1
|
Mattson MP, Leak RK. The hormesis principle of neuroplasticity and neuroprotection. Cell Metab 2024; 36:315-337. [PMID: 38211591 DOI: 10.1016/j.cmet.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Animals live in habitats fraught with a range of environmental challenges to their bodies and brains. Accordingly, cells and organ systems have evolved stress-responsive signaling pathways that enable them to not only withstand environmental challenges but also to prepare for future challenges and function more efficiently. These phylogenetically conserved processes are the foundation of the hormesis principle, in which single or repeated exposures to low levels of environmental challenges improve cellular and organismal fitness and raise the probability of survival. Hormetic principles have been most intensively studied in physical exercise but apply to numerous other challenges known to improve human health (e.g., intermittent fasting, cognitive stimulation, and dietary phytochemicals). Here we review the physiological mechanisms underlying hormesis-based neuroplasticity and neuroprotection. Approaching natural resilience from the lens of hormesis may reveal novel methods for optimizing brain function and lowering the burden of neurological disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Phan BN, Ray MH, Xue X, Fu C, Fenster RJ, Kohut SJ, Bergman J, Haber SN, McCullough KM, Fish MK, Glausier JR, Su Q, Tipton AE, Lewis DA, Freyberg Z, Tseng GC, Russek SJ, Alekseyev Y, Ressler KJ, Seney ML, Pfenning AR, Logan RW. Single nuclei transcriptomics in human and non-human primate striatum in opioid use disorder. Nat Commun 2024; 15:878. [PMID: 38296993 PMCID: PMC10831093 DOI: 10.1038/s41467-024-45165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
In brain, the striatum is a heterogenous region involved in reward and goal-directed behaviors. Striatal dysfunction is linked to psychiatric disorders, including opioid use disorder (OUD). Striatal subregions are divided based on neuroanatomy, each with unique roles in OUD. In OUD, the dorsal striatum is involved in altered reward processing, formation of habits, and development of negative affect during withdrawal. Using single nuclei RNA-sequencing, we identified both canonical (e.g., dopamine receptor subtype) and less abundant cell populations (e.g., interneurons) in human dorsal striatum. Pathways related to neurodegeneration, interferon response, and DNA damage were significantly enriched in striatal neurons of individuals with OUD. DNA damage markers were also elevated in striatal neurons of opioid-exposed rhesus macaques. Sex-specific molecular differences in glial cell subtypes associated with chronic stress were found in OUD, particularly female individuals. Together, we describe different cell types in human dorsal striatum and identify cell type-specific alterations in OUD.
Collapse
Affiliation(s)
- BaDoi N Phan
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Madelyn H Ray
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Chen Fu
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Robert J Fenster
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Division of Depression and Anxiety, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Stephen J Kohut
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA
| | - Jack Bergman
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA
| | - Suzanne N Haber
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine, Rochester, NY, 14642, USA
| | - Kenneth M McCullough
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Madeline K Fish
- Center for Systems Neuroscience, Boston University, Boston, MA, 02118, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02118, USA
| | - Jill R Glausier
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Qiao Su
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Allison E Tipton
- Center for Systems Neuroscience, Boston University, Boston, MA, 02118, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02118, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Shelley J Russek
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02118, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02118, USA
| | - Yuriy Alekseyev
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Division of Depression and Anxiety, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Andreas R Pfenning
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| | - Ryan W Logan
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA.
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
3
|
Patel V, Patel M, Busupalli B, Solanki A. Interface Engineering Enables Multilevel Resistive Switching in Ultra-Low-Power Chemobrionic Copper Silicate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2311-2319. [PMID: 38232767 DOI: 10.1021/acs.langmuir.3c03431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Memristor is assuming prominence due to its exceptionally low power consumption, adaptable, and parallel signal processing capabilities that address the limitations of the von Neumann architecture to meet the growing demand for advanced technologies such as artificial intelligence, Internet of Things (IoTs), and neuromorphic computation. In this work, we demonstrate resistive switching in copper silicate-based hollow tube-forming self-organized membrane structures belonging to the category of chemobrionics or chemical gardens to demonstrate cost-effective and highly efficient memristor devices. The device architecture is configured as ITO/PEDOT:PSS/active layer (copper silicate)/PMMA/Ag, an arrangement that serves to stabilize current-voltage hysteresis and exhibit a low SET voltage ∼0.2 V with a 0.8 nJ power consumption while manifesting robust data endurance and multilevel resistive switching. The inherent self-rectifying behavior, characterized by a high rectification ratio of 60, underscores the potential utility of these devices across a spectrum of electronic applications. To emulate the functionality of biological synapses, fundamental synaptic characteristics are assessed, including paired-pulse facilitation (PPF) and potentiation and depression (P&D). We validate the potential of copper silicate chemical garden-based memristor devices for applications that require real-time synaptic processing. Importantly, the fabrication of these devices was accomplished through a comprehensive solution-based, low-temperature process conducted under ambient environmental conditions, obviating the need for specialized glovebox facilities.
Collapse
Affiliation(s)
- Vipul Patel
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India
| | - Mansi Patel
- Department of Physics, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar 382426, India
- Flextronics Lab, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India
| | - Balanagulu Busupalli
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India
| | - Ankur Solanki
- Department of Physics, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar 382426, India
- Flextronics Lab, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India
| |
Collapse
|
4
|
Eidhof I, Krebbers A, van de Warrenburg B, Schenck A. Ataxia-associated DNA repair genes protect the Drosophila mushroom body and locomotor function against glutamate signaling-associated damage. Front Neural Circuits 2023; 17:1148947. [PMID: 37476399 PMCID: PMC10354283 DOI: 10.3389/fncir.2023.1148947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
The precise control of motor movements is of fundamental importance to all behaviors in the animal kingdom. Efficient motor behavior depends on dedicated neuronal circuits - such as those in the cerebellum - that are controlled by extensive genetic programs. Autosomal recessive cerebellar ataxias (ARCAs) provide a valuable entry point into how interactions between genetic programs maintain cerebellar motor circuits. We previously identified a striking enrichment of DNA repair genes in ARCAs. How dysfunction of ARCA-associated DNA repair genes leads to preferential cerebellar dysfunction and impaired motor function is however unknown. The expression of ARCA DNA repair genes is not specific to the cerebellum. Only a limited number of animal models for DNA repair ARCAs exist, and, even for these, the interconnection between DNA repair defects, cerebellar circuit dysfunction, and motor behavior is barely established. We used Drosophila melanogaster to characterize the function of ARCA-associated DNA repair genes in the mushroom body (MB), a structure in the Drosophila central brain that shares structural features with the cerebellum. Here, we demonstrate that the MB is required for efficient startle-induced and spontaneous motor behaviors. Inhibition of synaptic transmission and loss-of-function of ARCA-associated DNA repair genes in the MB affected motor behavior in several assays. These motor deficits correlated with increased levels of MB DNA damage, MB Kenyon cell apoptosis and/or alterations in MB morphology. We further show that expression of genes involved in glutamate signaling pathways are highly, specifically, and persistently elevated in the postnatal human cerebellum. Manipulation of glutamate signaling in the MB induced motor defects, Kenyon cell DNA damage and apoptosis. Importantly, pharmacological reduction of glutamate signaling in the ARCA DNA repair models rescued the identified motor deficits, suggesting a role for aberrant glutamate signaling in ARCA-DNA repair disorders. In conclusion, our data highlight the importance of ARCA-associated DNA repair genes and glutamate signaling pathways to the cerebellum, the Drosophila MB and motor behavior. We propose that glutamate signaling may confer preferential cerebellar vulnerability in ARCA-associated DNA repair disorders. Targeting glutamate signaling could provide an exciting therapeutic entry point in this large group of so far untreatable disorders.
Collapse
Affiliation(s)
- Ilse Eidhof
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alina Krebbers
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
5
|
Marcolongo-Pereira C, Castro FCDAQ, Barcelos RM, Chiepe KCMB, Rossoni Junior JV, Ambrosio RP, Chiarelli-Neto O, Pesarico AP. Neurobiological mechanisms of mood disorders: Stress vulnerability and resilience. Front Behav Neurosci 2022; 16:1006836. [PMID: 36386785 PMCID: PMC9650072 DOI: 10.3389/fnbeh.2022.1006836] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/06/2022] [Indexed: 09/05/2023] Open
Abstract
Stress is an important factor in the development of several human pathologies. The response of rodents and humans to stress depends on many factors; some people and rodents develop stress-related mood disorders, such as depression and anxiety in humans, depression-like and anxiety-like behavior in mice and rats, while others report no new psychological symptoms in response to chronic or acute stress, and are considered susceptible and resilient to stress, respectively. Resilience is defined as the ability to thrive in the face of adversity and is a learned process that can help protect against occupational stressors and mental illnesses. There is growing interest in the underlying mechanisms involved in resilience and vulnerability to depression caused by stress, and some studies have demonstrated that individual variability in the way animals and humans respond to stress depends on several mechanisms, such as oxidative stress, neuronal plasticity, immunology and genetic factors, among others not discussed in this review, this review provides a general overview about this mechanism.
Collapse
Affiliation(s)
- Clairton Marcolongo-Pereira
- Coordenadoria de Pesquisa, Pós-Graduação e Extensão (CEPEG), Centro Universitário do Espírito Santo (UNESC), Colatina, Brazil
| | | | - Rafael Mazioli Barcelos
- Coordenadoria de Pesquisa, Pós-Graduação e Extensão (CEPEG), Centro Universitário do Espírito Santo (UNESC), Colatina, Brazil
| | | | - Joamyr Victor Rossoni Junior
- Coordenadoria de Pesquisa, Pós-Graduação e Extensão (CEPEG), Centro Universitário do Espírito Santo (UNESC), Colatina, Brazil
| | - Roberta Passamani Ambrosio
- Coordenadoria de Pesquisa, Pós-Graduação e Extensão (CEPEG), Centro Universitário do Espírito Santo (UNESC), Colatina, Brazil
| | - Orlando Chiarelli-Neto
- Coordenadoria de Pesquisa, Pós-Graduação e Extensão (CEPEG), Centro Universitário do Espírito Santo (UNESC), Colatina, Brazil
| | - Ana Paula Pesarico
- Curso de Medicina, Universidade Federal do Pampa (Unipampa), Bagé, Brazil
| |
Collapse
|
6
|
Neuroprotective Effect and Possible Mechanisms of Ginsenoside-Rd for Cerebral Ischemia/Reperfusion Damage in Experimental Animal: A Meta-Analysis and Systematic Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7650438. [PMID: 36092162 PMCID: PMC9458376 DOI: 10.1155/2022/7650438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Ischemic stroke, the most common type of stroke, can lead to a long-term disability with the limitation of effective therapeutic approaches. Ginsenoside-Rd (G-Rd) has been found as a neuroprotective agent. In order to investigate and discuss the neuroprotective function and underlying mechanism of G-Rd in experimental animal models following cerebral ischemic/reperfusion (I/R) injury, PubMed, Embase, SinoMed, and China National Knowledge Infrastructure were searched from their inception dates to May 2022, with no language restriction. Studies that G-Rd was used to treat cerebral I/R damage in vivo were selected. A total of 18 articles were included in this paper, and it was showed that after cerebral I/R damage, G-Rd administration could significantly attenuate infarct volume (19 studies, SMD = −1.75 [−2.21 to − 1.30], P < 0.00001). Subgroup analysis concluded that G-Rd at the moderate doses of >10- <50 mg/kg reduced the infarct volume to the greatest extent, and increasing the dose beyond 50 mg/kg did not produce better results. The neuroprotective effect of G-Rd was not affected by other factors, such as the animal species, the order of administration, and the ischemia time. In comparison with the control group, G-Rd administration could improve neurological recovery (lower score means better recovery: 14 studies, SMD = −1.50 [−2.00 to − 1.00], P < 0.00001; higher score means better recovery: 8 studies, SMD = 1.57 [0.93 to 2.21], P < 0.00001). In addition, this review suggested that G-Rd in vivo can antagonize the reduced oxidative stress, regulate Ca2+, and inhibit inflammatory, resistance to apoptosis, and antipyroptosis on cerebral I/R damage. Collectively, G-Rd is a promising natural neuroprotective agent on cerebral I/R injury with unique advantages and a clear mechanism of action. More clinical randomized, blind-controlled trials are also needed to confirm the neuroprotective effect of G-Rd on cerebral I/R injury.
Collapse
|
7
|
The Water Transport System in Astrocytes–Aquaporins. Cells 2022; 11:cells11162564. [PMID: 36010640 PMCID: PMC9406552 DOI: 10.3390/cells11162564] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Highlights (AQPs) are transmembrane proteins responsible for fast water movement across cell membranes, including those of astrocytes. The expression and subcellular localization of AQPs in astrocytes are highly dynamic under physiological and pathological conditions. Besides their primary function in water homeostasis, AQPs participate in many ancillary functions including glutamate clearance in tripartite synapses and cell migration.
Abstract Astrocytes have distinctive morphological and functional characteristics, and are found throughout the central nervous system. Astrocytes are now known to be far more than just housekeeping cells in the brain. Their functions include contributing to the formation of the blood–brain barrier, physically and metabolically supporting and communicating with neurons, regulating the formation and functions of synapses, and maintaining water homeostasis and the microenvironment in the brain. Aquaporins (AQPs) are transmembrane proteins responsible for fast water movement across cell membranes. Various subtypes of AQPs (AQP1, AQP3, AQP4, AQP5, AQP8 and AQP9) have been reported to be expressed in astrocytes, and the expressions and subcellular localizations of AQPs in astrocytes are highly correlated with both their physiological and pathophysiological functions. This review describes and summarizes the recent advances in our understanding of astrocytes and AQPs in regard to controlling water homeostasis in the brain. Findings regarding the features of different AQP subtypes, such as their expression, subcellular localization, physiological functions, and the pathophysiological roles of astrocytes are presented, with brain edema and glioma serving as two representative AQP-associated pathological conditions. The aim is to provide a better insight into the elaborate “water distribution” system in cells, exemplified by astrocytes, under normal and pathological conditions.
Collapse
|
8
|
Kwon KM, Pak JH, Jeon CJ. Immunocytochemical localization of the AMPA glutamate receptor subtype GluR2/3 in the squid optic lobe. Acta Histochem 2022; 124:151941. [PMID: 35963117 DOI: 10.1016/j.acthis.2022.151941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
As a major excitatory neurotransmitter in the cephalopod visual system, glutamate signaling is facilitated by ionotropic receptors, such as α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR). In cephalopods with large and well-developed brains, the optic lobes (OL) mainly process visual inputs and are involved in learning and memory. Although the presence of AMPAR in squid OL has been reported, the organization of specific AMPAR-containing neurons remains unknown. This study aimed to investigate the immunocytochemical localization of the AMPA glutamate receptor subtype 2/3-immunoreactive (GluR2/3-IR) neurons in the OL of Pacific flying squid (Tordarodes pacificus). Morphologically diverse GluR2/3-IR neurons were predominantly located in the tangential zone of the medulla. Medium-to-large GluR2/3-IR neurons were also detected. The distribution patterns and cell morphologies of calcium-binding protein (CBP)-IR neurons, specifically calbindin-D28K (CB)-, calretinin (CR)-, and parvalbumin (PV)-IR neurons, were similar to those of GluR2/3-IR neurons. However, two-color immunofluorescence revealed that GluR2/3-IR neurons did not colocalize with the CBP-IR neurons. Furthermore, the specific localizations and diverse types of GluR2/3-IR neurons that do not express CB, CR, or PV in squid OL were determined. These findings further contribute to the existing data on glutamatergic visual systems and provide new insights for understanding the visual processing mechanisms in cephalopods.
Collapse
Affiliation(s)
- Kyung-Min Kwon
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Republic of Korea; Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Hong Pak
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Republic of Korea; Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
9
|
Konopka A, Atkin JD. The Role of DNA Damage in Neural Plasticity in Physiology and Neurodegeneration. Front Cell Neurosci 2022; 16:836885. [PMID: 35813507 PMCID: PMC9259845 DOI: 10.3389/fncel.2022.836885] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Damage to DNA is generally considered to be a harmful process associated with aging and aging-related disorders such as neurodegenerative diseases that involve the selective death of specific groups of neurons. However, recent studies have provided evidence that DNA damage and its subsequent repair are important processes in the physiology and normal function of neurons. Neurons are unique cells that form new neural connections throughout life by growth and re-organisation in response to various stimuli. This “plasticity” is essential for cognitive processes such as learning and memory as well as brain development, sensorial training, and recovery from brain lesions. Interestingly, recent evidence has suggested that the formation of double strand breaks (DSBs) in DNA, the most toxic form of damage, is a physiological process that modifies gene expression during normal brain activity. Together with subsequent DNA repair, this is thought to underlie neural plasticity and thus control neuronal function. Interestingly, neurodegenerative diseases such as Alzheimer’s disease, amyotrophic lateral sclerosis, frontotemporal dementia, and Huntington’s disease, manifest by a decline in cognitive functions, which are governed by plasticity. This suggests that DNA damage and DNA repair processes that normally function in neural plasticity may contribute to neurodegeneration. In this review, we summarize current understanding about the relationship between DNA damage and neural plasticity in physiological conditions, as well as in the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Konopka
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- *Correspondence: Anna Konopka
| | - Julie D. Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Ji X, Tian L, Yao S, Han F, Niu S, Qu C. A Systematic Review of Body Fluids Biomarkers Associated With Early Neurological Deterioration Following Acute Ischemic Stroke. Front Aging Neurosci 2022; 14:918473. [PMID: 35711907 PMCID: PMC9196239 DOI: 10.3389/fnagi.2022.918473] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Biomarkers are objectively measured biological properties of normal and pathological processes. Early neurological deterioration (END) refers to the deterioration of neurological function in a short time after the onset of acute ischemic stroke (AIS) and is associated with adverse outcomes. Although multiple biomarkers have been found to predict END, there are currently no suitable biomarkers to be applied in routine stroke care. According to the Preferred Reporting Items for Systematic Review standards, we present a systematic review, concentrating on body fluids biomarkers that have shown potential to be transferred into clinical practice. We also describe newly reported body fluids biomarkers that can supply different insights into the mechanism of END. In our review, 40 scientific papers were included. Depending on the various mechanisms, sources or physicochemical characteristics of body fluids biomarkers, we classified related biomarkers as inflammation, protease, coagulation, metabolism, oxidative stress, and excitatory neurotoxicity. The body fluids biomarkers whose related articles are limited or mechanisms are unknown are categorized as other biomarkers. The inflammation-related biomarkers, such as neutrophil-to-lymphocyte ratio and hypersensitive C-reactive protein, play a crucial role among the mentioned biomarkers. Considering the vast heterogeneity of stroke progression, using a single body fluids biomarker may not accurately predict the risk of stroke progression, and it is necessary to combine multiple biomarkers (panels, scores, or indices) to improve their capacity to estimate END.
Collapse
Affiliation(s)
- Xiaotan Ji
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Neurology, Jining No. 1 People’s Hospital, Jining, China
| | - Long Tian
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shumei Yao
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Fengyue Han
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Shenna Niu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chuanqiang Qu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Chuanqiang Qu,
| |
Collapse
|
11
|
Kang JB, Shah MA, Park DJ, Koh PO. Retinoic acid regulates the ubiquitin-proteasome system in a middle cerebral artery occlusion animal model. Lab Anim Res 2022; 38:13. [PMID: 35562751 PMCID: PMC9102573 DOI: 10.1186/s42826-022-00123-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background Retinoic acid is a major metabolite of vitamin A and exerts beneficial effects including anti-oxidant and anti-inflammatory activities in neurons. The ubiquitin–proteasome system is an important biological system that regulates cell survival. Ubiquitination regulates protein degradation and plays an important role in oxidative stress. Deubiquitinating enzymes cleave ubiquitin from proteins and control ubiquitination-induced degradation. We detected decreases in ubiquitin carboxy-terminal hydrolase L1, ubiquitin thioesterase OTUB1, and proteasome subunit alpha types 1 and 3 in cerebral ischemic damage. In this study, we investigated whether retinoic acid regulates the expression of deubiquitinating enzymes ubiquitin carboxy-terminal hydrolase L1, ubiquitin thioesterase OTUB1, and proteasome subunit alpha types 1 and 3 in cerebral ischemic injury. Right middle cerebral artery occlusion (MCAO) was performed to induce cerebral ischemic damage in male rats. Retinoic acid (5 mg/kg) or vehicle was intraperitoneally injected every day from 4 days before surgery. Neurological behavioral tests were performed 24 h after MCAO, and right cerebral cortical tissues were collected. Results MCAO damage caused neurological behavioral dysfunction, and retinoic acid alleviated these deficits. The identified proteins decreased in MCAO animals with vehicle, while retinoic acid treatment attenuated these decreases. The results of proteomic study were confirmed by a reverse transcription-PCR technique. Expressions of ubiquitin carboxy-terminal hydrolase L1, ubiquitin thioesterase OTUB1, and proteasome subunit alpha types 1 and 3 were decreased in MCAO animals treated with vehicle. Retinoic acid treatment alleviated these MCAO-induced reductions. The ubiquitin–proteasome system plays an essential role in maintaining cell function and preserving cell shape against ischemic damage. Conclusions These findings suggest that retinoic acid regulates ubiquitin- and proteasome-related proteins including ubiquitin carboxy-terminal hydrolase L1, ubiquitin thioesterase OTUB1, and proteasome subunit alpha types 1 and 3 in a brain ischemia model. Changes in these proteins are involved in the neuroprotective effects of retinoic acid.
Collapse
Affiliation(s)
- Ju-Bin Kang
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Murad-Ali Shah
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Dong-Ju Park
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea.
| |
Collapse
|
12
|
Zhang Y, Zhao L, Gao C. A multifunctional Luminescence Metal-Organic Framework Sensor for the Neuropathy Biomarker Glutamic Acid. CHEM LETT 2021. [DOI: 10.1246/cl.210624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yakun Zhang
- School of Ethnic Medicine, Guizhou Minzu University, 550025, Guiyang, People’s Republic of China
| | - Lefa Zhao
- School of Ethnic Medicine, Guizhou Minzu University, 550025, Guiyang, People’s Republic of China
| | - Ce Gao
- Laboratory Management Center Shenyang Sport University, Shenyang 110102, China
| |
Collapse
|
13
|
Amina M, Bhat RS, Al-Dbass AM, Musayeib NM, Fahmy R, Alhadlaq L, El-Ansary A. The protective effect of Moringa oleifera plant extract against glutamate-induced DNA damage and reduced cell viability in a primary retinal ganglion cell line. PeerJ 2021; 9:e11569. [PMID: 34221717 PMCID: PMC8231317 DOI: 10.7717/peerj.11569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/16/2021] [Indexed: 12/22/2022] Open
Abstract
Background Glutamate excitotoxicity can cause DNA damage and is linked to many retinal and neurological disorders. In mammals, the visual signal from the eyes to the brain is conducted only by retinal ganglion cells (RGCs), which can be damaged by overstimulation of glutamate receptors. Methodology We examined the protective effects of Moringa oleifera seed extract against glutamate-induced DNA damage in RGCs. RGCs cells were treated with 5, 10, 50, or 100 µg/ml of M. oleifera seed extract and glutamate separately and then assessed for DNA damage using the comet assay. We also evaluated the viability of the RGCs after both treatments using the MTT test. Additionally, RGCs were pretreated with M. oleifera seed extract (50 or 100 µg/ml) for 2 h before glutamate treatment (100 µg/ml) to determine the potential protective effects of M. oleifera. We performed a phytochemical analysis of the M. oleifera seed extract using standard reactions. Results The M. oleifera seed extract was found to be rich in many phytochemicals. We observed a significant dose-dependent elevation in all comet assay variables in glutamate-treated RGCs, whereas M. oleifera seed extract treatments did not show any significant change in DNA integrity. Conclusion M. oleifera seed extract demonstrates neuroprotective effects, which suggests it may help to prevent the development of many neurodegenerative disorders.
Collapse
Affiliation(s)
- Musarat Amina
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ramesa Shafi Bhat
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abeer M Al-Dbass
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nawal M Musayeib
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rania Fahmy
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, r, Saudi Arabia.,Department of Ophthalmology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Leen Alhadlaq
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Central Laboratory, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Kalotra S, Kaur G. PSA mimetic 5-nonyloxytryptamine protects cerebellar neurons against glutamate induced excitotoxicity: An in vitro perspective. Neurotoxicology 2020; 82:69-81. [PMID: 33197482 DOI: 10.1016/j.neuro.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/22/2020] [Accepted: 11/06/2020] [Indexed: 12/29/2022]
Abstract
PSA-NCAM is a molecule of therapeutic interest for its key role in promoting neuritogenesis and synaptic plasticity. The current study was aimed to investigate the neuroregenerative potential of 5-nonyloxytryptamine (5-NOT) as PSA mimetic compound against glutamate induced excitotoxicity. 2D and 3D cultures of cerebellar neurons challenged with glutamate were used to ascertain the effect of 5-NOT on neurite outgrowth, migration and expression of neuronal plasticity markers. Glutamate excitotoxicity is one of the major underlying pathological factor responsible for neurodegeneration in various neurological disorders such as trauma, stroke, ischemia, epilepsy and neurodegenerative diseases.5-NOT treatment was observed to promote axonal growth and defasiculation in glutamate challenged neurons as well as promoted the migration of cerebellar neurons in both wound scratched area and cerebellar explant cultures. Further, 5-NOT treatment upregulated the expression of synaptic plasticity and cell survival pathway proteins which showed reduced expression after glutamate induced excitotoxicity. Thus, this preliminary data reveals thatPSA-mimetic,5-NOT may prove to be a potential neuroprotective candidate for neurodegenerative diseases.
Collapse
Affiliation(s)
- Shikha Kalotra
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
15
|
Quan H, Koltai E, Suzuki K, Aguiar AS, Pinho R, Boldogh I, Berkes I, Radak Z. Exercise, redox system and neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165778. [PMID: 32222542 DOI: 10.1016/j.bbadis.2020.165778] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022]
Abstract
Regular exercise induces a wide range of redox system-associated molecular adaptive responses to the nervous system. The intermittent induction of reactive oxygen species (ROS) during acute exercise sessions and the related upregulation of antioxidant/repair and housekeeping systems are associated with improved physiological function. Exercise-induced proliferation and differentiation of neuronal stem cells are ROS dependent processes. The increased production of brain derived neurotrophic factor (BDNF) and the regulation by regular exercise are dependent upon redox sensitive pathways. ROS are causative and associative factors of neurodegenerative diseases and regular exercise provides significant neuroprotective effects against Alzheimer's disease, Parkinson's disease, and hypoxia/reperfusion related disorders. Regular exercise regulates redox homeostasis in the brain with complex multi-level molecular pathways.
Collapse
Affiliation(s)
- Helong Quan
- Exercise and Metabolism Research Center, Zhejiang Normal University, Jinhua City, Zhejiang, China
| | - Erika Koltai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Saitama 359-1192, Japan
| | - Aderbal S Aguiar
- Research Group on Biology of Exercise, Department of Health Sciences, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Ricardo Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Istvan Berkes
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary; Faculty of Sport Sciences, Waseda University, Saitama 359-1192, Japan.
| |
Collapse
|
16
|
Increased DNA Damage and Apoptosis in CDKL5-Deficient Neurons. Mol Neurobiol 2020; 57:2244-2262. [PMID: 32002787 DOI: 10.1007/s12035-020-01884-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
Mutations in the CDKL5 gene, which encodes a serine/threonine kinase, causes a rare encephalopathy, characterized by early-onset epilepsy and severe intellectual disability, named CDKL5 deficiency disorder (CDD). In vitro and in vivo studies in mouse models of Cdkl5 deficiency have highlighted the role of CDKL5 in brain development and, in particular, in the morphogenesis and synaptic connectivity of hippocampal and cortical neurons. Interestingly, Cdkl5 deficiency in mice increases vulnerability to excitotoxic stress in hippocampal neurons. However, the mechanism by which CDKL5 controls neuronal survival is far from being understood. To investigate further the function of CDKL5 and dissect the molecular mechanisms underlying neuronal survival, we generated a human neuronal model of CDKL5 deficiency, using CRISPR/Cas9-mediated genome editing. We demonstrated that CDKL5 deletion in human neuroblastoma SH-SY5Y cells not only impairs neuronal maturation but also reduces cell proliferation and survival, with alterations in the AKT and ERK signaling pathways and an increase in the proapoptotic BAX protein and in DNA damage-associated biomarkers (i.e., γH2AX, RAD50, and PARP1). Furthermore, CDKL5-deficient cells were hypersensitive to DNA damage-associated stress, accumulated more DNA damage foci (γH2AX positive) and were more prone to cell death than the controls. Importantly, increased kainic acid-induced cell death of hippocampal neurons of Cdkl5 KO mice correlated with an increased γH2AX immunostaining. The results suggest a previously unknown role for CDKL5 in DNA damage response that could underlie the pro-survival function of CDKL5.
Collapse
|
17
|
Neuroprotection of round scad (Decapterus maruadsi) hydrolysate in glutamate-damaged PC12 cells: Possible involved signaling pathways and potential bioactive peptides. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
18
|
Kang JB, Park DJ, Koh PO. Identification of proteins differentially expressed by glutamate treatment in cerebral cortex of neonatal rats. Lab Anim Res 2019; 35:24. [PMID: 32257912 PMCID: PMC7081608 DOI: 10.1186/s42826-019-0026-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/12/2019] [Indexed: 11/22/2022] Open
Abstract
Glutamate leads to neuronal cell damage by generating neurotoxicity during brain development. The objective of this study is to identify proteins that differently expressed by glutamate treatment in neonatal cerebral cortex. Sprague-Dawley rat pups (post-natal day 7) were intraperitoneally injected with vehicle or glutamate (10 mg/kg). Brain tissues were isolated 4 h after drug treatment and fixed for morphological study. Moreover, cerebral cortices were collected for protein study. Two-dimensional gel electrophoresis and mass spectrometry were carried out to identify specific proteins. We observed severe histopathological changes in glutamate-exposed cerebral cortex. We identified various proteins that differentially expressed by glutamate exposure. Identified proteins were thioredoxin, peroxiredoxin 5, ubiquitin carboxy-terminal hydrolase L1, proteasome subunit alpha proteins, isocitrate dehydrogenase, and heat shock protein 60. Heat shock protein 60 was increased in glutamate exposed condition. However, other proteins were decreased in glutamate-treated animals. These proteins are related to anti-oxidant, protein degradation, metabolism, signal transduction, and anti-apoptotic function. Thus, our findings can suggest that glutamate leads to neonatal cerebral cortex damage by regulation of specific proteins that mediated with various functions.
Collapse
Affiliation(s)
- Ju-Bin Kang
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| | - Dong-Ju Park
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| | - Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| |
Collapse
|
19
|
Shafiee A, Ghadiri E, Kassis J, Atala A. Nanosensors for therapeutic drug monitoring: implications for transplantation. Nanomedicine (Lond) 2019; 14:2735-2747. [PMID: 31617787 DOI: 10.2217/nnm-2019-0150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The number of patients requiring organ transplantations is exponentially increasing. New organs are either provided by healthy or deceased donors, or are grown in laboratories by tissue engineers. Post-surgical follow-up is vital for preventing any complications that can cause organ rejection. Physiological monitoring of a patient who receives newly transplanted organs is crucial. Many efforts are being made to enhance follow-up technologies for monitoring organ recipients, and point-of-care devices are beginning to emerge. Here, we describe the role of biosensors and nanosensors in improving organ transplantation efficiency, managing post-surgical follow-up and reducing overall costs. We provide an overview of the state-of-the-art biosensing technologies and offer some perspectives related to their further development.
Collapse
Affiliation(s)
- Ashkan Shafiee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Elham Ghadiri
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.,Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA.,Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Jareer Kassis
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
20
|
Shan D, Ma C, Yang J. Enabling biodegradable functional biomaterials for the management of neurological disorders. Adv Drug Deliv Rev 2019; 148:219-238. [PMID: 31228483 PMCID: PMC6888967 DOI: 10.1016/j.addr.2019.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/05/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
An increasing number of patients are being diagnosed with neurological diseases, but are rarely cured because of the lack of curative therapeutic approaches. This situation creates an urgent clinical need to develop effective diagnosis and treatment strategies for repair and regeneration of injured or diseased neural tissues. In this regard, biodegradable functional biomaterials provide promising solutions to meet this demand owing to their unique responsiveness to external stimulation fields, which enable neuro-imaging, neuro-sensing, specific targeting, hyperthermia treatment, controlled drug delivery, and nerve regeneration. This review discusses recent progress in the research and development of biodegradable functional biomaterials including electroactive biomaterials, magnetic materials and photoactive biomaterials for the management of neurological disorders with emphasis on their applications in bioimaging (photoacoustic imaging, MRI and fluorescence imaging), biosensing (electrochemical sensing, magnetic sensing and opical sensing), and therapy strategies (drug delivery, hyperthermia treatment, and tissue engineering). It is expected that this review will provide an insightful discussion on the roles of biodegradable functional biomaterials in the diagnosis and treatment of neurological diseases, and lead to innovations for the design and development of the next generation biodegradable functional biomaterials.
Collapse
Affiliation(s)
- Dingying Shan
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chuying Ma
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
21
|
Han KH, Kim GS, Park J, Kim SG, Park JH, Yu HY. Reduction of Threshold Voltage Hysteresis of MoS 2 Transistors with 3-Aminopropyltriethoxysilane Passivation and Its Application for Improved Synaptic Behavior. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20949-20955. [PMID: 31117422 DOI: 10.1021/acsami.9b01391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Although molybdenum disulfide (MoS2) is highlighted as a promising channel material, MoS2-based field-effect transistors (FETs) have a large threshold voltage hysteresis (Δ VTH) from interface traps at their gate interfaces. In this work, the Δ VTH of MoS2 FETs is significantly reduced by inserting a 3-aminopropyltriethoxysilane (APTES) passivation layer at the MoS2/SiO2 gate interface owing to passivation of the interface traps. The Δ VTH is reduced from 23 to 10.8 V by inserting the 1%-APTES passivation layers because APTES passivation prevents trapping and detrapping of electrons, which are the major source of the Δ VTH. The reduction in the density of interface traps ( Dit) is confirmed by the improvement of the subthreshold swing (SS) after inserting the APTES layer. Furthermore, the improvement in the synaptic characteristics of the MoS2 FET through the APTES passivation is investigated. Both inhibitory and excitatory postsynaptic currents (PSC) are increased by 33% owing to the reduction in the Δ VTH and the n-type doping effect of the APTES layer; moreover, the linearity of PSC characteristics is significantly improved because the reduction in Δ VTH enables the synaptic operation to be over the threshold region, which is linear. The application of the APTES gate passivation technique to MoS2 FETs is promising for reliable and accurate synaptic applications in neuromorphic computing technology as well as for the next-generation complementary logic applications.
Collapse
Affiliation(s)
| | | | | | | | - Jin-Hong Park
- School of Electronic and Electrical Engineering , Sungkyunkwan University , Suwon 16419 , Korea
| | | |
Collapse
|
22
|
Huang X, Li J, Song S, Wang L, Lin Z, Ouyang Z, Yu R. Hormesis effect of hydrogen peroxide on the promoter activity of neuropeptide receptor PAC1-R. J Food Biochem 2019; 43:e12877. [PMID: 31353704 DOI: 10.1111/jfbc.12877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 12/18/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) receptor 1 (PAC1-R) is the neuropeptide PACAP-preferring receptor-mediating neuroprotective activity. In order to clarify the biological mechanism of its expression, we cloned the 2,526 bp promoter fragment from -2,500 to +26 of the transcription initiation site of human ADCYAP1R1 gene and constructed the novel promotor reporter system named pYr-PromDetect-PAC1p. It was found in SH-SY5Y cells low concentration (<10 nM) of hydrogen peroxide (H2 O2 ) significantly promoted the activity of PAC1-R promoter in dose-dependent way, which was significantly inhibited by the transcription factor specificity protein 1 (SP1) inhibitor mithramycin A and was further confirmed in the deletion mutation of the predicted SP1 binding sites. Moreover, higher concentration of H2 O2 (>10 nM) inhibited the activity of PAC1-R in dose-dependent way. The hormesis effect of H2 O2 on PAC1-R promoter would help to further clarify the physiological effect of low-dose reactive oxygen on nervous system. PRACTICAL APPLICATIONS: PAC1-R mediates well-known neuroprotective, neurotrophic, and neurogenesis effects, which is an important drug target for neurodegenerative diseases. The hormesis effects of oxidative stress on PAC1-R expression not only help to explain the hormesis effects of oxidative stress on nerve system, but also offer a novel strategy to increase the expression of PAC1-R for the nerve protection or nerve generation. For example, taking advantage of low degree of oxidative stress to increases the expression of PAC1-R might help prevent subsequent surgical serious injury on the nervous system. The activation of PAC1-R promoter by low concentration of H2 O2 would help to further clarify the physiological effect of low-dose reactive oxygen on nervous system.
Collapse
Affiliation(s)
- Xiaoling Huang
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Junfeng Li
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Suqin Song
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Like Wang
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhuochao Lin
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zehua Ouyang
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Rongjie Yu
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
23
|
Zestos AG, Luna-Munguia H, Stacey WC, Kennedy RT. Use and Future Prospects of in Vivo Microdialysis for Epilepsy Studies. ACS Chem Neurosci 2019; 10:1875-1883. [PMID: 30001105 DOI: 10.1021/acschemneuro.8b00271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epilepsy is a common neurological disease characterized by recurrent unpredictable seizures. For the last 30 years, microdialysis sampling has been used to measure changes in excitatory and inhibitory neurotransmitter concentrations before, during, and after seizures. These advances have fostered breakthroughs in epilepsy research by identifying neurochemical changes associated with seizures and correlating them to electrophysiological data. Recent advances in methodology may be useful in further delineating the chemical underpinnings of seizures. A new model of ictogenesis has been developed that allows greater control over the timing of seizures that are similar to spontaneous seizures. This model will facilitate making chemical measurements before and during a seizure. Recent advancements in microdialysis sampling, including the use of segmented flow, "fast" liquid chromatography (LC), and capillary electrophoresis with laser-induced fluorescence (CE-LIF) have significantly improved temporal resolution to better than 1 min, which could be used to measure transient, spontaneous neurochemical changes associated with seizures. Microfabricated sampling probes that are markedly smaller than conventional probes and allow for a much greater spatial resolution have been developed. They may allow the targeting of specific brain regions important to epilepsy studies. Coupling microdialysis sampling to optogenetics and light-stimulated release of neurotransmitters may also prove useful for studying epileptic seizures.
Collapse
Affiliation(s)
- Alexander G. Zestos
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016, United States
| | - Hiram Luna-Munguia
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, Queretaro 76230, Mexico
| | - William C. Stacey
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
24
|
Huang WY, Jiang C, Ye HB, Jiao JT, Cheng C, Huang J, Liu J, Zhang R, Shao JF. miR-124 upregulates astrocytic glutamate transporter-1 via the Akt and mTOR signaling pathway post ischemic stroke. Brain Res Bull 2019; 149:231-239. [PMID: 31004734 DOI: 10.1016/j.brainresbull.2019.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 03/29/2019] [Accepted: 04/15/2019] [Indexed: 10/27/2022]
Abstract
High-concentration glutamic acid (Glu) induced by ischemic stroke can be inhibited by glutamate transporter-1 (GLT-1), which is the main mechanism for preventing excessive extracellular glutamate accumulation in the central nervous system. Upregulation of miR-124 could reduce the infarct area and promote the recovery of neurological function after ischemic stroke. A previous study investigated whether miR-124 could regulate GLT-1 expression in normal culture conditions. However, the role of miR-124 in the regulation of GLT-1 expression and further mechanisms after ischemic stroke remain unclear. In this study, the effects of miR-124 on GLT-1 expression in astrocytes after ischemic stroke were explored using an in vitro model of ischemic stroke (oxygen-glucose deprivation/reperfusion, OGD/reperfusion). The expression of GLT-1 was significantly decreased with lower expression of miR-124 in astrocytes injured by OGD/reperfusion. When miR-124 expression was improved, the expression of GLT-1 was notably increased in astrocytes injured by OGD/reperfusion. The results revealed that GLT-1 expression in astrocytes had a relationship with miR-124 after OGD/reperfusion. However, a direct interaction could not be confirmed with a luciferase reporter assay. Further results demonstrated that an inhibitor of Akt could decrease the increased protein expression of GLT-1 induced by miR-124 mimics, and an inhibitor of mTOR could increase the reduced protein expression of GLT-1 caused by a miR-124 inhibitor in astrocytes injured by different OGD/reperfusion conditions. These results indicated that miR-124 could regulate GLT-1 expression in astrocytes after OGD/reperfusion through the Akt and mTOR pathway.
Collapse
Affiliation(s)
- Wei-Yi Huang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Chen Jiang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Han-Bin Ye
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Jian-Tong Jiao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Jin Huang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Jin Liu
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Rui Zhang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Jun-Fei Shao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China.
| |
Collapse
|
25
|
Krainz T, Lamade AM, Du L, Maskrey TS, Calderon MJ, Watkins SC, Epperly MW, Greenberger JS, Bayır H, Wipf P, Clark RSB. Synthesis and Evaluation of a Mitochondria-Targeting Poly(ADP-ribose) Polymerase-1 Inhibitor. ACS Chem Biol 2018; 13:2868-2879. [PMID: 30184433 DOI: 10.1021/acschembio.8b00423] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The poly(ADP-ribose) polymerase (PARP) family of enzymes plays a crucial role in cellular and molecular processes including DNA damage detection and repair and transcription; indeed, PARP inhibitors are under clinical evaluation as chemotherapeutic adjuncts given their capacity to impede genomic DNA repair in tumor cells. Conversely, overactivation of PARP can lead to NAD+ depletion, mitochondrial energy failure, and cell death. Since PARP activation facilitates genomic but impedes mitochondrial DNA repair, nonselective PARP inhibitors are likely to have opposing effects in these cellular compartments. Herein, we describe the synthesis and evaluation of the mitochondria-targeting PARP inhibitor, XJB-veliparib. Attachment of the hemigramicidin S pentapeptide isostere for mitochondrial targeting using a flexible linker at the primary amide site of veliparib did not disrupt PARP affinity or inhibition. XJB-veliparib was effective at low nanomolar concentrations (10-100 nM) and more potent than veliparib in protection from oxygen-glucose deprivation (OGD) in primary cortical neurons. Both XJB-veliparib and veliparib (10 nM) preserved mitochondrial NAD+ after OGD; however, only XJB-veliparib prevented release of NAD+ into cytosol. XJB-veliparib (10 nM) appeared to inhibit poly(ADP-ribose) polymer formation in mitochondria and preserve mitochondrial cytoarchitecture after OGD in primary cortical neurons. After 10 nM exposure, XJB-veliparib was detected by LC-MS in mitochondria but not nuclear-enriched fractions in neurons and was observed in mitoplasts stripped of the outer mitochondrial membrane obtained from HT22 cells. XJB-veliparib was also effective at preventing glutamate-induced HT22 cell death at micromolar concentrations. Importantly, in HT22 cells exposed to H2O2 to produce DNA damage, XJB-veliparib (10 μM) had no effect on nuclear DNA repair, in contrast to veliparib (10 μM) where DNA repair was retarded. XJB-veliparib and analogous mitochondria-targeting PARP inhibitors warrant further evaluation in vitro and in vivo, particularly in conditions where PARP overactivation leads to mitochondrial energy failure and maintenance of genomic DNA integrity is desirable, e.g., ischemia, oxidative stress, and radiation exposure.
Collapse
Affiliation(s)
- Tanja Krainz
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Andrew M. Lamade
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States
| | - Lina Du
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States
| | - Taber S. Maskrey
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael J. Calderon
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Simon C. Watkins
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael W. Epperly
- Department of Radiation Oncology, Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
| | - Joel S. Greenberger
- Department of Radiation Oncology, Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
| | - Hülya Bayır
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15224, United States
- Children’s Neuroscience Institute, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Robert S. B. Clark
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States
- Children’s Neuroscience Institute, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, United States
| |
Collapse
|
26
|
Lee TH, Hwang HG, Woo JU, Kim DH, Kim TW, Nahm S. Synaptic Plasticity and Metaplasticity of Biological Synapse Realized in a KNbO 3 Memristor for Application to Artificial Synapse. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25673-25682. [PMID: 29985576 DOI: 10.1021/acsami.8b04550] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Amorphous KNbO3 (KN) films were grown on a TiN/SiO2/Si substrate to synthesize a KN memristor as a potential artificial synapse. The Pt/KN/TiN memristor exhibited typical and reliable bipolar switching behavior with multiple resistance levels. It also showed the transmission properties of a biological synapse, with a good conductance modulation linearity. Moreover, the KN memristor can emulate various biological synaptic plasticity characteristics including short-term plasticity, long-term plasticity, spike-rate dependent plasticity, paired-pulse facilitation, and post-tetanic potentiation by controlling the number and rate of the potentiation spike. Spike-timing-dependent plasticity (STDP), which is an essential property of biological synapses, is also realized in the KN memristor. The synaptic plasticity of the KN memristor can be explained by oxygen vacancy movement and oxygen vacancy filaments. The metaplasticity of biological synapses was also implemented in the KN memristor, including the metaplasticity of long-term potentiation and depression, and of STDP. Therefore, the KN memristor could be used as an artificial synapse in neuromorphic computing systems.
Collapse
Affiliation(s)
| | | | | | | | - Tae-Wook Kim
- Applied Quantum Composites Research Center , KIST Jeonbuk Institute of Advanced Composite Materials , 92 Chudong-ro , Bongdong-eup, Wanju-gun , Jeollabuk-do 55324 , Republic of Korea
| | | |
Collapse
|
27
|
Gruden MA, Davydova TV, Kudrin VS, Wang C, Narkevich VB, Morozova-Roche LA, Sewell RDE. S100A9 Protein Aggregates Boost Hippocampal Glutamate Modifying Monoaminergic Neurochemistry: A Glutamate Antibody Sensitive Outcome on Alzheimer-like Memory Decline. ACS Chem Neurosci 2018; 9:568-577. [PMID: 29160692 DOI: 10.1021/acschemneuro.7b00379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) involves dementia conceivably arising from integrated inflammatory processes, amyloidogenesis, and neuronal apoptosis. Glutamate can also cause neuronal death via excitotoxicity, and this is similarly implicated in some neurological diseases. The aim was to examine treatment with in vitro generated proinflammatory protein S100A9 aggregate species alone or with glutamate antibodies (Glu-Abs) on Morris water maze (MWM) spatial learning and memory performance in 12 month old mice. Amino acid and monoamine cerebral neurotransmitter metabolic changes were concurrently monitored. Initially, S100A9 fibrils were morphologically verified by atomic force microscopy and Thioflavin T assay. They were then administered intranasally alone or with Glu-Abs for 14 days followed by a 5 day MWM protocol before hippocampal and prefrontal cortical neurochemical analysis. S100A9 aggregates evoked spatial amnesia which correlated with disrupted glutamate and dopaminergic neurochemistry. Hippocampal glutamate release, elevation of DOPAC and HVA, as well as DOPAC/DA and HVA/DA ratios were subsequently reduced by Glu-Abs which simultaneously prevented the spatial memory deficit. The present outcomes emphasized the pathogenic nature of S100A9 fibrillar aggregates in causing spatial memory amnesia associated with enhanced hippocampal glutamate release and DA-ergic disruption in the aging brain. This finding might be exploited during dementia management through a neuroprotective strategy.
Collapse
Affiliation(s)
- Marina A. Gruden
- P. K. Anokhin Research Institute of Normal Physiology, Moscow 125315 Russia
| | - Tatiana V. Davydova
- Research Institute of General Pathology and Pathophysiology, Moscow 125315 Russia
| | | | - Chao Wang
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-90187, Sweden
| | | | | | - Robert D. E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, United Kingdom
| |
Collapse
|
28
|
Roda E, Bottone MG, Insolia V, Barni S, Bernocchi G. Changes in the cerebellar cytoarchitecture of hibernating hedgehog Erinaceus europaeus L. (Mammalia): an immunocytochemical approach. EUROPEAN ZOOLOGICAL JOURNAL 2017. [DOI: 10.1080/24750263.2017.1380722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- E. Roda
- Department of Biology and Biotechnology “L. Spallanzani”, Laboratory of Cell Biology and Neurobiology, University of Pavia, Pavia, Italy
- Laboratory of Clinical & Experimental Toxicology and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, ICS Maugeri Spa Benefit Corporation, IRCCS of Pavia, Pavia, Italy
| | - M. G. Bottone
- Department of Biology and Biotechnology “L. Spallanzani”, Laboratory of Cell Biology and Neurobiology, University of Pavia, Pavia, Italy
| | - V. Insolia
- Department of Biology and Biotechnology “L. Spallanzani”, Laboratory of Cell Biology and Neurobiology, University of Pavia, Pavia, Italy
| | - S. Barni
- Department of Biology and Biotechnology “L. Spallanzani”, Laboratory of Cell Biology and Neurobiology, University of Pavia, Pavia, Italy
| | - G. Bernocchi
- Department of Biology and Biotechnology “L. Spallanzani”, Laboratory of Cell Biology and Neurobiology, University of Pavia, Pavia, Italy
| |
Collapse
|
29
|
Waqar M, Batool S. In silico analysis of binding interaction of conantokins with NMDA receptors for potential therapeutic use in Alzheimer's disease. J Venom Anim Toxins Incl Trop Dis 2017; 23:42. [PMID: 28943883 PMCID: PMC5607497 DOI: 10.1186/s40409-017-0132-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/13/2017] [Indexed: 01/13/2023] Open
Abstract
Background The N-methyl-D-aspartate (NMDA) receptors are glutamate receptors that play vital roles in central nervous system development and are involved in synaptic plasticity, which is an essential process for learning and memory. The subunit N-methyl D-aspartate receptor subtype 2B (NR2B) is the chief excitatory neurotransmitter receptor in the mammalian brain. Disturbances in the neurotransmission mediated by the NMDA receptor are caused by its overexposure to glutamate neurotransmitter and can be treated by its binding to an antagonist. Among several antagonists, conantokins from cone snails are reported to bind to NMDA receptors. Methods This study was designed to analyze the binding mode of conantokins with NMDA receptors in both humans and rats. To study interactions, dockings were performed using AutoDock 4.2 and their results were further analyzed using various computational tools. Results Detailed analyses revealed that these ligands can bind to active site residues of both receptors as reported in previous studies. Conclusions In light of the present results, we suggest that these conantokins can act as antagonists of those receptors and play an important role in understanding the importance of inhibition of NMDA receptors for treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Maleeha Waqar
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 45550 Pakistan
| | - Sidra Batool
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 45550 Pakistan
| |
Collapse
|
30
|
Safari A, Fazeli M, Namavar MR, Tanideh N, Jafari P, Borhani-Haghighi A. Therapeutic effects of oral dimethyl fumarate on stroke induced by middle cerebral artery occlusion: An animal experimental study. Restor Neurol Neurosci 2017; 35:265-274. [DOI: 10.3233/rnn-160670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Anahid Safari
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology, Shiraz University, Shiraz, Iran
| | - Mehdi Fazeli
- Department of Pharmacology, Shiraz University, Shiraz, Iran
| | - Mohammad Reza Namavar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Departmentof Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Peyman Jafari
- Department of Biostatistics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afshin Borhani-Haghighi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
31
|
Arnold AJ, Razavieh A, Nasr JR, Schulman DS, Eichfeld CM, Das S. Mimicking Neurotransmitter Release in Chemical Synapses via Hysteresis Engineering in MoS 2 Transistors. ACS NANO 2017; 11:3110-3118. [PMID: 28260370 DOI: 10.1021/acsnano.7b00113] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Neurotransmitter release in chemical synapses is fundamental to diverse brain functions such as motor action, learning, cognition, emotion, perception, and consciousness. Moreover, improper functioning or abnormal release of neurotransmitter is associated with numerous neurological disorders such as epilepsy, sclerosis, schizophrenia, Alzheimer's disease, and Parkinson's disease. We have utilized hysteresis engineering in a back-gated MoS2 field effect transistor (FET) in order to mimic such neurotransmitter release dynamics in chemical synapses. All three essential features, i.e., quantal, stochastic, and excitatory or inhibitory nature of neurotransmitter release, were accurately captured in our experimental demonstration. We also mimicked an important phenomenon called long-term potentiation (LTP), which forms the basis of human memory. Finally, we demonstrated how to engineer the LTP time by operating the MoS2 FET in different regimes. Our findings could provide a critical component toward the design of next-generation smart and intelligent human-like machines and human-machine interfaces.
Collapse
Affiliation(s)
| | - Ali Razavieh
- GLOBALFOUNDRIES , Albany NanoTech Complex, Albany, New York 12203, United States
| | | | | | | | | |
Collapse
|
32
|
Hou Y, Song H, Croteau DL, Akbari M, Bohr VA. Genome instability in Alzheimer disease. Mech Ageing Dev 2017; 161:83-94. [PMID: 27105872 PMCID: PMC5195918 DOI: 10.1016/j.mad.2016.04.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/05/2016] [Accepted: 04/15/2016] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. Autosomal dominant, familial AD (fAD) is very rare and caused by mutations in amyloid precursor protein (APP), presenilin-1 (PSEN-1), and presenilin-2 (PSEN-2) genes. The pathogenesis of sporadic AD (sAD) is more complex and variants of several genes are associated with an increased lifetime risk of AD. Nuclear and mitochondrial DNA integrity is pivotal during neuronal development, maintenance and function. DNA damage and alterations in cellular DNA repair capacity have been implicated in the aging process and in age-associated neurodegenerative diseases, including AD. These findings are supported by research using animal models of AD and in DNA repair deficient animal models. In recent years, novel mechanisms linking DNA damage to neuronal dysfunction have been identified and have led to the development of noninvasive treatment strategies. Further investigations into the molecular mechanisms connecting DNA damage to AD pathology may help to develop novel treatment strategies for this debilitating disease. Here we provide an overview of the role of genome instability and DNA repair deficiency in AD pathology and discuss research strategies that include genome instability as a component.
Collapse
Affiliation(s)
- Yujun Hou
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Hyundong Song
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Mansour Akbari
- Center for Healthy Aging, SUND, University of Copenhagen, Denmark
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
33
|
Zhao X, Xu M, Jorgenson K, Kong J. Neurochemical changes in patients with chronic low back pain detected by proton magnetic resonance spectroscopy: A systematic review. NEUROIMAGE-CLINICAL 2016; 13:33-38. [PMID: 27920977 PMCID: PMC5126149 DOI: 10.1016/j.nicl.2016.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/27/2016] [Accepted: 11/09/2016] [Indexed: 11/29/2022]
Abstract
Background Low back pain is a highly prevalent health problem around the world, affecting 50% to 85% of people at some point in life. The purpose of this systematic review is to summarize the previous proton magnetic resonance spectroscopy studies on brain chemical changes in patients with chronic low back pain (CLBP). Methods We identified relevant studies from a literature search of PubMed and EMBASE from 1980 to March 2016. Data extraction was performed on the subjects' characteristics, MRS methods, spectral analyses, cerebral metabolites and perceptual measurements. Results The review identified 9 studies that met the inclusion criteria, comprised of data on 135 CLBP subjects and 137 healthy controls. Seven of these studies reported statistically different neurochemical alterations in patients with CLBP. The results showed that compared to controls, CLBP patients showed reductions of 1) N-acetyl-aspartate (NAA) in the dorsolateral prefrontal cortex (DLPFC), right primary motor cortex, left somatosensory cortex (SSC), left anterior insula and anterior cingulate cortex (ACC); 2) glutamate in the ACC; 3) myo-inositol in the ACC and thalamus; 4) choline in the right SSC; and 5) glucose in the DLPFC. Conclusion This review provides evidence for alterations in the biochemical profile of the brain in patients with CLBP, which suggests that biochemical changes may play a significant role in the development and pathophysiology of CLBP and shed light on the development of new treatments for CLBP. Neurochemical changes in patients with chronic low back pain were detected by MRS. Biochemical alterations may correlate with pathophysiology of CLBP. Decrease of N-acetyl-aspartate was main metabolic changes in patients with CLBP. Future studies need to emphasize therapeutic response in patients with CLBP.
Collapse
Affiliation(s)
- Xianjing Zhao
- The First Clinical Medical College, Zhejiang Chinese Medical University, China; Department of Radiology, The 1st Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Maosheng Xu
- The First Clinical Medical College, Zhejiang Chinese Medical University, China; Department of Radiology, The 1st Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Kristen Jorgenson
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
34
|
Guthrie OW. Noise Induced DNA Damage Within the Auditory Nerve. Anat Rec (Hoboken) 2016; 300:520-526. [DOI: 10.1002/ar.23494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/21/2016] [Accepted: 07/09/2016] [Indexed: 11/06/2022]
Affiliation(s)
- O'neil W. Guthrie
- Cell and Molecular Pathology Laboratory, Department of Communication Sciences and Disorders; Northern Arizona University; Flagstaff Arizona
- Research Service-151 Loma Linda Veterans Affairs Medical Center; Loma Linda California
- Department of Otolaryngology and Head & Neck Surgery, School of Medicine; Loma Linda University Medical Center; Loma Linda California
| |
Collapse
|
35
|
Coelho VR, Vieira CG, de Souza LP, da Silva LL, Pflüger P, Regner GG, Papke DKM, Picada JN, Pereira P. Behavioral and genotoxic evaluation of rosmarinic and caffeic acid in acute seizure models induced by pentylenetetrazole and pilocarpine in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2016; 389:1195-1203. [PMID: 27476160 DOI: 10.1007/s00210-016-1281-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
Abstract
The goal of this study was to investigate the effects of rosmarinic acid (RA) and caffeic acid (CA) in the acute pentylenetetrazole (PTZ) and pilocarpine (PIL) seizure models. We also evaluated the effect of RA and CA on the diazepam (DZP)-induced sleeping time test and its possible neuroprotective effect against the genotoxic damage induced by PTZ and PIL. Mice were treated intraperitoneally (i.p.) with saline, RA (2 or 4 mg/kg), or CA (4 or 8 mg/kg) alone or associated to low-dose DZP. After, mice received a single dose of PTZ (88 mg/kg) or PIL (250 mg/kg) and were monitored for the percentage of seizures and the latency to first seizure (LFS) >3 s. Vigabatrin and DZP were used as positive controls. In the DZP-induced sleeping time test, mice were treated with RA and CA and 30 min after receiving DZP (25 mg/kg, i.p.). The alkaline comet assay was performed after acute seizure tests to evaluate the antigenotoxic profiles of RA and CA. The doses of RA and CA tested alone did not reduce the occurrence of seizures induced by PTZ or PIL. The association of 4 mg/kg RA + low-dose DZP was shown to increase LFS in the PTZ model, compared to the group that received only the DZP. In the DZP-induced sleeping time test, the latency to sleep was reduced by 4 mg/kg RA and 8 mg/kg CA. The PTZ-induced genotoxic damage was not prevented by RA or CA, but the PIL-induced genotoxic damage was decreased by pretreatment with 4 mg/kg RA (in cortex) and 4 mg/kg CA (in hippocampus). In conclusion, RA and CA presented neuroprotective effect against PIL-induced genotoxic damage and reduced the latency to DZP-induced sleep. Of the rosmarinic acid, 4 mg/kg enhanced the DZP effect in the increase of latency to clonic PTZ-induced seizures.
Collapse
Affiliation(s)
- Vanessa Rodrigues Coelho
- Laboratory of Neuropharmacology and Preclinical Toxicology, Department of Pharmacology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Sarmento Leite 500/305, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Caroline Gonçalves Vieira
- Laboratory of Neuropharmacology and Preclinical Toxicology, Department of Pharmacology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Sarmento Leite 500/305, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Luana Pereira de Souza
- Laboratory of Neuropharmacology and Preclinical Toxicology, Department of Pharmacology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Sarmento Leite 500/305, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Lucas Lima da Silva
- Laboratory of Neuropharmacology and Preclinical Toxicology, Department of Pharmacology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Sarmento Leite 500/305, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Pricila Pflüger
- Laboratory of Neuropharmacology and Preclinical Toxicology, Department of Pharmacology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Sarmento Leite 500/305, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Gabriela Gregory Regner
- Laboratory of Neuropharmacology and Preclinical Toxicology, Department of Pharmacology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Sarmento Leite 500/305, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Débora Kuck Mausolff Papke
- Laboratory of Genetic Toxicology, Lutheran University of Brazil, Av. Farroupilha 8001, Canoas, RS, CEP 92425-900, Brazil
| | - Jaqueline Nascimento Picada
- Laboratory of Genetic Toxicology, Lutheran University of Brazil, Av. Farroupilha 8001, Canoas, RS, CEP 92425-900, Brazil
| | - Patrícia Pereira
- Laboratory of Neuropharmacology and Preclinical Toxicology, Department of Pharmacology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Sarmento Leite 500/305, Porto Alegre, RS, CEP 90050-170, Brazil.
| |
Collapse
|
36
|
Yan M, Zhu W, Zheng X, Li Y, Tang L, Lu B, Chen W, Qiu P, Leng T, Lin S, Yan G, Yin W. Effect of glutamate on lysosomal membrane permeabilization in primary cultured cortical neurons. Mol Med Rep 2016; 13:2499-505. [PMID: 26821268 PMCID: PMC4768955 DOI: 10.3892/mmr.2016.4819] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 12/08/2015] [Indexed: 11/20/2022] Open
Abstract
Glutamate is the principal neurotransmitter in the central nervous system. Glutamate-mediated excitotoxicity is the predominant cause of cerebral damage. Recent studies have shown that lysosomal membrane permeabilization (LMP) is involved in ischemia-associated neuronal death in non-human primates. This study was designed to investigate the effect of glutamate on lysosomal stability in primary cultured cortical neurons. Glutamate treatment for 30 min induced the permeabilization of lysosomal membranes as assessed by acridine orange redistribution and immunofluorescence of cathepsin B in the cytoplasm. Inhibition of glutamate excitotoxicity by the NMDA receptor antagonist MK-801 and the calcium chelator ethylene glycolbis (2-aminoethylether)-N, N, N′, N′-tetraacetic acid, rescued lysosomes from permeabilization. The role of calpain and reactive oxygen species (ROS) in inducing LMP was also investigated. Ca2+ overload following glutamate treatment induced the activation of calpain and the production of ROS, which are two major contributors to neuronal death. It has been reported that lysosomal-associated membrane protein 2 (LAMP2) and heat shock protein (HSP)70 are two calpain substrates that promote LMP in cancer cells; however, it was found that calpains were activated by glutamate, but only LAMP2 was subsequently degraded. Furthermore, LMP was not alleviated by treatment with the calpain inhibitors calpeptin and SJA6017, which blocked the cleavage of the calpain substrate α-fodrin. It was demonstrated that LMP was significantly alleviated by treatment with the antioxidant N-Acetyl-L-cysteine, indicating that LMP involvement in early glutamate excitotoxicity may be mediated partly by ROS rather than calpain activation. Overall, these data shed light on the role of ROS-mediated LMP in early glutamate excitotoxicity.
Collapse
Affiliation(s)
- Min Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaoke Zheng
- Department of Pathology, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Yuan Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Lipeng Tang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Bingzheng Lu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenli Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Pengxin Qiu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tiandong Leng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Suizhen Lin
- Guangzhou Cellprotek Pharmaceutical Co., Ltd., Guangzhou, Guangdong 510663, P.R. China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wei Yin
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
37
|
The Integrative Self: How Self-Reference Integrates Perception and Memory. Trends Cogn Sci 2015; 19:719-728. [DOI: 10.1016/j.tics.2015.08.015] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/18/2015] [Accepted: 08/25/2015] [Indexed: 11/17/2022]
|
38
|
Guthrie OW. Localization and distribution of neurons that co-express xeroderma pigmentosum-A and epidermal growth factor receptor within Rosenthal's canal. Acta Histochem 2015; 117:688-95. [PMID: 26493720 DOI: 10.1016/j.acthis.2015.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/06/2015] [Accepted: 10/10/2015] [Indexed: 12/12/2022]
Abstract
Xeroderma pigmentosum-A (XPA) is a C4-type zinc-finger scaffolding protein that regulates the removal of bulky-helix distorting DNA damage products from the genome. Phosphorylation of serine residues within the XPA protein is associated with improved protection of genomic DNA and cell death resistance. Therefore, kinase signaling is one important mechanism for regulating the protective function of XPA. Previous experiments have shown that spiral ganglion neurons (SGNs) may mobilize XPA as a general stress response to chemical and physical ototoxicants. Therapeutic optimization of XPA via kinase signaling could serve as a means to improve DNA repair capacity within neurons following injury. The kinase signaling activity of the epidermal growth factor receptor (EGFR) has been shown in tumor cell lines to increase the repair of DNA damage products that are primarily repaired by XPA. Such observations suggest that EGFR may regulate the protective function of XPA. However, it is not known whether SGNs in particular or neurons in general could co-express XPA and EGFR. In the current study gene and protein expression of XPA and EGFR were determined from cochlear homogenates. Immunofluorescence assays were then employed to localize neurons expressing both EGFR and XPA within the ganglion. This work was then confirmed with double-immunohistochemistry. Rosenthal's canal served as the reference space in these experiments and design-based stereology was employed in first-order stereology quantification of immunoreactive neurons. The results confirmed that a population of SGNs that constitutively express XPA may also express the EGFR. These results provide the basis for future experiments designed to therapeutically manipulate the EGFR in order to regulate XPA activity and restore gene function in neurons following DNA damage.
Collapse
|
39
|
The Drosophila insulin receptor independently modulates lifespan and locomotor senescence. PLoS One 2015; 10:e0125312. [PMID: 26020640 PMCID: PMC4447345 DOI: 10.1371/journal.pone.0125312] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/16/2015] [Indexed: 01/12/2023] Open
Abstract
The Insulin/IGF-like signalling (IIS) pathway plays an evolutionarily conserved role in ageing. In model organisms reduced IIS extends lifespan and ameliorates some forms of functional senescence. However, little is known about IIS in nervous system ageing and behavioural senescence. To investigate this role in Drosophila melanogaster, we measured the effect of reduced IIS on senescence of two locomotor behaviours, negative geotaxis and exploratory walking. Two long-lived fly models with systemic IIS reductions (daGAL4/UAS-InRDN (ubiquitous expression of a dominant negative insulin receptor) and d2GAL/UAS-rpr (ablation of insulin-like peptide producing cells)) showed an amelioration of negative geotaxis senescence similar to that previously reported for the long-lived IIS mutant chico. In contrast, exploratory walking in daGAL4/UAS-InRDN and d2GAL/UAS-rpr flies declined with age similarly to controls. To determine the contribution of IIS in the nervous system to these altered senescence patterns and lifespan, the InRDN was targeted to neurons (elavGAL4/UAS-InRDN), which resulted in extension of lifespan in females, normal negative geotaxis senescence in males and females, and detrimental effects on age-specific exploratory walking behaviour in males and females. These data indicate that the Drosophila insulin receptor independently modulates lifespan and age-specific function of different types of locomotor behaviour. The data suggest that ameliorated negative geotaxis senescence of long-lived flies with systemic IIS reductions is due to ageing related effects of reduced IIS outside the nervous system. The lifespan extension and coincident detrimental or neutral effects on locomotor function with a neuron specific reduction (elavGAL4/UAS-InRDN) indicates that reduced IIS is not beneficial to the neural circuitry underlying the behaviours despite increasing lifespan.
Collapse
|
40
|
Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD. Researching glutamate - induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci 2015; 9:91. [PMID: 25852482 PMCID: PMC4362409 DOI: 10.3389/fncel.2015.00091] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/26/2015] [Indexed: 12/21/2022] Open
Abstract
Although glutamate is one of the most important excitatory neurotransmitters of the central nervous system, its excessive extracellular concentration leads to uncontrolled continuous depolarization of neurons, a toxic process called, excitotoxicity. In excitotoxicity glutamate triggers the rise of intracellular Ca2+ levels, followed by up regulation of nNOS, dysfunction of mitochondria, ROS production, ER stress, and release of lysosomal enzymes. Excessive calcium concentration is the key mediator of glutamate toxicity through over activation of ionotropic and metabotropic receptors. In addition, glutamate accumulation can also inhibit cystine (CySS) uptake by reversing the action of the CySS/glutamate antiporter. Reversal of the antiporter action reinforces the aforementioned events by depleting neurons of cysteine and eventually glutathione’s reducing potential. Various cell lines have been employed in the pursuit to understand the mechanism(s) by which excitotoxicity affects the cells leading them ultimately to their demise. In some cell lines glutamate toxicity is exerted mainly through over activation of NMDA, AMPA, or kainate receptors whereas in other cell lines lacking such receptors, the toxicity is due to glutamate induced oxidative stress. However, in the greatest majority of the cell lines ionotropic glutamate receptors are present, co-existing to CySS/glutamate antiporters and metabotropic glutamate receptors, supporting the assumption that excitotoxicity effect in these cells is accumulative. Different cell lines differ in their responses when exposed to glutamate. In this review article the responses of PC12, SH-SY5Y, HT-22, NT-2, OLCs, C6, primary rat cortical neurons, RGC-5, and SCN2.2 cell systems are systematically collected and analyzed.
Collapse
Affiliation(s)
- Aristeidis A Kritis
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| | - Eleni G Stamoula
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| | - Krystallenia A Paniskaki
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| | - Theofanis D Vavilis
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| |
Collapse
|
41
|
Medina-Ceja L, Pardo-Peña K, Morales-Villagrán A, Ortega-Ibarra J, López-Pérez S. Increase in the extracellular glutamate level during seizures and electrical stimulation determined using a high temporal resolution technique. BMC Neurosci 2015; 16:11. [PMID: 25887152 PMCID: PMC4363345 DOI: 10.1186/s12868-015-0147-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/20/2015] [Indexed: 12/21/2022] Open
Abstract
Background Glutamate has been measured using different methods to determine its role under normal and pathological conditions. Although microdialysis coupled with HPLC is the preferred method to study glutamate, this technique exhibits poor temporal resolution and is time consuming. The concentration of glutamate in dialysis samples can be measured via glutamate oxidase using the Amplex Red method. Methods A new device has been designed and constructed to rapidly deposit dialysis samples onto a polycarbonate plate at Cartesian coordinates (every five seconds). The samples were added to an enzymatic reaction that generates hydrogen peroxide from glutamate, which was quantified using fluorescence detection. Fluorescence emission was induced by laser excitation, stimulating each spot automatically, in addition to controlling the humidity, temperature and incubation time of the enzymatic reaction. Results The measurement of standard glutamate concentrations was linear and could be performed in dialysis samples. This approach was used to determine the effect of the convulsant drugs bicuculline and 4-aminopyridine on the extracellular glutamate concentration. Seizure activity was associated with a considerable increase in glutamate that correlated with altered EEG patterns for both drugs. Conclusions These results indicate that this method is able to read samples with high temporal resolution, and it is easy to use compared with classical methods such as high-performance liquid chromatography, with the advantage that a large number of samples can be measured in a single experimental series. This method provides an alternative approach to determine the concentrations of neurotransmitters or other compounds that generate hydrogen peroxide as a reaction product.
Collapse
Affiliation(s)
- Laura Medina-Ceja
- Laboratory of Neurophysiology and Neurochemistry, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Jalisco, Mexico.
| | - Kenia Pardo-Peña
- Laboratory of Neurophysiology and Neurochemistry, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Jalisco, Mexico.
| | - Alberto Morales-Villagrán
- Laboratory of Neurophysiology and Neurochemistry, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Jalisco, Mexico. .,Laboratorio de Neurofisiología y Neuroquímica, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ing. R. Padilla Sánchez 2100, Las Agujas, Nextipac, CP 45110, Zapopan, Jalisco, Mexico.
| | - Jorge Ortega-Ibarra
- Laboratory of Neurophysiology and Neurochemistry, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Jalisco, Mexico.
| | - Silvia López-Pérez
- Laboratory of Neurophysiology and Neurochemistry, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Jalisco, Mexico.
| |
Collapse
|
42
|
Réus GZ, Abaleira HM, Michels M, Tomaz DB, dos Santos MAB, Carlessi AS, Matias BI, Leffa DD, Damiani AP, Gomes VDC, Andrade VM, Dal-Pizzol F, Landeira-Fernadez J, Quevedo J. Anxious phenotypes plus environmental stressors are related to brain DNA damage and changes in NMDA receptor subunits and glutamate uptake. Mutat Res 2015; 772:30-37. [PMID: 25772108 DOI: 10.1016/j.mrfmmm.2014.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
This study aimed at investigating the effects of chronic mild stress on DNA damage, NMDA receptor subunits and glutamate transport levels in the brains of rats with an anxious phenotype, which were selected to represent both the high-freezing (CHF) and low-freezing (CLF) lines. The anxious phenotype induced DNA damage in the hippocampus, amygdala and nucleus accumbens (NAc). CHF rats subjected to chronic stress presented a more pronounced DNA damage in the hippocampus and NAc. NMDAR1 were increased in the prefrontal cortex (PC), hippocampus and amygdala of CHF, and decreased in the hippocampus, amygdala and NAc of CHF stressed. NMDAR2A were decreased in the amygdala of the CHF and stressed; and increased in CHF stressed. NMDRA2A in the NAc was increased after stress, and decreased in the CLF. NMDAR2B were increased in the hippocampus of CLF and CHF. In the amygdala, there was a decrease in the NMDAR2B for stress in the CLF and CHF. NMDAR2B in the NAc were decreased for stress and increased in the CHF; in the PC NMDAR2B increased in the CHF. EAAT1 increased in the PC of CLF+stress. In the hippocampus, EAAT1 decreased in all groups. In the amygdala, EAAT1 decreased in the CLF+stress and CHF. EAAT2 were decreased in the PC for stress, and increased in CHF+control. In the hippocampus, the EAAT2 were increased for the CLF and decreased in the CLF+stress. In the amygdala, there was a decrease in the EATT2 in the CLF+stress and CHF. These findings suggest that an anxious phenotype plus stress may induce a more pronounced DNA damage, and promote more alterations in the glutamatergic system. These findings may help to explain, at least in part, the common point of the mechanisms involved with the pathophysiology of depression and anxiety.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA.
| | - Helena M Abaleira
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Débora B Tomaz
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Maria Augusta B dos Santos
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Anelise S Carlessi
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Beatriz I Matias
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Daniela D Leffa
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Adriani P Damiani
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Vitor de C Gomes
- Departamento de Engenharia de Biossistemas, Universidade Federal de São João del Rei, São João del Rei, MG, Brazil
| | - Vanessa M Andrade
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
43
|
Forsberg K, Aalling N, Wörtwein G, Loft S, Møller P, Hau J, Hageman I, Jørgensen MB, Jørgensen A. Dynamic regulation of cerebral DNA repair genes by psychological stress. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 778:37-43. [DOI: 10.1016/j.mrgentox.2014.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 12/22/2022]
|
44
|
Up-regulation of brain-enriched miR-107 promotes excitatory neurotoxicity through down-regulation of glutamate transporter-1 expression following ischaemic stroke. Clin Sci (Lond) 2014; 127:679-89. [PMID: 24943094 DOI: 10.1042/cs20140084] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies have uncovered that accumulation of glutamate after ischaemic stroke is closely associated with the down-regulation of glutamate transporter-1 (GLT-1) expression, suggesting that GLT-1 expression critically controls glutamate accumulation and the abnormal glutamate transport-elicited neuronal cell excitotoxicity in patients with ischaemic stroke. However, it remains unknown how GLT-1 expression is regulated under ischaemic stroke conditions. In the present study, we screened the expression of nine brain-specific or brain-enriched miRNAs in a focal cerebral ischaemia/reperfusion (I/R) injury rat model, which showed glutamate accumulation and down-regulated GLT-1 expression as expected, and revealed that the miR-107 level was elevated in both brain tissue and plasma in the model. Next, we examined the functional relationship of miR-107 with GLT-1 expression in a nerve cell hypoxia/reoxygenation (H/R) injury model. H/R treatment increased apoptosis of the nerve cells concomitant with glutamate accumulation, miR-107 elevation and suppressed GLT-1 expression, mimicking our in vivo findings in the cerebral I/R injury rat model in vitro. Co-treating the cells with an miR-107 inhibitor blocked all of the effects, demonstrating that miR-107 functions to inhibit GLT-1 expression and elevate glutamate accumulation. To extend these animal and cell-based studies to clinical patients, we measured the plasma levels of miR-107 and glutamate, and observed that both miR-107 and glutamate were elevated in patients with ischaemic stroke. On the basis of these observations, we conclude that elevated miR-107 expression after ischaemic stroke accounts, at least partially, for glutamate accumulation through suppression of GLT-1 expression. Our findings also highlight that the plasma level of miR-107 may serve as a novel biomarker for monitoring excitotoxicity in patients with ischaemic stroke.
Collapse
|
45
|
The possible mechanism of Parkinson's disease progressive damage and the preventive effect of GM1 in the rat model induced by 6-hydroxydopamine. Brain Res 2014; 1592:73-81. [PMID: 25285892 DOI: 10.1016/j.brainres.2014.09.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 01/15/2023]
Abstract
The progressive pathogenesis and prevention of Parkinson's disease (PD) remains unknown at present. Therefore, the present study aimed to investigate the possible progressive pathogenesis and prevention of PD. Our study investigated the content of glutamate, mitochondria calcium, calmodulin, malonaldehyde and trace elements in striatum, cerebral cortex and hippocampus tissues; and the expression of bcl-2, bax and neuronal nitric oxide synthase (nNOS) in substantia nigra and striatum; and the change of apomorphine induced rotation behavior; and the treatmental effect of monosialotetrahexosylganglioside (GM1) intraperitoneal administration for 14 days in a PD rat model induced by 6-hydroxydopamine. The results revealed that the content of glutamate significantly decreased, and that of mitochondria calcium, calmodulin, malonaldehyde and ferrum significantly increased in striatum, cerebral cortex and hippocampus tissues; the content of magnesium significantly decreased, and that of cuprum and zinc significantly increased in cerebral cortex; the expression of bcl-2 significantly decreased, and that of bax and nNOS significantly increased in substantia nigra and striatum in PD rat. GM1 can partially improve the apomorphine induced rotation behavior and changes of glutamate, mitochondria calcium, calmodulin content in striatum of PD rat. Data suggested that dysfunction of excitatory amino acids neurotransmitter, calcium homeostasis disorder, abnormal metabolism of oxygen free radicals, abnormal trace elements distribution and/or deposition and excessive apoptosis participated in the progressive process of PD, and that GM1 could partially prevent the progressive damage.
Collapse
|
46
|
Alò R, Mele M, Avolio E, Fazzari G, Canonaco M. Distinct Amygdalar AMPAergic/GABAergic Mechanisms Promote Anxiolitic-Like Effects in an Unpredictable Stress Model of the Hamster. J Mol Neurosci 2014; 55:541-51. [DOI: 10.1007/s12031-014-0386-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/14/2014] [Indexed: 01/16/2023]
|
47
|
de Bartolomeis A, Buonaguro EF, Iasevoli F, Tomasetti C. The emerging role of dopamine-glutamate interaction and of the postsynaptic density in bipolar disorder pathophysiology: Implications for treatment. J Psychopharmacol 2014; 28:505-26. [PMID: 24554693 DOI: 10.1177/0269881114523864] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aberrant synaptic plasticity, originating from abnormalities in dopamine and/or glutamate transduction pathways, may contribute to the complex clinical manifestations of bipolar disorder (BD). Dopamine and glutamate systems cross-talk at multiple levels, such as at the postsynaptic density (PSD). The PSD is a structural and functional protein mesh implicated in dopamine and glutamate-mediated synaptic plasticity. Proteins at PSD have been demonstrated to be involved in mood disorders pathophysiology and to be modulated by antipsychotics and mood stabilizers. On the other side, post-receptor effectors such as protein kinase B (Akt), glycogen synthase kinase-3 (GSK-3) and the extracellular signal-regulated kinase (Erk), which are implicated in both molecular abnormalities and treatment of BD, may interact with PSD proteins, and participate in the interplay of the dopamine-glutamate signalling pathway. In this review, we describe emerging evidence on the molecular cross-talk between dopamine and glutamate signalling in BD pathophysiology and pharmacological treatment, mainly focusing on dysfunctions in PSD molecules. We also aim to discuss future therapeutic strategies that could selectively target the PSD-mediated signalling cascade at the crossroads of dopamine-glutamate neurotransmission.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Section of Psychiatry, University Medical School of Naples "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Section of Psychiatry, University Medical School of Naples "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Section of Psychiatry, University Medical School of Naples "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Section of Psychiatry, University Medical School of Naples "Federico II", Naples, Italy
| |
Collapse
|
48
|
Abstract
Concerns have been expressed recently regarding the observed increased DNA damage from activities such as thinking and exercise. Such concerns have arisen from an incomplete accounting of the full effects of the increased oxidative damage. When the effects of the induced adaptive protective responses such as increased antioxidants and DNA repair enzymes are taken into consideration, there would be less endogenous DNA damage during the subsequent period of enhanced defenses, resulting in improved health from the thinking and exercise activities. Low dose radiation (LDR), which causes oxidative stress and increased DNA damage, upregulates adaptive protection systems that may decrease diseases in an analogous manner. Though there are ongoing debates regarding LDR's carcinogenicity, with two recent advisory committee reports coming to opposite conclusions, data published since the time of the reports have overwhelmingly ruled out its carcinogenicity, paving the way for consideration of its potential use for disease reduction. LDR adaptive protection is a promising approach to control neurodegenerative diseases, for which there are no methods of prevention or cure. Preparation of a compelling ethics case would pave the way for LDR clinical studies and progress in dealing with neurodegenerative diseases.
Collapse
|
49
|
Overrepresentation of glutamate signaling in Alzheimer's disease: network-based pathway enrichment using meta-analysis of genome-wide association studies. PLoS One 2014; 9:e95413. [PMID: 24755620 PMCID: PMC3995778 DOI: 10.1371/journal.pone.0095413] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 03/26/2014] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies (GWAS) have successfully identified several risk loci for Alzheimer's disease (AD). Nonetheless, these loci do not explain the entire susceptibility of the disease, suggesting that other genetic contributions remain to be identified. Here, we performed a meta-analysis combining data of 4,569 individuals (2,540 cases and 2,029 healthy controls) derived from three publicly available GWAS in AD and replicated a broad genomic region (>248,000 bp) associated with the disease near the APOE/TOMM40 locus in chromosome 19. To detect minor effect size contributions that could help to explain the remaining genetic risk, we conducted network-based pathway analyses either by extracting gene-wise p-values (GW), defined as the single strongest association signal within a gene, or calculated a more stringent gene-based association p-value using the extended Simes (GATES) procedure. Comparison of these strategies revealed that ontological sub-networks (SNs) involved in glutamate signaling were significantly overrepresented in AD (p<2.7×10−11, p<1.9×10−11; GW and GATES, respectively). Notably, glutamate signaling SNs were also found to be significantly overrepresented (p<5.1×10−8) in the Alzheimer's disease Neuroimaging Initiative (ADNI) study, which was used as a targeted replication sample. Interestingly, components of the glutamate signaling SNs are coordinately expressed in disease-related tissues, which are tightly related to known pathological hallmarks of AD. Our findings suggest that genetic variation within glutamate signaling contributes to the remaining genetic risk of AD and support the notion that functional biological networks should be targeted in future therapies aimed to prevent or treat this devastating neurological disorder.
Collapse
|
50
|
Jang JY, Choi YW, Kim HN, Kim YR, Hong JW, Bae DW, Park SJ, Shin HK, Choi BT. Neuroprotective effects of a novel single compound 1-methoxyoctadecan-1-ol isolated from Uncaria sinensis in primary cortical neurons and a photothrombotic ischemia model. PLoS One 2014; 9:e85322. [PMID: 24416390 PMCID: PMC3885700 DOI: 10.1371/journal.pone.0085322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 11/25/2013] [Indexed: 11/19/2022] Open
Abstract
We identified a novel neuroprotective compound, 1-methoxyoctadecan-1-ol, from Uncaria sinensis (Oliv.) Havil and investigated its effects and mechanisms in primary cortical neurons and in a photothrombotic ischemic model. In primary rat cortical neurons against glutamate-induced neurotoxicity, pretreatment with 1-methoxyoctadecan-1-ol resulted in significantly reduced neuronal death in a dose-dependent manner. In addition, treatment with 1-methoxyoctadecan-1-ol resulted in decreased neuronal apoptotic death, as assessed by nuclear morphological approaches. To clarify the neuroprotective mechanism of 1-methoxyoctadecan-1-ol, we explored the downstream signaling pathways of N-methyl-D-aspartate receptor (NMDAR) with calpain activation. Treatment with glutamate leads to early activation of NMDAR, which in turn leads to calpain-mediated cleavage of striatal-enriched protein tyrosine phosphatase (STEP) and subsequent activation of p38 mitogen activated protein kinase (MAPK). However, pretreatment with 1-methoxyoctadecan-1-ol resulted in significantly attenuated activation of GluN2B-NMDAR and a decrease in calpain-mediated STEP cleavage, leading to subsequent attenuation of p38 MAPK activation. We confirmed the critical role of p38 MAPK in neuroprotective effects of 1-methoxyoctadecan-1-ol using specific inhibitor SB203580. In the photothrombotic ischemic injury in mice, treatment with 1-methoxyoctadecan-1-ol resulted in significantly reduced infarct volume, edema size, and improved neurological function. 1-methoxyoctadecan-1-ol effectively prevents cerebral ischemic damage through down-regulation of calpain-mediated STEP cleavage and activation of p38 MAPK. These results suggest that 1-methoxyoctadecan-1-ol showed neuroprotective effects through down-regulation of calpain-mediated STEP cleavage with activation of GluN2B-NMDAR, and subsequent alleviation of p38 MAPK activation. In addition, 1-methoxyoctadecan-1-ol might be a useful therapeutic agent for brain disorder such as ischemic stroke.
Collapse
Affiliation(s)
- Ji Yeon Jang
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Young Whan Choi
- Department of Horticultural Bioscience, College of Natural Resource and Life Science, Pusan National University, Miryang, Gyeongnam, Republic of Korea
| | - Ha Neui Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Yu Ri Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Jin Woo Hong
- Division of Clinical Medicine 1, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Dong Won Bae
- Central Instrument Facility, Biomaterial Analytical Lab., Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Se Jin Park
- Department of Horticultural Bioscience, College of Natural Resource and Life Science, Pusan National University, Miryang, Gyeongnam, Republic of Korea
| | - Hwa Kyoung Shin
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- * E-mail: (BTC); (HKS)
| | - Byung Tae Choi
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- * E-mail: (BTC); (HKS)
| |
Collapse
|