients have appropriately fit amplification and persistent hearing difficulty with poor speech understanding. The GDG made recommendations for the following KASs: (KAS 1) Clinicians should screen patients aged 50 years and older for hearing loss at the time of a health care encounter. (KAS 2) If screening suggests hearing loss, clinicians should examine the ear canal and tympanic membrane with otoscopy or refer to a clinician who can examine the ears for cerumen impaction, infection, or other abnormalities. (KAS 3) If screening suggests hearing loss, clinicians should identify sociodemographic factors and patient preferences that influence access to and utilization of hearing health care. (KAS 5) Clinicians should evaluate and treat or refer to a clinician who can evaluate and treat patients with significant asymmetric hearing loss, conductive or mixed hearing loss, or poor word recognition on diagnostic testing. (KAS 6) Clinicians should educate and counsel patients with hearing loss and their family/care partner(s) about the impact of hearing loss on their communication, safety, function, cognition, and quality of life. (KAS 7) Clinicians should counsel patients with hearing loss on communication strategies and assistive listening devices. (KAS 10) For patients with hearing loss, clinicians should assess if communication goals have been met and if there has been improvement in hearing-related quality of life at a subsequent health care encounter or within 1 year. The GDG offered the following KAS as an option: (KAS 11) Clinicians should assess hearing at least every 3 years in patients with known hearing loss or with reported concern for changes in hearing.
Collapse
Affiliation(s)
| | - Matthew L Bush
- University of Kentucky Medical Center, Lexington, Kentucky, USA
| | | | | | | | | | - Kaye Bender
- Mississippi Public Health Association, Jackson, Mississippi, USA
| | | | | | | | - Ana H Kim
- Columbia University Medical Center, New York, USA
| | | | | | - Carrie L Nieman
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | - Joe Reyes
- American Academy of Otolaryngology-Head and Neck Surgery Foundation, Alexandria, Virginia, USA
| | - Nui Dhepyasuwan
- American Academy of Otolaryngology-Head and Neck Surgery Foundation, Alexandria, Virginia, USA
| |
Collapse
|
7
|
Tsai Do BS, Bush ML, Weinreich HM, Schwartz SR, Anne S, Adunka OF, Bender K, Bold KM, Brenner MJ, Hashmi AZ, Keenan TA, Kim AH, Moore DJ, Nieman CL, Palmer CV, Ross EJ, Steenerson KK, Zhan KY, Reyes J, Dhepyasuwan N. Clinical Practice Guideline: Age-Related Hearing Loss. Otolaryngol Head Neck Surg 2024; 170 Suppl 2:S1-S54. [PMID: 38687845 DOI: 10.1002/ohn.750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Age-related hearing loss (ARHL) is a prevalent but often underdiagnosed and undertreated condition among individuals aged 50 and above. It is associated with various sociodemographic factors and health risks including dementia, depression, cardiovascular disease, and falls. While the causes of ARHL and its downstream effects are well defined, there is a lack of priority placed by clinicians as well as guidance regarding the identification, education, and management of this condition. PURPOSE The purpose of this clinical practice guideline is to identify quality improvement opportunities and provide clinicians trustworthy, evidence-based recommendations regarding the identification and management of ARHL. These opportunities are communicated through clear actionable statements with explanation of the support in the literature, evaluation of the quality of the evidence, and recommendations on implementation. The target patients for the guideline are any individuals aged 50 years and older. The target audience is all clinicians in all care settings. This guideline is intended to focus on evidence-based quality improvement opportunities judged most important by the guideline development group (GDG). It is not intended to be a comprehensive, general guide regarding the management of ARHL. The statements in this guideline are not intended to limit or restrict care provided by clinicians based on their experience and assessment of individual patients. ACTION STATEMENTS The GDG made strong recommendations for the following key action statements (KASs): (KAS 4) If screening suggests hearing loss, clinicians should obtain or refer to a clinician who can obtain an audiogram. (KAS 8) Clinicians should offer, or refer to a clinician who can offer, appropriately fit amplification to patients with ARHL. (KAS 9) Clinicians should refer patients for an evaluation of cochlear implantation candidacy when patients have appropriately fit amplification and persistent hearing difficulty with poor speech understanding. The GDG made recommendations for the following KASs: (KAS 1) Clinicians should screen patients aged 50 years and older for hearing loss at the time of a health care encounter. (KAS 2) If screening suggests hearing loss, clinicians should examine the ear canal and tympanic membrane with otoscopy or refer to a clinician who can examine the ears for cerumen impaction, infection, or other abnormalities. (KAS 3) If screening suggests hearing loss, clinicians should identify sociodemographic factors and patient preferences that influence access to and utilization of hearing health care. (KAS 5) Clinicians should evaluate and treat or refer to a clinician who can evaluate and treat patients with significant asymmetric hearing loss, conductive or mixed hearing loss, or poor word recognition on diagnostic testing. (KAS 6) Clinicians should educate and counsel patients with hearing loss and their family/care partner(s) about the impact of hearing loss on their communication, safety, function, cognition, and quality of life (QOL). (KAS 7) Clinicians should counsel patients with hearing loss on communication strategies and assistive listening devices. (KAS 10) For patients with hearing loss, clinicians should assess if communication goals have been met and if there has been improvement in hearing-related QOL at a subsequent health care encounter or within 1 year. The GDG offered the following KAS as an option: (KAS 11) Clinicians should assess hearing at least every 3 years in patients with known hearing loss or with reported concern for changes in hearing.
Collapse
Affiliation(s)
| | - Matthew L Bush
- University of Kentucky Medical Center, Lexington, Kentucky, USA
| | | | | | | | | | - Kaye Bender
- Mississippi Public Health Association, Jackson, Mississippi, USA
| | | | | | | | | | - Ana H Kim
- Columbia University Medical Center, New York, New York, USA
| | | | - Carrie L Nieman
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | - Joe Reyes
- American Academy of Otolaryngology-Head and Neck Surgery Foundation, Alexandria, Virginia, USA
| | - Nui Dhepyasuwan
- American Academy of Otolaryngology-Head and Neck Surgery Foundation, Alexandria, Virginia, USA
| |
Collapse
|
8
|
Tavanai E, Rahimi V, Khalili ME, Falahzadeh S, Motasaddi Zarandy M, Mohammadkhani G. Age-related hearing loss: An updated and comprehensive review of the interventions. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:256-269. [PMID: 38333758 PMCID: PMC10849199 DOI: 10.22038/ijbms.2023.72863.15849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/17/2023] [Indexed: 02/10/2024]
Abstract
Aging causes progressive degenerative changes in many organs, particularly the auditory system. Several attempts have been conducted to investigate preventive and therapeutic strategy/strategies for age-related auditory dysfunction, such as maintaining a healthy lifestyle through good nutrition, lower anxiety levels, and noise exposure, different pharmacological approaches, gene and cell therapy, and other strategies. However, it is not clear which approach is the best to slow down these dysfunctions because several different underlying mechanistic pathways are associated with presbycusis which eventually leads to different types of this disease. A combination of several methods is probably required, whereas the effectiveness for some people needs to be monitored. The effectiveness of treatments will not be the same for all; therefore, we may need to have a unique and personalized approach to the prevention and treatment of ARHL for each person. In addition, each method needs to specify what type of presbycusis can prevent or treat and provide complete information about the extent, duration of treatment, persistency of treatment, side effects, and whether the approach is for treatment or prevention or even both. This paper reviews the updated literature, which targets current interventions for age-related hearing loss.
Collapse
Affiliation(s)
- Elham Tavanai
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Vida Rahimi
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ehsan Khalili
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Falahzadeh
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
- Department of Audiology, School of Rehabilitation, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Motasaddi Zarandy
- Otolaryngology Research Center, Amiralam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghassem Mohammadkhani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Lee YY, Ha J, Kim YS, Ramani S, Sung S, Gil ES, Choo OS, Jang JH, Choung YH. Abnormal Cholesterol Metabolism and Lysosomal Dysfunction Induce Age-Related Hearing Loss by Inhibiting mTORC1-TFEB-Dependent Autophagy. Int J Mol Sci 2023; 24:17513. [PMID: 38139347 PMCID: PMC10743727 DOI: 10.3390/ijms242417513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cholesterol is a risk factor for age-related hearing loss (ARHL). However, the effect of cholesterol on the organ of Corti during the onset of ARHL is unclear. We established a mouse model for the ARHL group (24 months, n = 12) and a young group (6 months, n = 12). Auditory thresholds were measured in both groups using auditory brainstem response (ABR) at frequencies of 8, 16, and 32 kHz. Subsequently, mice were sacrificed and subjected to histological analyses, including transmission electron microscopy (TEM), H&E, Sudan Black B (SBB), and Filipin staining, as well as biochemical assays such as IHC, enzymatic analysis, and immunoblotting. Additionally, mRNA extracted from both young and aged cochlea underwent RNA sequencing. To identify the mechanism, in vitro studies utilizing HEI-OC1 cells were also performed. RNA sequencing showed a positive correlation with increased expression of genes related to metabolic diseases, cholesterol homeostasis, and target of rapamycin complex 1 (mTORC1) signaling in the ARHL group as compared to the younger group. In addition, ARHL tissues exhibited increased cholesterol and lipofuscin aggregates in the organ of Corti, lateral walls, and spiral ganglion neurons. Autophagic flux was inhibited by the accumulation of damaged lysosomes and autolysosomes. Subsequently, we observed a decrease in the level of transcription factor EB (TFEB) protein, which regulates lysosomal biosynthesis and autophagy, together with increased mTORC1 activity in ARHL tissues. These changes in TFEB and mTORC1 expression were observed in a cholesterol-dependent manner. Treatment of ARHL mice with atorvastatin, a cholesterol synthesis inhibitor, delayed hearing loss by reducing the cholesterol level and maintaining lysosomal function and autophagy by inhibiting mTORC1 and activating TFEB. The above findings were confirmed using stress-induced premature senescent House Ear Institute organ of Corti 1 (HEI-OC1) cells. The findings implicate cholesterol in the pathogenesis of ARHL. We propose that atorvastatin could prevent ARHL by maintaining lysosomal function and autophagy by inhibiting mTORC1 and activating TFEB during the aging process.
Collapse
Affiliation(s)
- Yun Yeong Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.Y.L.); (J.H.); (Y.S.K.); (S.R.); (S.S.); (J.H.J.)
| | - Jungho Ha
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.Y.L.); (J.H.); (Y.S.K.); (S.R.); (S.S.); (J.H.J.)
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Young Sun Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.Y.L.); (J.H.); (Y.S.K.); (S.R.); (S.S.); (J.H.J.)
| | - Sivasubramanian Ramani
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.Y.L.); (J.H.); (Y.S.K.); (S.R.); (S.S.); (J.H.J.)
| | - Siung Sung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.Y.L.); (J.H.); (Y.S.K.); (S.R.); (S.S.); (J.H.J.)
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Eun Sol Gil
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.Y.L.); (J.H.); (Y.S.K.); (S.R.); (S.S.); (J.H.J.)
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Oak-Sung Choo
- Department of Otorhinolaryngology-Head and Neck Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Republic of Korea;
| | - Jeong Hun Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.Y.L.); (J.H.); (Y.S.K.); (S.R.); (S.S.); (J.H.J.)
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.Y.L.); (J.H.); (Y.S.K.); (S.R.); (S.S.); (J.H.J.)
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
10
|
Tan WJT, Vlajkovic SM. Molecular Characteristics of Cisplatin-Induced Ototoxicity and Therapeutic Interventions. Int J Mol Sci 2023; 24:16545. [PMID: 38003734 PMCID: PMC10671929 DOI: 10.3390/ijms242216545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cisplatin is a commonly used chemotherapeutic agent with proven efficacy in treating various malignancies, including testicular, ovarian, cervical, breast, bladder, head and neck, and lung cancer. Cisplatin is also used to treat tumors in children, such as neuroblastoma, osteosarcoma, and hepatoblastoma. However, its clinical use is limited by severe side effects, including ototoxicity, nephrotoxicity, neurotoxicity, hepatotoxicity, gastrointestinal toxicity, and retinal toxicity. Cisplatin-induced ototoxicity manifests as irreversible, bilateral, high-frequency sensorineural hearing loss in 40-60% of adults and in up to 60% of children. Hearing loss can lead to social isolation, depression, and cognitive decline in adults, and speech and language developmental delays in children. Cisplatin causes hair cell death by forming DNA adducts, mitochondrial dysfunction, oxidative stress, and inflammation, culminating in programmed cell death by apoptosis, necroptosis, pyroptosis, or ferroptosis. Contemporary medical interventions for cisplatin ototoxicity are limited to prosthetic devices, such as hearing aids, but these have significant limitations because the cochlea remains damaged. Recently, the U.S. Food and Drug Administration (FDA) approved the first therapy, sodium thiosulfate, to prevent cisplatin-induced hearing loss in pediatric patients with localized, non-metastatic solid tumors. Other pharmacological treatments for cisplatin ototoxicity are in various stages of preclinical and clinical development. This narrative review aims to highlight the molecular mechanisms involved in cisplatin-induced ototoxicity, focusing on cochlear inflammation, and shed light on potential antioxidant and anti-inflammatory therapeutic interventions to prevent or mitigate the ototoxic effects of cisplatin. We conducted a comprehensive literature search (Google Scholar, PubMed) focusing on publications in the last five years.
Collapse
Affiliation(s)
- Winston J. T. Tan
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
- Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Srdjan M. Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
- Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
11
|
Peng Z, Zhao C, Yang Z, Gong S, Du Z. D-galactose-induced mitochondrial oxidative damage and apoptosis in the cochlear stria vascularis of mice. BMC Mol Cell Biol 2023; 24:27. [PMID: 37605129 PMCID: PMC10441755 DOI: 10.1186/s12860-023-00480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/02/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Age-related hearing loss, known as presbycusis, is the result of auditory system degeneration. Numerous studies have suggested that reactive oxygen species (ROS) and mitochondrial oxidative damage play important roles in the occurrence and progression of aging. The D-galactose (D-gal)-induced aging model is well known and widely utilized in aging research. Our previous studies demonstrate that administration of D-gal causes mitochondrial oxidative damage and causes subsequent dysfunction in the cochlear ribbon synapses, which in turn leads to hearing changes and early stage presbycusis. Stria vascularis (SV) cells are vital for hearing function. However, it is unclear to what extent D-gal induces oxidative damage and apoptosis in the cochlear SV of mice. In addition, the source of the causative ROS in the cochlear SV has not been fully investigated. METHODS In this study, we investigated ROS generation in the cochlear SV of mice treated with D-gal. Hearing function was measured using the auditory brainstem response (ABR). Immunofluorescence was used to examine apoptosis and oxidative damage. Transmission electron microscopy was also used to investigate the mitochondrial ultrastructure. DNA fragmentation was determined using the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) assay. Mitochondrial membrane potential (MMP) and ATP were also measured. RESULTS We found that D-gal-treated mice exhibited a significant shift in the mean amplitude and latency of the ABR; a remarkable increase in the levels of NADPH oxidase (NOX-2), Uncoupling protein 2 (UCP2) and cleaved caspase-3 (c-Cas3) was observed, as well as an increase in the number of TUNEL-positive cells were observed in the SV of mice. Both the expression of the DNA oxidative damage biomarker 8-hydroxy-2-deoxyguanosine (8-OHdG) and a commonly occurring mitochondrial DNA deletion were markedly elevated in the SV of mice that had been treated with D-gal to induce aging. Conversely, the ATP level and MMP were significantly reduced in D-gal-induced aging mice. We also found alterations in the mitochondrial ultrastructure in the SV of aging mice, which include swollen and distorted mitochondrial shape, shortened and thickened microvilli, and the accumulation of lysosomes in the SV. CONCLUSION Our findings suggest that the impairment of cochlear SV during presbycusis may be caused by mitochondrial oxidative damage and subsequent apoptosis.
Collapse
Affiliation(s)
- Zhe Peng
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No.95, Yong'an Road, Xicheng District, Beijing, 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Chunli Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No.95, Yong'an Road, Xicheng District, Beijing, 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Zijing Yang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No.95, Yong'an Road, Xicheng District, Beijing, 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No.95, Yong'an Road, Xicheng District, Beijing, 100050, China.
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China.
| | - Zhengde Du
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No.95, Yong'an Road, Xicheng District, Beijing, 100050, China.
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
12
|
Sacchetto L, Monzani D, Apa E, Lovato A, Caragli V, Gherpelli C, Palma S, Genovese E, Nocini R. The Effect of Alpha-Lipoic Acid in the Treatment of Chronic Subjective Tinnitus through the Tinnitus Handicap Inventory Scores. Audiol Res 2023; 13:484-494. [PMID: 37489379 PMCID: PMC10366923 DOI: 10.3390/audiolres13040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Tinnitus affects millions of adults. Many therapies, including complementary and alternative medicine and tinnitus retraining therapies, have been trialed, but an effective option, particularly for chronic subjective tinnitus (CTS), is still lacking. MATERIALS AND METHODS This study investigated the effects of alpha-lipoic acid (600 mg. per day for two months) on two groups of patients using a questionnaire. One group (A) was affected by tinnitus associated with likely cochlear dysfunction and metabolic syndrome, and the other (B) was composed of subjects with acoustic nerve lesions. All the patients were asked to complete the Italian version of the tinnitus handicap inventory (THI) to determine the overall degree of perceived annoyance at the beginning and end of therapy. Pure tone averages for speech frequencies and for high frequencies were computed, and psychoacoustic pitch and loudness matches were determined for each subject before and after treatment. RESULTS The pure tone audiometry, pitch, loudness, and THI scores of both groups were reported. In group A, statistically significant differences were observed for the "functional" and "emotional" subscales. The total score of THI and the loudness of tinnitus were also significantly reduced. No statistically significant differences were observed in group B. CONCLUSIONS These findings suggest a possible contribution of the antioxidant effect to the organ of Corti in subjects with metabolic syndrome and CST.
Collapse
Affiliation(s)
- Luca Sacchetto
- Otolaryngology-Head and Neck Surgery Department, University Hospital of Verona, 37126 Verona, Italy
| | - Daniele Monzani
- Otolaryngology-Head and Neck Surgery Department, University Hospital of Verona, 37126 Verona, Italy
| | - Enrico Apa
- Otolaryngology and Audiology Unit, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Andrea Lovato
- Otolaryngology Unit, Vicenza Hospital, 36100 Vicenza, Italy
| | - Valeria Caragli
- Otolaryngology and Audiology Unit, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Chiara Gherpelli
- Otolaryngology and Audiology Unit, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Silvia Palma
- Audiology, Primary Care Department, AUSL Modena, 41121 Modena, Italy
| | - Elisabetta Genovese
- Otolaryngology and Audiology Unit, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Riccardo Nocini
- Otolaryngology-Head and Neck Surgery Department, University Hospital of Verona, 37126 Verona, Italy
| |
Collapse
|
13
|
Tan WJT, Santos-Sacchi J, Tonello J, Shanker A, Ivanova AV. Pharmacological Modulation of Energy and Metabolic Pathways Protects Hearing in the Fus1/Tusc2 Knockout Model of Mitochondrial Dysfunction and Oxidative Stress. Antioxidants (Basel) 2023; 12:1225. [PMID: 37371955 DOI: 10.3390/antiox12061225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Tightly regulated and robust mitochondrial activities are critical for normal hearing. Previously, we demonstrated that Fus1/Tusc2 KO mice with mitochondrial dysfunction exhibit premature hearing loss. Molecular analysis of the cochlea revealed hyperactivation of the mTOR pathway, oxidative stress, and altered mitochondrial morphology and quantity, suggesting compromised energy sensing and production. Here, we investigated whether the pharmacological modulation of metabolic pathways using rapamycin (RAPA) or 2-deoxy-D-glucose (2-DG) supplementation can protect against hearing loss in female Fus1 KO mice. Additionally, we aimed to identify mitochondria- and Fus1/Tusc2-dependent molecular pathways and processes critical for hearing. We found that inhibiting mTOR or activating alternative mitochondrial energetic pathways to glycolysis protected hearing in the mice. Comparative gene expression analysis revealed the dysregulation of critical biological processes in the KO cochlea, including mitochondrial metabolism, neural and immune responses, and the cochlear hypothalamic-pituitary-adrenal axis signaling system. RAPA and 2-DG mostly normalized these processes, although some genes showed a drug-specific response or no response at all. Interestingly, both drugs resulted in a pronounced upregulation of critical hearing-related genes not altered in the non-treated KO cochlea, including cytoskeletal and motor proteins and calcium-linked transporters and voltage-gated channels. These findings suggest that the pharmacological modulation of mitochondrial metabolism and bioenergetics may restore and activate processes critical for hearing, thereby protecting against hearing loss.
Collapse
Affiliation(s)
- Winston J T Tan
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT 06510, USA
| | - Joseph Santos-Sacchi
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jane Tonello
- School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Anil Shanker
- School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Alla V Ivanova
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
14
|
Ma P, Wang S, Geng R, Gong Y, Li M, Xie D, Dong Y, Zheng T, Li B, Zhao T, Zheng Q. MiR-29a-deficiency causes thickening of the basilar membrane and age-related hearing loss by upregulating collagen IV and laminin. Front Cell Neurosci 2023; 17:1191740. [PMID: 37275774 PMCID: PMC10232818 DOI: 10.3389/fncel.2023.1191740] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Age-related hearing loss (ARHL) is the most common sensory degenerative disease and can significantly impact the quality of life in elderly people. A previous study using GeneChip miRNA microarray assays showed that the expression of miR-29a changes with age, however, its role in hearing loss is still unclear. In this study, we characterized the cochlear phenotype of miR-29a knockout (miR-29a-/-) mice and found that miR-29a-deficient mice had a rapid progressive elevation of the hearing threshold from 2 to 5 months of age compared with littermate controls as measured by the auditory brainstem response. Stereocilia degeneration, hair cell loss and abnormal stria vascularis (SV) were observed in miR-29a-/- mice at 4 months of age. Transcriptome sequencing results showed elevated extracellular matrix (ECM) gene expression in miR-29a-/- mice. Both Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that the key differences were closely related to ECM. Further examination with a transmission electron microscope showed thickening of the basilar membrane in the cochlea of miR-29a-/- mice. Five Col4a genes (Col4a1-a5) and two laminin genes (Lamb2 and Lamc1) were validated as miR-29a direct targets by dual luciferase assays and miR-29a inhibition assays with a miR-29a inhibitor. Consistent with the target gene validation results, the expression of these genes was significantly increased in the cochlea of miR-29a-/- mice, as shown by RT-PCR and Western blot. These findings suggest that miR-29a plays an important role in maintaining cochlear structure and function by regulating the expression of collagen and laminin and that the disturbance of its expression could be a cause of progressive hearing loss.
Collapse
Affiliation(s)
- Peng Ma
- School of Basic Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Shuli Wang
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Ruishuang Geng
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Yongfeng Gong
- School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Mulan Li
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Daoli Xie
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Yaning Dong
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Bo Li
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Tong Zhao
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Qingyin Zheng
- School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
15
|
Buswinka CJ, Nitta H, Osgood RT, Indzhykulian AA. SKOOTS: Skeleton oriented object segmentation for mitochondria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539611. [PMID: 37214838 PMCID: PMC10197543 DOI: 10.1101/2023.05.05.539611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The segmentation of individual instances of mitochondria from imaging datasets is informative, yet time-consuming to do by hand, sparking interest in developing automated algorithms using deep neural networks. Existing solutions for various segmentation tasks are largely optimized for one of two types of biomedical imaging: high resolution three-dimensional (whole neuron segmentation in volumetric electron microscopy datasets) or two-dimensional low resolution (whole cell segmentation of light microscopy images). The former requires consistently predictable boundaries to segment large structures, while the latter is boundary invariant but struggles with segmentation of large 3D objects without downscaling. Mitochondria in whole cell 3D EM datasets often occupy the challenging middle ground: large with ambiguous borders, limiting accuracy with existing tools. To rectify this, we have developed skeleton oriented object segmentation (SKOOTS); a new segmentation approach which efficiently handles large, densely packed mitochondria. We show that SKOOTS can accurately, and efficiently, segment 3D mitochondria in previously difficult situations. Furthermore, we will release a new, manually annotated, 3D mitochondria segmentation dataset. Finally, we show this approach can be extended to segment objects in 3D light microscopy datasets. These results bridge the gap between existing segmentation approaches and increases the accessibility for three-dimensional biomedical image analysis.
Collapse
Affiliation(s)
- Christopher J Buswinka
- Eaton Peabody Laboratories, Mass Eye and Ear, Boston, MA, USA
- Department of Otolaryngology, Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
- Speech and Hearing Biosciences and Technology graduate program, Harvard University, Cambridge, MA, USA
| | - Hidetomi Nitta
- Eaton Peabody Laboratories, Mass Eye and Ear, Boston, MA, USA
| | - Richard T Osgood
- Eaton Peabody Laboratories, Mass Eye and Ear, Boston, MA, USA
- Department of Otolaryngology, Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Artur A Indzhykulian
- Eaton Peabody Laboratories, Mass Eye and Ear, Boston, MA, USA
- Department of Otolaryngology, Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Tan WJT, Song L. Role of mitochondrial dysfunction and oxidative stress in sensorineural hearing loss. Hear Res 2023; 434:108783. [PMID: 37167889 DOI: 10.1016/j.heares.2023.108783] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Sensorineural hearing loss (SNHL) can either be genetically inherited or acquired as a result of aging, noise exposure, or ototoxic drugs. Although the precise pathophysiological mechanisms underlying SNHL remain unclear, an overwhelming body of evidence implicates mitochondrial dysfunction and oxidative stress playing a central etiological role. With its high metabolic demands, the cochlea, particularly the sensory hair cells, stria vascularis, and spiral ganglion neurons, is vulnerable to the damaging effects of mitochondrial reactive oxygen species (ROS). Mitochondrial dysfunction and consequent oxidative stress in cochlear cells can be caused by inherited mitochondrial DNA (mtDNA) mutations (hereditary hearing loss and aminoglycoside-induced ototoxicity), accumulation of acquired mtDNA mutations with age (age-related hearing loss), mitochondrial overdrive and calcium dysregulation (noise-induced hearing loss and cisplatin-induced ototoxicity), or accumulation of ototoxic drugs within hair cell mitochondria (drug-induced hearing loss). In this review, we provide an overview of our current knowledge on the role of mitochondrial dysfunction and oxidative stress in the development of SNHL caused by genetic mutations, aging, exposure to excessive noise, and ototoxic drugs. We also explore the advancements in antioxidant therapies for the different forms of acquired SNHL that are being evaluated in preclinical and clinical studies.
Collapse
Affiliation(s)
- Winston J T Tan
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1023, New Zealand.
| | - Lei Song
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Otolaryngology - Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| |
Collapse
|
17
|
McQuate A, Knecht S, Raible DW. Activity regulates a cell type-specific mitochondrial phenotype in zebrafish lateral line hair cells. eLife 2023; 12:e80468. [PMID: 36912880 PMCID: PMC10129330 DOI: 10.7554/elife.80468] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Hair cells of the inner ear are particularly sensitive to changes in mitochondria, the subcellular organelles necessary for energy production in all eukaryotic cells. There are over 30 mitochondrial deafness genes, and mitochondria are implicated in hair cell death following noise exposure, aminoglycoside antibiotic exposure, as well as in age-related hearing loss. However, little is known about the basic aspects of hair cell mitochondrial biology. Using hair cells from the zebrafish lateral line as a model and serial block-face scanning electron microscopy, we have quantifiably characterized a unique hair cell mitochondrial phenotype that includes (1) a high mitochondrial volume and (2) specific mitochondrial architecture: multiple small mitochondria apically, and a reticular mitochondrial network basally. This phenotype develops gradually over the lifetime of the hair cell. Disrupting this mitochondrial phenotype with a mutation in opa1 impacts mitochondrial health and function. While hair cell activity is not required for the high mitochondrial volume, it shapes the mitochondrial architecture, with mechanotransduction necessary for all patterning, and synaptic transmission necessary for the development of mitochondrial networks. These results demonstrate the high degree to which hair cells regulate their mitochondria for optimal physiology and provide new insights into mitochondrial deafness.
Collapse
Affiliation(s)
- Andrea McQuate
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Department of Otolaryngology-HNS, University of WashingtonSeattleUnited States
| | - Sharmon Knecht
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - David W Raible
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Department of Otolaryngology-HNS, University of WashingtonSeattleUnited States
| |
Collapse
|
18
|
Finding the balance: The elusive mechanisms underlying auditory hair cell mitochondrial biogenesis and mitophagy. Hear Res 2023; 428:108664. [PMID: 36566644 DOI: 10.1016/j.heares.2022.108664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
In all cell types, mitochondrial biogenesis is balanced with mitophagy to maintain a healthy mitochondrial pool that sustains specific energetic demands. Cell types that have a higher energetic burden, such as skeletal muscle cells and cardiomyocytes, will subsequently develop high mitochondrial volumes. In these cells, calcium influx during activity triggers cascades leading to activation of the co-transcriptional regulation factor PGC-1α, a master regulator of mitochondrial biogenesis, in a well-defined pathway. Despite the advantages in ATP production, high mitochondrial volumes might prove to be perilous, as it increases exposure to reactive oxygen species produced during oxidative phosphorylation. Mechanosensory hair cells are highly metabolically active cells, with high total mitochondrial volumes to meet that demand. However, the mechanisms leading to expansion and maintenance of the hair cell mitochondrial pool are not well defined. Calcium influx during mechanotransduction and synaptic transmission regulate hair cell mitochondria, leading to a possibility that similar to skeletal muscle and cardiomyocytes, intracellular calcium underlies the expansion of the hair cell mitochondrial volume. This review briefly summarizes the potential mechanisms underlying mitochondrial biogenesis in other cell types and in hair cells. We propose that hair cell mitochondrial biogenesis is primarily product of cellular differentiation rather than calcium influx, and that the hair cell high mitochondrial volume renders them more susceptible to reactive oxygen species increased by calcium flux than other cell types.
Collapse
|
19
|
White K, Someya S. The roles of NADPH and isocitrate dehydrogenase in cochlear mitochondrial antioxidant defense and aging. Hear Res 2023; 427:108659. [PMID: 36493529 PMCID: PMC11446251 DOI: 10.1016/j.heares.2022.108659] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Hearing loss is the third most prevalent chronic health condition affecting older adults. Age-related hearing loss affects one in three adults over 65 years of age and is caused by both extrinsic and intrinsic factors, including genetics, aging, and exposure to noise and toxins. All cells possess antioxidant defense systems that play an important role in protecting cells against these factors. Reduced nicotinamide adenine dinucleotide phosphate (NADPH) serves as a co-factor for antioxidant enzymes such as glutathione reductase and thioredoxin reductase and is produced by glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase 1 (IDH1) or malic enzyme 1 in the cytosol, while in the mitochondria, NADPH is generated from mitochondrial transhydrogenase, glutamate dehydrogenase, malic enzyme 3 or IDH2. There are three isoforms of IDH: cytosolic IDH1, and mitochondrial IDH2 and IDH3. Of these, IDH2 is thought to be the major supplier of NADPH to the mitochondrial antioxidant defense system. The NADP+/NADPH and NAD+/NADH couples are essential for maintaining a large array of biological processes, including cellular redox state, and energy metabolism, mitochondrial function. A growing body of evidence indicates that mitochondrial dysfunction contributes to age-related structural or functional changes of cochlear sensory hair cells and neurons, leading to hearing impairments. In this review, we describe the current understanding of the roles of NADPH and IDHs in cochlear mitochondrial antioxidant defense and aging.
Collapse
Affiliation(s)
- Karessa White
- Charlie Brigade Support Medical Company, 2/1 ABCT, United States Army, Fort Riley, KS, USA
| | - Shinichi Someya
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
20
|
Cui Q, Chen N, Wen C, Xi J, Huang L. Research trends and hotspot analysis of age-related hearing loss from a bibliographic perspective. Front Psychol 2022; 13:921117. [PMID: 36211873 PMCID: PMC9536176 DOI: 10.3389/fpsyg.2022.921117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundUp-to-date information about the trends of age-related hearing loss (ARHL) and how this varies between countries is essential to plan for an adequate health-system response. Therefore, this study aimed to assess the research hotpots and trends in ARHL and to provide the basis and direction for future research.Materials and methodsThe Web of Science Core Collection database was searched and screened according to the inclusion criteria during 2002–2021. Bibliometric analyses were conducted by CiteSpace (Chaomei Chen, Drexel University, Philadelphia, PA, United States) software and VOSviewer (Center for Science and Technology Studies, Leiden University, Leiden, The Netherlands) software.ResultsThe query identified 1,496 publications, which showed a growth trend of this filed. These publications were from 62 countries, the United States of America (United States) showed its tremendous impact on this field in publication outputs, total citations, and international collaborations, China following in second. The Journal of Hearing Research was the most productive journal. Weijia Kong published the most papers, and the most productive institution was Washington University. The keyword “presbycusis” ranked first in research frontiers and appeared earlier, and the keywords “age-related hearing loss,” “risk,” “dementia,” “auditory cortex,” “association,” and “decline” began to appear in recent years.ConclusionThe annual number of publications has grown rapidly in the past two decades and will continue to grow. Epidemiological investigation and laboratory research are lasting hot spots, besides future research will focus on the association between ARHL and cognitive decline, dementia, and Alzheimer’s disease.
Collapse
Affiliation(s)
- Qingjia Cui
- Rehabilitation Centre of Otolaryngology-Head and Neck, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Na Chen
- Rehabilitation Centre of Otolaryngology-Head and Neck, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Cheng Wen
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education, Beijing Institute of Otolaryngology, Beijing, China
| | - Jianing Xi
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Jianing Xi,
| | - Lihui Huang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education, Beijing Institute of Otolaryngology, Beijing, China
- *Correspondence: Lihui Huang,
| |
Collapse
|
21
|
Tarawneh HY, Jayakody DM, Sohrabi HR, Martins RN, Mulders WH. Understanding the Relationship Between Age-Related Hearing Loss and Alzheimer’s Disease: A Narrative Review. J Alzheimers Dis Rep 2022; 6:539-556. [PMID: 36275417 PMCID: PMC9535607 DOI: 10.3233/adr-220035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
Evidence suggests that hearing loss (HL), even at mild levels, increases the long-term risk of cognitive decline and incident dementia. Hearing loss is one of the modifiable risk factors for dementia, with approximately 4 million of the 50 million cases of dementia worldwide possibly attributed to untreated HL. This paper describes four possible mechanisms that have been suggested for the relationship between age-related hearing loss (ARHL) and Alzheimer’s disease (AD), which is the most common form of dementia. The first mechanism suggests mitochondrial dysfunction and altered signal pathways due to aging as a possible link between ARHL and AD. The second mechanism proposes that sensory degradation in hearing impaired people could explain the relationship between ARHL and AD. The occupation of cognitive resource (third) mechanism indicates that the association between ARHL and AD is a result of increased cognitive processing that is required to compensate for the degraded sensory input. The fourth mechanism is an expansion of the third mechanism, i.e., the function and structure interaction involves both cognitive resource occupation (neural activity) and AD pathology as the link between ARHL and AD. Exploring the specific mechanisms that provide the link between ARHL and AD has the potential to lead to innovative ideas for the diagnosis, prevention, and/or treatment of AD. This paper also provides insight into the current evidence for the use of hearing treatments as a possible treatment/prevention for AD, and if auditory assessments could provide an avenue for early detection of cognitive impairment associated with AD.
Collapse
Affiliation(s)
- Hadeel Y. Tarawneh
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
- Ear Science Institute Australia, Subiaco, WA, Australia
| | - Dona M.P. Jayakody
- Ear Science Institute Australia, Subiaco, WA, Australia
- Centre of Ear Science, Medical School, The University of Western Australia, Crawley, WA, Australia
| | - Hamid R. Sohrabi
- Centre for Healthy Ageing, College of Science, Health, Engineering and Education, Murdoch University, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Ralph N. Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | | |
Collapse
|
22
|
Oike H, Tomita S, Koyano H, Azami K. Garland chrysanthemum consumption ameliorates age-related hearing loss in C57BL/6 mouse; model system to explore hearing loss prevention foods in a short period. Biosci Biotechnol Biochem 2022; 86:1085-1094. [PMID: 35687003 DOI: 10.1093/bbb/zbac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022]
Abstract
Garland chrysanthemum (Glebionis coronaria L.) is an antioxidant-rich leafy vegetable. We found that garland chrysanthemum consumption ameliorated age-related hearing loss (AHL) in C57BL/6J mice, an early onset model. We also found that AHL progression was significantly ameliorated by three of ten products. Metabolome analysis of the 10 products using nuclear magnetic resonance (NMR) spectroscopy indicated that phytosterols may be involved in the amelioration of AHL. However, the direct inhibitory effect of phytosterol mixture on mouse AHL progression was not identified. These results suggest that garland chrysanthemum consumption delays AHL development in mice and its efficiency varies depending on the source of product. Our findings also suggest that phytosterol content in garland chrysanthemum function as an evaluation marker for the efficiency. Furthermore, to accelerate the search for foods that prevent AHL, we have used these data to develop an automatic threshold determination method for auditory brainstem response using machine learning.
Collapse
Affiliation(s)
- Hideaki Oike
- Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.,Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization (NARO), 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8517, Japan
| | - Satoru Tomita
- Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Hitoshi Koyano
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization (NARO), 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8517, Japan
| | - Kayo Azami
- Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| |
Collapse
|
23
|
Chen P, Hao JJ, Li MW, Bai J, Guo YT, Liu Z, Shi P. Integrative Functional Transcriptomic Analyses Implicate Shared Molecular Circuits in Sensorineural Hearing Loss. Front Cell Neurosci 2022; 16:857344. [PMID: 35370561 PMCID: PMC8964368 DOI: 10.3389/fncel.2022.857344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is referred to as the most common type of hearing loss and typically occurs when the inner ear or the auditory nerve is damaged. Aging, noise exposure, and ototoxic drugs represent three main causes of SNHL, leading to substantial similarities in pathophysiological characteristics of cochlear degeneration. Although the common molecular mechanisms are widely assumed to underlie these similarities, its validity lacks systematic examination. To address this question, we generated three SNHL mouse models from aging, noise exposure, and cisplatin ototoxicity, respectively. Through constructing gene co-expression networks for the cochlear transcriptome data across different hearing-damaged stages, the three models are found to significantly correlate with each other in multiple gene co-expression modules that implicate distinct biological functions, including apoptosis, immune, inflammation, and ion transport. Bioinformatics analyses reveal several potential hub regulators, such as IL1B and CCL2, both of which are verified to contribute to apoptosis accompanied by the increase of (ROS) in in vitro model system. Our findings disentangle the shared molecular circuits across different types of SNHL, providing potential targets for the broad effective therapeutic agents in SNHL.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Jun-Jun Hao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Meng-Wen Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jing Bai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Ting Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Zhen Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Zhen Liu,
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- Peng Shi,
| |
Collapse
|
24
|
Doettl SM, Plyler PN, McCaslin DL, Conolly LG, Gomez JD. Vestibular Evoked Myogenic Potentials and Postural Control in Adults with Age-Related Hearing Loss. J Am Acad Audiol 2022; 32:567-575. [PMID: 35176800 DOI: 10.1055/s-0041-1735521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Age-related changes to auditory function have been attributed to, through histopathological study, specific degradation of the sensory, supporting, and afferent structures of the cochlea. Similar to age-related hearing loss (ARHL), age-related changes to the vestibular sensory and supporting structures with specific degeneration of the saccule, utricle, otoconia, primary vestibular afferents have also been noted. Significant decreases in postural control with age are also well-documented in the literature attributed to multifactorial changes in function. PURPOSE The purpose of this study is to further evaluate the association of ARHL and saccule/utricle function as measured by VEMPs and postural control measures. STUDY SAMPLE Audiologic, vestibular and postural control results from 34 participants were analyzed. The age range was from 50 to 70 years old with 16 males and 18 females. Group 1 consisted of 33 ears from participants age 50-70 with normal hearing with average age of 60.8 years (sd 6.287 years) and an average speech-frequency PTA of 14.8 dB HL. Group 2 consisted of 27 ears from participants age 50-70 years with ARHL and an average age of 62.9 years (sd 4.984 years) with an average speech-frequency PTA of 39.9 dB HL. DATA COLLECTION AND ANALYSIS Independent samples t-tests were used to assess group mean differences for dependent variables. The independent variable was group with 2 levels (normal hearing, ARHL). The dependent variables were cVEMP P1/N1 Amplitude, cVEMP P1 Latency, cVEMP N1 Latency, cVEMP P2 Latency, oVEMP N1/P1 Amplitude, oVEMP N1 Latency, and oVEMP P1 Latency. Additional analyses were completed using Pearson correlation to evaluate the relationship of audiometric findings to the dependent variables. RESULTS Results indicated significantly decreased cVEMP P1/N1 amplitude and oVEMP N1/P1 amplitude adults 50-70-years of age with ARHL compared with their normal counterparts. Significant correlations were also found for audiometric results and both cVEMP and oVEMP measures. CONCLUSIONS Overall, the results of this study describe concomitant auditory and vestibular degeneration as measured by audiometric testing and vestibular function testing involving the saccule and to a lesser degree the utricle.
Collapse
Affiliation(s)
- Steven M Doettl
- Department of Audiology and Speech Pathology, University of Tennessee Health Science Center, Knoxville, Tennessee
| | - Patrick N Plyler
- Department of Audiology and Speech Pathology, University of Tennessee Health Science Center, Knoxville, Tennessee
| | - Devin L McCaslin
- Department of Otolaryngology- Head and Neck Surgery, Michigan Medicine, Ann Arbor, Michigan
| | - Larissa G Conolly
- Department of Audiology and Speech Pathology, University of Tennessee Health Science Center, Knoxville, Tennessee
| | - Jesus D Gomez
- Department of Audiology and Speech Pathology, University of Tennessee Health Science Center, Knoxville, Tennessee
| |
Collapse
|
25
|
Nolan LS, Chen J, Gonçalves AC, Bullen A, Towers ER, Steel KP, Dawson SJ, Gale JE. Targeted deletion of the RNA-binding protein Caprin1 leads to progressive hearing loss and impairs recovery from noise exposure in mice. Sci Rep 2022; 12:2444. [PMID: 35165318 PMCID: PMC8844073 DOI: 10.1038/s41598-022-05657-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022] Open
Abstract
Cell cycle associated protein 1 (Caprin1) is an RNA-binding protein that can regulate the cellular post-transcriptional response to stress. It is a component of both stress granules and neuronal RNA granules and is implicated in neurodegenerative disease, synaptic plasticity and long-term memory formation. Our previous work suggested that Caprin1 also plays a role in the response of the cochlea to stress. Here, targeted inner ear-deletion of Caprin1 in mice leads to an early onset, progressive hearing loss. Auditory brainstem responses from Caprin1-deficient mice show reduced thresholds, with a significant reduction in wave-I amplitudes compared to wildtype. Whilst hair cell structure and numbers were normal, the inner hair cell-spiral ganglion neuron (IHC-SGN) synapse revealed abnormally large post-synaptic GluA2 receptor puncta, a defect consistent with the observed wave-I reduction. Unlike wildtype mice, mild-noise-induced hearing threshold shifts in Caprin1-deficient mice did not recover. Oxidative stress triggered TIA-1/HuR-positive stress granule formation in ex-vivo cochlear explants from Caprin1-deficient mice, showing that stress granules could still be induced. Taken together, these findings suggest that Caprin1 plays a key role in maintenance of auditory function, where it regulates the normal status of the IHC-SGN synapse.
Collapse
Affiliation(s)
- Lisa S Nolan
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Jing Chen
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
| | | | - Anwen Bullen
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | - Emily R Towers
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Sally J Dawson
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK.
| | - Jonathan E Gale
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK.
| |
Collapse
|
26
|
Age-related Activation of Cyclic GMP-AMP synthase-Stimulator of Interferon Genes Signaling in the Auditory System is Associated with Presbycusis in C57BL/6J Male Mice. Neuroscience 2022; 481:73-84. [PMID: 34848262 DOI: 10.1016/j.neuroscience.2021.11.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/29/2021] [Accepted: 11/20/2021] [Indexed: 11/21/2022]
Abstract
Presbycusis, or age-related hearing loss (ARHL), is primarily associated with sensory or transduction nerve cell degeneration in the peripheral and/or central auditory systems. During aging, the auditory system shows mitochondrial dysfunction and increased inflammatory responses. Mitochondrial dysfunction promotes leakage of mitochondrial DNA (mtDNA) into the cytosol, which activates the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway to induce type I interferon and inflammatory responses. However, whether this pathway is involved in the occurrence and development of ARHL is unknown. This study aimed to determine whether there are age-related changes in the levels of cytosolic mtDNA and cGAS-STING pathway activation in the auditory pathway and to explore their relationship with ARHL. The results showed that cGAS-positive immunoreactive cells were observed in the cochlea, inferior colliculus, and auditory cortex. Levels of cytosolic mtDNA, cGAS, STING, phosphorylated interferon regulatory factor 3, and cytokines were significantly increased in the cochlea, inferior colliculus, and auditory cortex of 6-, 9-, and 12-month-old mice compared with 3-month-old mice. These findings suggested that cytosolic mtDNA may play an important role in the pathogenesis of ARHL by activating cGAS-STING-mediated type I interferon and inflammatory responses.
Collapse
|
27
|
Li Q, Zang Y, Sun Z, Zhang W, Liu H. Long noncoding RNA Gm44593 attenuates oxidative stress from age-related hearing loss by regulating miR-29b/WNK1. Bioengineered 2021; 13:573-582. [PMID: 34967279 PMCID: PMC8805810 DOI: 10.1080/21655979.2021.2012062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Long noncoding RNA has been reported to play important role in various disease. However, the function of lncRNA in age-related hearing loss still unclear. The aim of our study is to investigate the function and mechanism of lncRNA Gm44593 in AHL. ATP content, JC-1 assay, mitochondrial content, cell death rates and dual-luciferase reporter assay were performed to assess the function of lncRNA Gm44593 in HEI-OC1 cells. The expression of lncRNA Gm44593 was significantly upregulated upon H2O2 and starvation treatment. Overexpression of lncRNA Gm44593 manifestly reduced the cell death rates. The ATP content, mtDNA content and mitochondrial membrane potential were alleviated upon overexpression of lncRNA Gm44593. We also proved that miR-29b is the direct target of lncRNA Gm44593. Overexpression of miR-29b completely restored the effect induced by lncRNA Gm44593. In addition, we provided evidences that WNK1 is the direct target of miR-29b. Our research uncovers a potential role of lncRNA Gm44593 in age-related hearing loss. We provide new insights into potential therapeutic targets for the amelioration of age-related hearing loss.
Collapse
Affiliation(s)
- Qian Li
- Otolaryngology Head and Neck Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Yanzi Zang
- Otolaryngology Head and Neck Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Zhanwei Sun
- Otolaryngology Head and Neck Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Wenqi Zhang
- Otolaryngology Head and Neck Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Hongjian Liu
- Otolaryngology Head and Neck Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| |
Collapse
|
28
|
Muderris T, Yar Sağlam AS, Unsal D, Mülazimoğlu S, Sevil E, Kayhan H. Efficiency of resveratrol in the prevention and treatment of age-related hearing loss. Exp Ther Med 2021; 23:40. [PMID: 34849155 DOI: 10.3892/etm.2021.10962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/28/2021] [Indexed: 11/06/2022] Open
Abstract
Age-related hearing loss (ARHL) is a major public health concern, which is characterized by gradual, progressive sensorineural hearing loss and deterioration of sound localization, with no effective treatment available to date. The aim of the present study was to evaluate the efficacy of resveratrol to prevent and treat ARHL. For this purpose, 32 male C57BL/6 mice were assigned to four groups: Early treatment, late treatment, control and sham control. The experiment lasted for 15 months. Treatment was started at three months of age in the early treatment group and at sixth months in the late treatment group. The auditory brainstem response test was performed once every three months. At the end of the study period, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, NF-κB, Bcl-2, Bcl-xL, Bax, Bcl-2 homologous antagonist/killer (Bak), caspase-3 and caspase-9 levels in the cochlear tissues of the animals were analyzed by reverse transcription-quantitative PCR. Hearing thresholds of the mice in the early treatment group were better than those in the other groups (P<0.001) at the end of the study. However, hearing levels in the late treatment group were not significantly different from those in the control groups (P>0.05), although mean thresholds were lower. The threshold shift in the early treatment group was significantly lower at all frequencies when compared with those in the control groups (P<0.001). The mRNA expression levels of pro-apoptotic genes Bax and Bak were lower (P<0.05), anti-apoptotic genes Bcl-2 and Bcl-xL were higher (P<0.05), NF-κB, COX-2 and iNOS as genes that have a role in inflammation and caspase-3 and caspase-9 as genes with a vital role in apoptosis were lower (P<0.05) in the early treatment group when compared with the late treatment and control groups. These results suggested that resveratrol is effective in the prevention of ARHL, particularly when started prior to the beginning of hearing loss.
Collapse
Affiliation(s)
- Togay Muderris
- Department of Otorhinolaryngology, Head and Neck Surgery, Izmir Bakircay University Faculty of Medicine, 35610 Izmir, Turkey
| | - Atiye Seda Yar Sağlam
- Department of Medical Biology and Genetics, Gazi University Faculty of Medicine, 06500 Ankara, Turkey
| | - Döndü Unsal
- Department of Audiology, Ataturk Education and Research Hospital, 06800 Ankara, Turkey
| | - Selçuk Mülazimoğlu
- Department of Otorhinolaryngology, Head and Neck Surgery, Ankara University Faculty of Medicine, 06230 Ankara, Turkey
| | - Ergün Sevil
- Department of Otorhinolaryngology, Head and Neck Surgery, Alanya Alaaddin Keykubat University, 07400 Antalya, Turkey
| | - Handan Kayhan
- Department of Medical Biology and Genetics, Gazi University Faculty of Medicine, 06500 Ankara, Turkey
| |
Collapse
|
29
|
Lei M, Zhang D, Sun Y, Zou C, Wang Y, Hong Y, Jiao Y, Cai C. Web-based transcriptome analysis determines a sixteen-gene signature and associated drugs on hearing loss patients: A bioinformatics approach. J Clin Lab Anal 2021; 35:e24065. [PMID: 34758154 PMCID: PMC8649328 DOI: 10.1002/jcla.24065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Background Hearing loss is becoming more and more general. It may occur at all age and affect the language learning ability of children and trigger serious social problems. Methods The hearing loss differentially expressed genes (HL‐DEGs) were recognized through a comparison with healthy subjects. The Gene Ontology (GO) analysis was executed by DAVID. The reactome analysis of HL‐DEGs was performed by Clue‐GO. Next, we used STRING, an online website, to identify crucial protein‐protein interactions among HL‐DEGs. Cytoscape software was employed to construct a protein‐protein interaction network. MCODE, a plug‐in of the Cytoscape software, was used for module analysis. Finally, we used DGIdb database to ascertain the targeted drugs for MCODE genes. Results Four hundred four HL‐DEGs were identified, among which the most up‐regulated 10 genes were AL008707.1, SDR42E1P5, BX005040.1, AL671883.2, MT1XP1, AC016957.1, U2AF1L5, XIST, DAAM2, and ADAMTS2, and the most down‐regulated 10 genes were ALOX15, PRSS33, IL5RA, SMPD3, IGHV1‐2, IGLV3‐9, RHOXF1P1, CACNG6, MYOM2, and RSAD2. Through STRING database and MCODE analysis, we finally got 16 MCODE genes. These genes can be regarded as hearing loss related genes. Through biological analysis, it is found that these genes are enriched in pathways related to apoptosis such as tumor necrosis factor. Among them, MMP8, LTF, ORM2, FOLR3, and TCN1 have corresponding targeted drugs. Foremost, MCODE genes should be investigated for its usefulness as a new biomarker for diagnosis and treatment. Conclusion In summary, our study produced a sixteen‐gene signature and associated drugs that could be diagnosis and treatment of hearing loss patients.
Collapse
Affiliation(s)
- Min Lei
- Department of Otorhinolaryngology - Head and Neck Surgery, School of Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Dongdong Zhang
- Department of Otorhinolaryngology - Head and Neck Surgery, School of Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Yixin Sun
- School of Medicine, Xiamen University, Xiamen, China
| | - Cong Zou
- Department of Otorhinolaryngology - Head and Neck Surgery, School of Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Yue Wang
- Department of Otorhinolaryngology - Head and Neck Surgery, School of Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Yongjun Hong
- Department of Otorhinolaryngology - Head and Neck Surgery, School of Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Yanchao Jiao
- Department of Otorhinolaryngology - Head and Neck Surgery, School of Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Chengfu Cai
- Department of Otorhinolaryngology - Head and Neck Surgery, School of Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China.,Department of Otorhinolaryngology Head and Neck Surgery, Teaching Hospital of Fujian Medical University, Xiamen, China.,Department of Otorhinolaryngology - Head and Neck Surgery, Xiamen University, Xiamen, China
| |
Collapse
|
30
|
Heat Shock Factor 1 Prevents Age-Related Hearing Loss by Decreasing Endoplasmic Reticulum Stress. Cells 2021; 10:cells10092454. [PMID: 34572102 PMCID: PMC8468389 DOI: 10.3390/cells10092454] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is a common stress factor during the aging process. Heat shock factor 1 (HSF1) plays a critical role in ER stress; however, its exact function in age-related hearing loss (ARHL) has not been fully elucidated. The purpose of the present study was to identify the role of HSF1 in ARHL. In this study, we demonstrated that the loss of inner and outer hair cells and their supporting cells was predominant in the high-frequency region (basal turn, 32 kHz) in ARHL cochleae. In the aging cochlea, levels of the ER stress marker proteins p-eIF2α and CHOP increased as HSF1 protein levels decreased. The levels of various heat shock proteins (HSPs) also decreased, including HSP70 and HSP40, which were markedly downregulated, and the expression levels of Bax and cleaved caspase-3 apoptosis-related proteins were increased. However, HSF1 overexpression showed significant hearing protection effects in the high-frequency region (basal turn, 32 kHz) by decreasing CHOP and cleaved caspase-3 and increasing the HSP40 and HSP70 proteins. These findings were confirmed by HSF1 functional studies using an auditory cell model. Therefore, we propose that HSF1 can function as a mediator to prevent ARHL by decreasing ER stress-dependent apoptosis in the aging cochlea.
Collapse
|
31
|
Peixoto Pinheiro B, Adel Y, Knipper M, Müller M, Löwenheim H. Auditory Threshold Variability in the SAMP8 Mouse Model of Age-Related Hearing Loss: Functional Loss and Phenotypic Change Precede Outer Hair Cell Loss. Front Aging Neurosci 2021; 13:708190. [PMID: 34408646 PMCID: PMC8366269 DOI: 10.3389/fnagi.2021.708190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Age-related hearing loss (ARHL) is the most common sensory deficit in aging society, which is accompanied by increased speech discrimination difficulties in noisy environments, social isolation, and cognitive decline. The audiometric degree of ARHL is largely correlated with sensory hair cell loss in addition to age-related factors not captured by histopathological analysis of the human cochlea. Previous studies have identified the senescence-accelerated mouse prone strain 8 (SAMP8) as a model for studying ARHL and age-related modifications of the cochlear redox environment. However, the SAMP8 population exhibits a large variability in auditory function decline over age, whose underlying cause remains unknown. In this study, we analyzed auditory function of SAMP8 mice by measuring auditory brainstem response (ABR) thresholds at the age of 6 weeks (juvenile), 12 weeks (young adult), and 24 weeks (adult). Consistent with previous studies, SAMP8 mice exhibit an early progressive, age-related decline of hearing acuity. However, a spatiotemporal cytohistological analysis showed that the significant increase in threshold variability was not concurrently reflected in outer hair cell (OHC) loss observed in the lower and upper quartiles of the ABR threshold distributions over age. This functional loss was found to precede OHC loss suggesting that age-related phenotypic changes may be contributing factors not represented in cytohistological analysis. The expression of potassium channels KCNQ4 (KV7.4), which mediates the current IK,n crucial for the maintenance of OHC membrane potential, and KCNQ1 (KV7.1), which is an essential component in potassium circulation and secretion into the endolymph generating the endocochlear potential, showed differences between these quartiles and age groups. This suggests that phenotypic changes in OHCs or the stria vascularis due to variable oxidative deficiencies in individual mice may be predictors of the observed threshold variability in SAMP8 mice and their progressive ARHL. In future studies, further phenotypic predictors affected by accumulated metabolic challenges over age need to be investigated as potentially underlying causes of ARHL preceding irreversible OHC loss in the SAMP8 mouse model.
Collapse
Affiliation(s)
- Barbara Peixoto Pinheiro
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Youssef Adel
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Marcus Müller
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Hubert Löwenheim
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| |
Collapse
|
32
|
A Review on Recent Advancement on Age-Related Hearing Loss: The Applications of Nanotechnology, Drug Pharmacology, and Biotechnology. Pharmaceutics 2021; 13:pharmaceutics13071041. [PMID: 34371732 PMCID: PMC8309044 DOI: 10.3390/pharmaceutics13071041] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/30/2022] Open
Abstract
Aging is considered a contributing factor to many diseases such as cardiovascular disease, Alzheimer’s disease, and hearing loss. Age-related hearing loss, also termed presbycusis, is one of the most common sensory impairments worldwide, affecting one in five people over 50 years of age, and this prevalence is growing annually. Associations have emerged between presbycusis and detrimental health outcomes, including social isolation and mental health. It remains largely untreatable apart from hearing aids, and with no globally established prevention strategies in the clinical setting. Hence, this review aims to explore the pathophysiology of presbycusis and potential therapies, based on a recent advancement in bile acid-based bio-nanotechnologies. A comprehensive online search was carried out using the following keywords: presbycusis, drugs, hearing loss, bile acids, nanotechnology, and more than 150 publications were considered directly relevant. Evidence of the multifaceted oxidative stress and chronic inflammation involvement in cellular damage and apoptosis that is associated with a loss of hair cells, damaged and inflamed stria vascularis, and neuronal signalling loss and apoptosis continues to emerge. New robust and effective therapies require drug delivery deeper into the various layers of the cochlea. Bile acid-based nanotechnology has gained wide interest in its permeation-enhancing ability and potential for numerous applications in treating presbycusis.
Collapse
|
33
|
Key Signaling Pathways Regulate the Development and Survival of Auditory Hair Cells. Neural Plast 2021; 2021:5522717. [PMID: 34194486 PMCID: PMC8214483 DOI: 10.1155/2021/5522717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/01/2021] [Accepted: 05/31/2021] [Indexed: 01/16/2023] Open
Abstract
The loss of auditory sensory hair cells (HCs) is the most common cause of sensorineural hearing loss (SNHL). As the main sound transmission structure in the cochlea, it is necessary to maintain the normal shape and survival of HCs. In this review, we described and summarized the signaling pathways that regulate the development and survival of auditory HCs in SNHL. The role of the mitogen-activated protein kinase (MAPK), phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), Notch/Wnt/Atoh1, calcium channels, and oxidative stress/reactive oxygen species (ROS) signaling pathways are the most relevant. The molecular interactions of these signaling pathways play an important role in the survival of HCs, which may provide a theoretical basis and possible therapeutic interventions for the treatment of hearing loss.
Collapse
|
34
|
He ZH, Li M, Fang QJ, Liao FL, Zou SY, Wu X, Sun HY, Zhao XY, Hu YJ, Xu XX, Chen S, Sun Y, Chai RJ, Kong WJ. FOXG1 promotes aging inner ear hair cell survival through activation of the autophagy pathway. Autophagy 2021; 17:4341-4362. [PMID: 34006186 PMCID: PMC8726647 DOI: 10.1080/15548627.2021.1916194] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Presbycusis is the cumulative effect of aging on hearing. Recent studies have shown that common mitochondrial gene deletions are closely related to deafness caused by degenerative changes in the auditory system, and some of these nuclear factors are proposed to participate in the regulation of mitochondrial function. However, the detailed mechanisms involved in age-related degeneration of the auditory systems have not yet been fully elucidated. In this study, we found that FOXG1 plays an important role in the auditory degeneration process through regulation of macroautophagy/autophagy. Inhibition of FOXG1 decreased the autophagy activity and led to the accumulation of reactive oxygen species and subsequent apoptosis of cochlear hair cells. Recent clinical studies have found that aspirin plays important roles in the prevention and treatment of various diseases by regulating autophagy and mitochondria function. In this study, we found that aspirin increased the expression of FOXG1, which further activated autophagy and reduced the production of reactive oxygen species and inhibited apoptosis, and thus promoted the survival of mimetic aging HCs and HC-like OC-1 cells. This study demonstrates the regulatory function of the FOXG1 transcription factor through the autophagy pathway during hair cell degeneration in presbycusis, and it provides a new molecular approach for the treatment of age-related hearing loss. Abbreviations: AHL: age-related hearing loss; baf: bafilomycin A1; CD: common deletion; D-gal: D-galactose; GO: glucose oxidase; HC: hair cells; mtDNA: mitochondrial DNA; RAP: rapamycin; ROS: reactive oxygen species; TMRE: tetramethylrhodamine, ethyl ester
Collapse
Affiliation(s)
- Zu-Hong He
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Otorhinolaryngology, Xiangyang Central Hospital, Affiliated Hospital Of Hubei University Of Arts and Science, Xiangyang 441021, China
| | - Ming Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiao-Jun Fang
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Fu-Ling Liao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science
| | - Sheng-Yu Zou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Ying Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Yan Zhao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Juan Hu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Xiang Xu
- Department of Otorhinolaryngology, Xiangyang Central Hospital, Affiliated Hospital Of Hubei University Of Arts and Science, Xiangyang 441021, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ren-Jie Chai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.,Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Wei-Jia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Ding D, Prolla T, Someya S, Manohar S, Salvi R. Roles of Bak and Sirt3 in Paraquat-Induced Cochlear Hair Cell Damage. Neurotox Res 2021; 39:1227-1237. [PMID: 33900547 DOI: 10.1007/s12640-021-00366-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022]
Abstract
Paraquat, a superoxide generator, can damage the cochlea causing an ototoxic hearing loss. The purpose of the study was to determine if deletion of Bak, a pro-apoptotic gene, would reduce paraquat ototoxicity or if deletion of Sirt3, which delays age-related hearing loss under caloric restriction, would increase paraquat ototoxicity. We tested these two hypotheses by treating postnatal day 3 cochlear cultures from Bak±, Bak-/-, Sirt3±, Sirt3-/-, and WT mice with paraquat and compared the results to a standard rat model of paraquat ototoxicity. Paraquat damaged nerve fibers and dose-dependently destroyed rat outer hair cells (OHCs) and inner hair cells (IHCs). Rat hair cell loss began in the base of the cochlea with a 10 μM dose and as the dose increased from 50 to 500 μM, the hair cell loss increased near the base of the cochlea and spread toward the apex of the cochlea. Rat OHC losses were consistently greater than IHC losses. Unexpectedly, in all mouse genotypes, paraquat-induced hair cell lesions were maximal near the apex of the cochlea and minimal near the base. This unusual damage gradient is opposite to that seen in paraquat-treated rats and in mice and rats treated with other ototoxic drugs. However, paraquat always induced greater OHC loss than IHC loss in all mouse strains. Contrary to our hypothesis, Bak deficient mice were more vulnerable to paraquat ototoxicity than WT mice (Bak-/- > Bak± > WT), suggesting that Bak plays a protective role against hair cell stress. Also, contrary to expectation, Sirt3-deficient mice did not differ significantly from WT mice, possibly due to the fact that Sirt3 was not experimentally upregulated in Sirt3-expressing mice prior to paraquat treatment. Our results show for the first time a gradient of ototoxic damage in mice that is greater in the apex than the base of the cochlea.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cells, Cultured
- Cochlea/drug effects
- Cochlea/metabolism
- Cochlea/pathology
- Dose-Response Relationship, Drug
- Female
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/pathology
- Herbicides/toxicity
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Organ Culture Techniques
- Paraquat/toxicity
- Rats
- Rats, Sprague-Dawley
- Sirtuin 3/deficiency
- Sirtuin 3/genetics
- bcl-2 Homologous Antagonist-Killer Protein/deficiency
- bcl-2 Homologous Antagonist-Killer Protein/genetics
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Tomas Prolla
- Department of Genetics and Medical Genetics, University of Wisconsin, 702 W Johnson St 1101, Madison, WI, 53715, USA
| | - Shinichi Someya
- Department of Aging and Geriatrics, University of Florida, Gainsville, FL, 32611, USA
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA.
| |
Collapse
|
36
|
Li D, Zhao H, Cui ZK, Tian G. The Role of Nrf2 in Hearing Loss. Front Pharmacol 2021; 12:620921. [PMID: 33912042 PMCID: PMC8072655 DOI: 10.3389/fphar.2021.620921] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/25/2021] [Indexed: 12/28/2022] Open
Abstract
Hearing loss is a major unresolved problem in the world, which has brought a heavy burden to society, economy, and families. Hair cell damage and loss mediated by oxidative stress are considered to be important causes of hearing loss. The nuclear factor erythroid 2–related factor 2 (Nrf2) is a major regulator of antioxidant capacity and is involved in the occurrence and development of a series of toxic and chronic diseases associated with oxidative stress. In recent years, studies on the correlation between hearing loss and Nrf2 target have continuously broadened our knowledge, and Nrf2 has become a new strategic target for the development and reuse of hearing protection drugs. This review summarized the correlation of Nrf2 in various types of hearing loss, and the role of drugs in hearing protection through Nrf2 from the literature.
Collapse
Affiliation(s)
- Dafei Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Haiyan Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Zhong-Kai Cui
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.,Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guangyong Tian
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| |
Collapse
|
37
|
Szepesy J, Humli V, Farkas J, Miklya I, Tímár J, Tábi T, Gáborján A, Polony G, Szirmai Á, Tamás L, Köles L, Vizi ES, Zelles T. Chronic Oral Selegiline Treatment Mitigates Age-Related Hearing Loss in BALB/c Mice. Int J Mol Sci 2021; 22:2853. [PMID: 33799684 PMCID: PMC7999597 DOI: 10.3390/ijms22062853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
Age-related hearing loss (ARHL), a sensorineural hearing loss of multifactorial origin, increases its prevalence in aging societies. Besides hearing aids and cochlear implants, there is no FDA approved efficient pharmacotherapy to either cure or prevent ARHL. We hypothesized that selegiline, an antiparkinsonian drug, could be a promising candidate for the treatment due to its complex neuroprotective, antioxidant, antiapoptotic, and dopaminergic neurotransmission enhancing effects. We monitored by repeated Auditory Brainstem Response (ABR) measurements the effect of chronic per os selegiline administration on the hearing function in BALB/c and DBA/2J mice, which strains exhibit moderate and rapid progressive high frequency hearing loss, respectively. The treatments were started at 1 month of age and lasted until almost a year and 5 months of age, respectively. In BALB/c mice, 4 mg/kg selegiline significantly mitigated the progression of ARHL at higher frequencies. Used in a wide dose range (0.15-45 mg/kg), selegiline had no effect in DBA/2J mice. Our results suggest that selegiline can partially preserve the hearing in certain forms of ARHL by alleviating its development. It might also be otoprotective in other mammals or humans.
Collapse
MESH Headings
- Administration, Oral
- Aging/physiology
- Animals
- Antiparkinson Agents/administration & dosage
- Antiparkinson Agents/pharmacology
- Auditory Threshold/drug effects
- Auditory Threshold/physiology
- Disease Models, Animal
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Evoked Potentials, Auditory, Brain Stem/physiology
- Hearing Loss, Sensorineural/drug therapy
- Hearing Loss, Sensorineural/physiopathology
- Humans
- Male
- Mice, Inbred BALB C
- Mice, Inbred DBA
- Protective Agents/administration & dosage
- Protective Agents/pharmacology
- Selegiline/administration & dosage
- Selegiline/pharmacology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Mice
Collapse
Affiliation(s)
- Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Viktória Humli
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
| | - János Farkas
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
| | - Ildikó Miklya
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
| | - Júlia Tímár
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, H-1089 Budapest, Hungary;
| | - Anita Gáborján
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Gábor Polony
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Ágnes Szirmai
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - László Tamás
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary
| | - Elek Sylvester Vizi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
| |
Collapse
|
38
|
Kim YJ, Choo OS, Lee JS, Jang JH, Woo HG, Choung YH. BCL2 Interacting Protein 3-like/NIX-mediated Mitophagy Plays an Important Role in the Process of Age-related Hearing Loss. Neuroscience 2020; 455:39-51. [PMID: 33346118 DOI: 10.1016/j.neuroscience.2020.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 01/06/2023]
Abstract
Clearance of dysfunctional mitochondria via mitophagy is essential for cell survival and cochlear functions. However, it is not clear which genes are significantly involved in this process. Here, we investigated the changes in mitophagy and mitophagy-associated genes in mouse auditory cells to determine a possible correlation between mitophagy and age-related hearing loss (ARHL). Here, we show that most transcripts associated with mitophagy were downregulated in an age-dependent manner. We identified one significant differentially expressed gene associated with mitophagy, BCL2 interacting protein 3-like (BNIP3L)/NIX. Mitophagy-inhibited cells with BNIP3L/NIX knockdown showed hyperresponsiveness to oxidative stress resulting in cell senescence with increased levels of TOMM20 and LC3B. Overexpression of BNIP3L/NIX promotes the degradation of TOMM20 and LC3B during premature cell senescence. In conclusion, BNIP3L/NIX may play an important role in mitochondria degradation maintaining cochlear cell homeostasis during the aging process of hearing.
Collapse
Affiliation(s)
- Yeon Ju Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Oak-Sung Choo
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Jin-Sol Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Biomedical Sciences, BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Jeong Hun Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyun Goo Woo
- Department of Biomedical Sciences, BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea; Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea; Department of Biomedical Sciences, BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
39
|
Tan X, Zhou Y, Agarwal A, Lim M, Xu Y, Zhu Y, O’Brien J, Tran E, Zheng J, Gius D, Richter CP. Systemic application of honokiol prevents cisplatin ototoxicity without compromising its antitumor effect. Am J Cancer Res 2020; 10:4416-4434. [PMID: 33415008 PMCID: PMC7783741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023] Open
Abstract
Cisplatin is a potent drug used in about 40% of cancer treatment but also leads to severe deafness in 60-80% of the cases. Although the mechanism is known to be related to the accumulation of reactive oxygen species (ROS), no drug or FDA approved treatment is currently available to prevent cisplatin ototoxicity. With this study, we show for the first time that honokiol (HNK), a pleiotropic poly-phenol prevents cisplatin-induced hearing loss. HNK also improves the wellbeing of the mice during the treatment, determined by the increase in the number of surviving animals. In a transgenic tumor mouse model, HNK does not hinder cisplatin's antitumor effect. The mechanism is related to the activation of sirtuin 3, a deacetylase in mitochondria essential for ROS detoxification. We expect a paradigm shift in cisplatin chemotherapy based on the current study and future clinical trials, where honokiol is applied to reduce side effects including hearing loss.
Collapse
Affiliation(s)
- Xiaodong Tan
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
| | - Yingjie Zhou
- Department of Communication Sciences and Disorders, Northwestern University633 Clark St, Evanston, IL 60208, USA
| | - Aditi Agarwal
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
| | - Michelle Lim
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
| | - Yingyue Xu
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
| | - Yueming Zhu
- Department of Oncology, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
| | - Joseph O’Brien
- Department of Oncology, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
| | - Elizabeth Tran
- Department of Oncology, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
| | - Jing Zheng
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
- Department of Communication Sciences and Disorders, Northwestern University633 Clark St, Evanston, IL 60208, USA
- Knowles Hearing Center, Northwestern University633 Clark St, Evanston, IL 60208, USA
| | - David Gius
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine7979 Wurzbach Road, San Antonio, TX 78229, USA
| | - Claus-Peter Richter
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
- Department of Communication Sciences and Disorders, Northwestern University633 Clark St, Evanston, IL 60208, USA
- Knowles Hearing Center, Northwestern University633 Clark St, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University633 Clark St, Evanston, IL 60208, USA
| |
Collapse
|
40
|
Llano DA, Issa LK, Devanarayan P, Devanarayan V. Hearing Loss in Alzheimer's Disease Is Associated with Altered Serum Lipidomic Biomarker Profiles. Cells 2020; 9:cells9122556. [PMID: 33260532 PMCID: PMC7760745 DOI: 10.3390/cells9122556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/01/2023] Open
Abstract
Recent data have found that aging-related hearing loss (ARHL) is associated with the development of Alzheimer’s Disease (AD). However, the nature of the relationship between these two disorders is not clear. There are multiple potential factors that link ARHL and AD, and previous investigators have speculated that shared metabolic dysregulation may underlie the propensity to develop both disorders. Here, we investigate the distribution of serum lipidomic biomarkers in AD subjects with or without hearing loss in a publicly available dataset. Serum levels of 349 known lipids from 16 lipid classes were measured in 185 AD patients. Using previously defined co-regulated sets of lipids, both age- and sex-adjusted, we found that lipid sets enriched in phosphatidylcholine and phosphatidylethanolamine showed a strong inverse association with hearing loss. Examination of biochemical classes confirmed these relationships and revealed that serum phosphatidylcholine levels were significantly lower in AD subjects with hearing loss. A similar relationship was not found in normal subjects. These data suggest that a synergistic relationship may exist between AD, hearing loss and metabolic biomarkers, such that in the context of a pathological state such as AD, alterations in serum metabolic profiles are associated with hearing loss. These data also point to a potential role for phosphatidylcholine, a molecule with antioxidant properties, in the underlying pathophysiology of ARHL in the context of AD, which has implications for our understanding and potential treatment of both disorders.
Collapse
Affiliation(s)
- Daniel A. Llano
- Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Carle Neuroscience Institute, Urbana, IL 61801, USA
- Correspondence:
| | - Lina K. Issa
- Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Priya Devanarayan
- Department of Biology and Schreyer Honors College, Pennsylvania State University, University Park, PA 16802, USA;
| | - Viswanath Devanarayan
- GlaxoSmithKline, Collegeville, PA 19426 USA;
- Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | |
Collapse
|
41
|
Perkins G, Lee JH, Park S, Kang M, Perez-Flores MC, Ju S, Phillips G, Lysakowski A, Gratton MA, Yamoah EN. Altered Outer Hair Cell Mitochondrial and Subsurface Cisternae Connectomics Are Candidate Mechanisms for Hearing Loss in Mice. J Neurosci 2020; 40:8556-8572. [PMID: 33020216 PMCID: PMC7605424 DOI: 10.1523/jneurosci.2901-19.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 11/21/2022] Open
Abstract
Organelle crosstalk is vital for cellular functions. The propinquity of mitochondria, ER, and plasma membrane promote regulation of multiple functions, which include intracellular Ca2+ flux, and cellular biogenesis. Although the purposes of apposing mitochondria and ER have been described, an understanding of altered organelle connectomics related to disease states is emerging. Since inner ear outer hair cell (OHC) degeneration is a common trait of age-related hearing loss, the objective of this study was to investigate whether the structural and functional coupling of mitochondria with subsurface cisternae (SSC) was affected by aging. We applied functional and structural probes to equal numbers of male and female mice with a hearing phenotype akin to human aging. We discovered the polarization of cristae and crista junctions in mitochondria tethered to the SSC in OHCs. Aging was associated with SSC stress and decoupling of mitochondria with the SSC, mitochondrial fission/fusion imbalance, a remarkable reduction in mitochondrial and cytoplasmic Ca2+ levels, reduced K+-induced Ca2+ uptake, and marked plasticity of cristae membranes. A model of structure-based ATP production predicts profound energy stress in older OHCs. This report provides data suggesting that altered membrane organelle connectomics may result in progressive hearing loss.
Collapse
Affiliation(s)
- Guy Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, California 92093
| | | | | | | | | | - Saeyeon Ju
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, California 92093
| | - Grady Phillips
- Washington University School of Medicine, St. Louis, Missouri 63110
| | - Anna Lysakowski
- Departments of Anatomy and Cell Biology and Otolaryngology, University of Illinois at Chicago, Chicago, Illinois 60612
| | | | | |
Collapse
|
42
|
White PM. Perspectives on Human Hearing Loss, Cochlear Regeneration, and the Potential for Hearing Restoration Therapies. Brain Sci 2020; 10:E756. [PMID: 33092183 PMCID: PMC7589617 DOI: 10.3390/brainsci10100756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/23/2022] Open
Abstract
Most adults who acquire hearing loss find it to be a disability that is poorly corrected by current prosthetics. This gap drives current research in cochlear mechanosensory hair cell regeneration and in hearing restoration. Birds and fish can spontaneously regenerate lost hair cells through a process that has become better defined in the last few years. Findings from these studies have informed new research on hair cell regeneration in the mammalian cochlea. Hair cell regeneration is one part of the greater problem of hearing restoration, as hearing loss can stem from a myriad of causes. This review discusses these issues and recent findings, and places them in the greater social context of need and community.
Collapse
Affiliation(s)
- Patricia M White
- Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
| |
Collapse
|
43
|
Wu J, Ye J, Kong W, Zhang S, Zheng Y. Programmed cell death pathways in hearing loss: A review of apoptosis, autophagy and programmed necrosis. Cell Prolif 2020; 53:e12915. [PMID: 33047870 PMCID: PMC7653260 DOI: 10.1111/cpr.12915] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/23/2020] [Accepted: 09/09/2020] [Indexed: 02/05/2023] Open
Abstract
Programmed cell death (PCD)—apoptosis, autophagy and programmed necrosis—is any pathological form of cell death mediated by intracellular processes. Ototoxic drugs, ageing and noise exposure are some common pathogenic factors of sensorineural hearing loss (SNHL) that can induce the programmed death of auditory hair cells through different pathways, and eventually lead to the loss of hair cells. Furthermore, several mutations in apoptotic genes including DFNA5, DFNA51 and DFNB74 have been suggested to be responsible for the new functional classes of monogenic hearing loss (HL). Therefore, in this review, we elucidate the role of these three forms of PCD in different types of HL and discuss their guiding significance for HL treatment. We believe that further studies of PCD pathways are necessary to understand the pathogenesis of HL and guide scientists and clinicians to identify new drug targets for HL treatment.
Collapse
Affiliation(s)
- Junhao Wu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Ye
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Weili Kong
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shouyue Zhang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yun Zheng
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Youn CK, Jun Y, Jo ER, Cho SI. Age-Related Hearing Loss in C57BL/6J Mice Is Associated with Mitophagy Impairment in the Central Auditory System. Int J Mol Sci 2020; 21:ijms21197202. [PMID: 33003463 PMCID: PMC7584026 DOI: 10.3390/ijms21197202] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Aging is associated with functional and morphological changes in the sensory organs, including the auditory system. Mitophagy, a process that regulates the turnover of dysfunctional mitochondria, is impaired with aging. This study aimed to investigate the effect of aging on mitophagy in the central auditory system using an age-related hearing loss mouse model. C57BL/6J mice were divided into the following four groups based on age: 1-, 6-, 12-, and 18-month groups. The hearing ability was evaluated by measuring the auditory brainstem response (ABR) thresholds. The mitochondrial DNA damage level and the expression of mitophagy-related genes, and proteins were investigated by real-time polymerase chain reaction and Western blot analyses. The colocalization of mitophagosomes and lysosomes in the mouse auditory cortex and inferior colliculus was analyzed by immunofluorescence analysis. The expression of genes involved in mitophagy, such as PINK1, Parkin, and BNIP3 in the mouse auditory cortex and inferior colliculus, was investigated by immunohistochemical staining. The ABR threshold increased with aging. In addition to the mitochondrial DNA integrity, the mRNA levels of PINK1, Parkin, NIX, and BNIP3, as well as the protein levels of PINK1, Parkin, BNIP3, COX4, LC3B, mitochondrial oxidative phosphorylation (OXPHOS) subunits I-IV in the mouse auditory cortex significantly decreased with aging. The immunofluorescence analysis revealed that the colocalization of mitophagosomes and lysosomes in the mouse auditory cortex and inferior colliculus decreased with aging. The immunohistochemical analysis revealed that the expression of PINK1, Parkin, and BNIP3 decreased in the mouse auditory cortex and inferior colliculus with aging. These findings indicate that aging-associated impaired mitophagy may contribute to the cellular changes observed in an aged central auditory system, which result in age-related hearing loss. Thus, the induction of mitophagy can be a potential therapeutic strategy for age-related hearing loss.
Collapse
Affiliation(s)
- Cha Kyung Youn
- Department of Premedical Science, Chosun University College of Medicine, Gwangju 61452, Korea;
| | - Yonghyun Jun
- Department of Anatomy, Chosun University College of Medicine, Gwangju 61452, Korea;
| | - Eu-Ri Jo
- Department of Otolaryngology-Head and Neck Surgery, Chosun University College of Medicine, Gwangju 61452, Korea;
| | - Sung Il Cho
- Department of Otolaryngology-Head and Neck Surgery, Chosun University College of Medicine, Gwangju 61452, Korea;
- Correspondence: ; Tel.: +82-62-220-3207
| |
Collapse
|
45
|
Kim MJ, Han C, White K, Park HJ, Ding D, Boyd K, Rothenberger C, Bose U, Carmichael P, Linser PJ, Tanokura M, Salvi R, Someya S. Txn2 haplodeficiency does not affect cochlear antioxidant defenses or accelerate the progression of cochlear cell loss or hearing loss across the lifespan. Exp Gerontol 2020; 141:111078. [PMID: 32866605 DOI: 10.1016/j.exger.2020.111078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/16/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022]
Abstract
Thioredoxin 2 (TXN2) is a small redox protein found in nearly all organisms. As a mitochondrial member of the thioredoxin antioxidant defense system, TXN2 interacts with peroxiredoxin 3 (PRDX3) to remove hydrogen peroxide. Accordingly, TXN2 is thought to play an important role in maintaining the appropriate mitochondrial redox environment and protecting the mitochondrial components against oxidative stress. In the current study, we investigated the effects of Txn2 haplodeficiency on cochlear antioxidant defenses, auditory function, and cochlear cell loss across the lifespan in wild-type (WT) and Txn2 heterozygous knockout (Txn2+/-) mice backcrossed onto CBA/CaJ mice, a well-established model of age-related hearing loss. Txn2+/- mice displayed a 58% decrease in TXN2 protein levels in the mitochondria of the inner ears compared to WT mice. However, Txn2 haplodeficiency did not affect the thioredoxin or glutathione antioxidant defense in both the mitochondria and cytosol of the inner ears of young mice. There were no differences in the levels of mitochondrial biogenesis markers, mitochondrial DNA content, or oxidative DNA and protein damage markers in the inner ears between young WT and Txn2+/- mice. In a mouse inner ear cell line, knockdown of Txn2 did not affect cell viability under hydrogen peroxide treatment. Consistent with the tissue and cell line results, there were no differences in hair cell loss or spiral ganglion neuron density between WT and Txn2+/- mice at 3-5 or 23-25 months of age. Furthermore, Txn2 haplodeficiency did not affect auditory brainstem response threshold, wave I latency, or wave I amplitude at 3-5, 15-16, or 23-25 months of age. Therefore, Txn2 haplodeficiency does not affect cochlear antioxidant defenses, accelerate degeneration of cochlear cells, or affect auditory function in mice across the lifespan.
Collapse
Affiliation(s)
- Mi-Jung Kim
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Chul Han
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Karessa White
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Hyo-Jin Park
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, USA
| | - Kevin Boyd
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | | | - Upal Bose
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Peter Carmichael
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Paul J Linser
- Whitney Laboratory, University of Florida, St Augustine, FL, USA
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, Japan
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, USA
| | - Shinichi Someya
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
46
|
Oh J, Youn CK, Jun Y, Jo ER, Cho SI. Reduced mitophagy in the cochlea of aged C57BL/6J mice. Exp Gerontol 2020; 137:110946. [DOI: 10.1016/j.exger.2020.110946] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/26/2020] [Accepted: 04/06/2020] [Indexed: 01/08/2023]
|
47
|
Someya S, Kim MJ. Cochlear detoxification: Role of alpha class glutathione transferases in protection against oxidative lipid damage, ototoxicity, and cochlear aging. Hear Res 2020; 402:108002. [PMID: 32600853 DOI: 10.1016/j.heares.2020.108002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023]
Abstract
Age-related hearing loss (AHL) is the most common form of hearing impairment. AHL is thought to be a multifactorial condition resulting from the interaction of numerous causes including aging, genetics, exposure to noise, and exposure to endogenous and exogenous toxins. Cells possess many detoxification enzymes capable of removing thousands of cytotoxic xenobiotics and endogenous toxins such as 4-hydroxynonenal (4-HNE), one of the most abundant cytotoxic end products of lipid peroxidation. The cellular detoxification system involves three phases of enzymatic detoxification. Of these, the glutathione transferase (GST) detoxification system converts a toxic compound into a less toxic form by conjugating the toxic compound to reduced glutathione by GST enzymes. In this review, we describe the current understanding of the cochlear detoxification system and examine the growing link between GST detoxification, oxidative lipid damage, ototoxicity, and cochlear aging with a particular focus on the alpha-class GSTs (GSTAs). We also describe how exposure to ototoxic drugs, exposure to noise, or aging results in increased 4-HNE levels, how 4-HNE damages various cell components under stress conditions, and how GSTAs detoxify 4-HNE in the auditory system.
Collapse
Affiliation(s)
- Shinichi Someya
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, 32611, USA.
| | - Mi-Jung Kim
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
48
|
Long-Term Feeding of a High-Fat Diet Ameliorated Age-Related Phenotypes in SAMP8 Mice. Nutrients 2020; 12:nu12051416. [PMID: 32423039 PMCID: PMC7285040 DOI: 10.3390/nu12051416] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
High-fat diets (HFD) have been thought to increase the risk of obesity and metabolic syndrome, as well as shorten lifespan. On the other hand, chrono-nutritional studies have shown that time-restricted feeding during active phase significantly suppresses the induction of HFD-induced obesity in mouse model. However, the long-term effects of time-restricted HFD feeding on aging are unknown. Therefore, in this study, we set up a total of four groups: mutual combination of ad libitum feeding or night-time-restricted feeding (NtRF) and an HFD or a control diet. We examined their long-term effects in a senescence-accelerated mouse strain, SAMP8, for over a year. Hearing ability, cognitive function, and other behavioral and physiological indexes were evaluated during the study. Unexpectedly, SAMP8 mice did not show early onset of death caused by the prolonged HFD intake, and both HFD and NtRF retarded age-related hearing loss (AHL). NtRF improved grip strength and cognitive memory scores, while HFD weakly suppressed age-related worsening of the appearance scores associated with the eyes. Notably, the HFD also retarded the progression of AHL in both DBA/2J and C57BL/6J mice. These results suggest that HFD prevents aging unless metabolic disorders occur and that HFD and NtRF are independently effective in retarding aging; thus, the combination of HFD and chrono-nutritional feeding may be an effective anti-aging strategy.
Collapse
|
49
|
Mitochondrial Damage and Necroptosis in Aging Cochlea. Int J Mol Sci 2020; 21:ijms21072505. [PMID: 32260310 PMCID: PMC7177801 DOI: 10.3390/ijms21072505] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
Age-related hearing loss (ARHL) is an irreversible, progressive neurodegenerative disorder and is presently untreatable. Previous studies using animal models have suggested mitochondrial damage and programmed cell death to be involved with ARHL. Thus, we further investigated the pathophysiologic role of mitochondria and necroptosis in aged C57BL/6J male mice. Aged mice (20 months old) exhibited a significant loss of hearing, number of hair cells, neuronal fibers, and synaptic ribbons compared to young mice. Ultrastructural analysis of aged cochleae revealed damaged mitochondria with absent or disorganized cristae. Aged mice also showed significant decrease in cochlear blood flow, and exhibited increase in gene expression of proinflammatory cytokines (IL-1β, IL-6, and TNF-α), receptor-interacting serine/threonine-protein kinase 1 and 3 (RIPK1 and RIPK3) and the pseudokinase mixed-lineage kinase domain-like (MLKL). Immunofluorescence (IF) assays of cytochrome C oxidase I (COX1) confirmed mitochondrial dysfunction in aged cochleae, which correlated with the degree of mitochondrial morphological damage. IF assays also revealed localization and increased expression of RIPK3 in sensorineural tissues that underwent significant necroptosis (inner and outer hair cells and stria vascularis). Together, our data shows that the aging cochlea exhibits damaged mitochondria, enhanced synthesis of proinflammatory cytokines, and provides new evidence of necroptosis in the aging cochlea in in vivo.
Collapse
|
50
|
Jafari Z, Kolb BE, Mohajerani MH. Auditory Dysfunction in Parkinson's Disease. Mov Disord 2020; 35:537-550. [PMID: 32052894 DOI: 10.1002/mds.28000] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
PD is a progressive and complex neurological disorder with heterogeneous symptomatology. PD is characterized by classical motor features of parkinsonism and nonmotor symptoms and involves extensive regions of the nervous system, various neurotransmitters, and protein aggregates. Extensive evidence supports auditory dysfunction as an additional nonmotor feature of PD. Studies indicate a broad range of auditory impairments in PD, from the peripheral hearing system to the auditory brainstem and cortical areas. For instance, research demonstrates a higher occurrence of hearing loss in early-onset PD and evidence of abnormal auditory evoked potentials, event-related potentials, and habituation to novel stimuli. Electrophysiological data, such as auditory P3a, also is suggested as a sensitive measure of illness duration and severity. Improvement in auditory responses following dopaminergic therapies also indicates the presence of similar neurotransmitters (i.e., glutamate and dopamine) in the auditory system and basal ganglia. Nonetheless, hearing impairments in PD have received little attention in clinical practice so far. This review summarizes evidence of peripheral and central auditory impairments in PD and provides conclusions and directions for future empirical and clinical research. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.,Department of Basic Sciences in Rehabilitation, School of Rehabilitation Sciences, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|