1
|
Jun L, Tao YX, Geetha T, Babu JR. Mitochondrial Adaptation in Skeletal Muscle: Impact of Obesity, Caloric Restriction, and Dietary Compounds. Curr Nutr Rep 2024; 13:500-515. [PMID: 38976215 PMCID: PMC11327216 DOI: 10.1007/s13668-024-00555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE OF REVIEW: The global obesity epidemic has become a major public health concern, necessitating comprehensive research into its adverse effects on various tissues within the human body. Among these tissues, skeletal muscle has gained attention due to its susceptibility to obesity-related alterations. Mitochondria are primary source of energy production in the skeletal muscle. Healthy skeletal muscle maintains constant mitochondrial content through continuous cycle of synthesis and degradation. However, obesity has been shown to disrupt this intricate balance. This review summarizes recent findings on the impact of obesity on skeletal muscle mitochondria structure and function. In addition, we summarize the molecular mechanism of mitochondrial quality control systems and how obesity impacts these systems. RECENT FINDINGS: Recent findings show various interventions aimed at mitigating mitochondrial dysfunction in obese model, encompassing strategies including caloric restriction and various dietary compounds. Obesity has deleterious effect on skeletal muscle mitochondria by disrupting mitochondrial biogenesis and dynamics. Caloric restriction, omega-3 fatty acids, resveratrol, and other dietary compounds enhance mitochondrial function and present promising therapeutic opportunities.
Collapse
Affiliation(s)
- Lauren Jun
- Department of Nutritional Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ya-Xiong Tao
- Department of Anatomy Physiology and Pharmacology, Auburn University, Auburn, AL, 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL, 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL, 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL, 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL, 36849, USA.
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
2
|
Takahashi K, Kitaoka Y, Hatta H. Effects of endurance training under calorie restriction on energy substrate metabolism in mouse skeletal muscle and liver. J Physiol Sci 2024; 74:32. [PMID: 38849720 PMCID: PMC11157813 DOI: 10.1186/s12576-024-00924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024]
Abstract
We investigated whether calorie restriction (CR) enhances metabolic adaptations to endurance training (ET). Ten-week-old male Institute of Cancer Research (ICR) mice were fed ad libitum or subjected to 30% CR. The mice were subdivided into sedentary and ET groups. The ET group performed treadmill running (20-25 m/min, 30 min, 5 days/week) for 5 weeks. We found that CR decreased glycolytic enzyme activity and monocarboxylate transporter (MCT) 4 protein content, while enhancing glucose transporter 4 protein content in the plantaris and soleus muscles. Although ET and CR individually increased citrate synthase activity in the plantaris muscle, the ET-induced increase in respiratory chain complex I protein content was counteracted by CR. In the soleus muscle, mitochondrial enzyme activity and protein levels were increased by ET, but decreased by CR. It has been suggested that CR partially interferes with skeletal muscle adaptation to ET.
Collapse
Affiliation(s)
- Kenya Takahashi
- Department of Sports Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | - Yu Kitaoka
- Department of Human Sciences, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa, 221-8686, Japan
| | - Hideo Hatta
- Department of Sports Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
3
|
Snow S, Mir D, Ma Z, Horrocks J, Cox M, Ruzga M, Sayed H, Rogers AN. Neuronal CBP-1 is required for enhanced body muscle proteostasis in response to reduced translation downstream of mTOR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585263. [PMID: 38559178 PMCID: PMC10980069 DOI: 10.1101/2024.03.15.585263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background The ability to maintain muscle function decreases with age and loss of proteostatic function. Diet, drugs, and genetic interventions that restrict nutrients or nutrient signaling help preserve long-term muscle function and slow age-related decline. Previously, it was shown that attenuating protein synthesis downstream of the mechanistic target of rapamycin (mTOR) gradually increases expression of heat shock response (HSR) genes in a manner that correlates with increased resilience to protein unfolding stress. Here, we investigate the role of specific tissues in mediating the cytoprotective effects of low translation. Methods This study uses genetic tools (transgenic C. elegans , RNA interference and gene expression analysis) as well as physiological assays (survival and paralysis assays) in order to better understand how specific tissues contribute to adaptive changes involving cellular cross-talk that enhance proteostasis under low translation conditions. Results We use the C. elegans system to show that lowering translation in neurons or the germline increases heat shock gene expression and survival under conditions of heat stress. In addition, we find that low translation in these tissues protects motility in a body muscle-specific model of proteotoxicity that results in paralysis. Low translation in neurons or germline also results in increased expression of certain muscle regulatory and structural genes, reversing reduced expression normally observed with aging in C. elegans . Enhanced resilience to protein unfolding stress requires neuronal expression of cbp-1 . Conclusion Low translation in either neurons or the germline orchestrate protective adaptation in other tissues, including body muscle.
Collapse
|
4
|
Qian L, Zhu Y, Deng C, Liang Z, Chen J, Chen Y, Wang X, Liu Y, Tian Y, Yang Y. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct Target Ther 2024; 9:50. [PMID: 38424050 PMCID: PMC10904817 DOI: 10.1038/s41392-024-01756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family (PGC-1s), consisting of three members encompassing PGC-1α, PGC-1β, and PGC-1-related coactivator (PRC), was discovered more than a quarter-century ago. PGC-1s are essential coordinators of many vital cellular events, including mitochondrial functions, oxidative stress, endoplasmic reticulum homeostasis, and inflammation. Accumulating evidence has shown that PGC-1s are implicated in many diseases, such as cancers, cardiac diseases and cardiovascular diseases, neurological disorders, kidney diseases, motor system diseases, and metabolic disorders. Examining the upstream modulators and co-activated partners of PGC-1s and identifying critical biological events modulated by downstream effectors of PGC-1s contribute to the presentation of the elaborate network of PGC-1s. Furthermore, discussing the correlation between PGC-1s and diseases as well as summarizing the therapy targeting PGC-1s helps make individualized and precise intervention methods. In this review, we summarize basic knowledge regarding the PGC-1s family as well as the molecular regulatory network, discuss the physio-pathological roles of PGC-1s in human diseases, review the application of PGC-1s, including the diagnostic and prognostic value of PGC-1s and several therapies in pre-clinical studies, and suggest several directions for future investigations. This review presents the immense potential of targeting PGC-1s in the treatment of diseases and hopefully facilitates the promotion of PGC-1s as new therapeutic targets.
Collapse
Affiliation(s)
- Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, 450052, China
| | - Junmin Chen
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xue Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yanqing Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China.
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
5
|
Ruigrok SR, Yim K, Emmerzaal TL, Geenen B, Stöberl N, den Blaauwen JL, Abbink MR, Kiliaan AJ, van Schothorst EM, Kozicz T, Korosi A. Effects of early-life stress on peripheral and central mitochondria in male mice across ages. Psychoneuroendocrinology 2021; 132:105346. [PMID: 34274734 DOI: 10.1016/j.psyneuen.2021.105346] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 01/06/2023]
Abstract
Exposure to early-life stress (ES) increases the vulnerability to develop metabolic diseases as well as cognitive dysfunction, but the specific biological underpinning of the ES-induced programming is unknown. Metabolic and cognitive disorders are often comorbid, suggesting possible converging underlying pathways. Mitochondrial dysfunction is implicated in both metabolic diseases and cognitive dysfunction and chronic stress impairs mitochondrial functioning. However, if and how mitochondria are impacted by ES and whether they are implicated in the ES-induced programming remains to be determined. ES was applied by providing mice with limited nesting and bedding material from postnatal day (P)2-P9, and metabolic parameters, cognitive functions and multiple aspects of mitochondria biology (i.e. mitochondrial electron transport chain (ETC) complex activity, mitochondrial DNA copy number, expression of genes relevant for mitochondrial function, and the antioxidant capacity) were studied in muscle, hypothalamus and hippocampus at P9 and late adulthood (10-12 months of age). We show that ES altered bodyweight (gain), adiposity and glucose levels at P9, but not in late adulthood. At this age, however, ES exposure led to cognitive impairments. ES affected peripheral and central mitochondria in an age-dependent manner. At P9, both muscle and hypothalamic ETC activity were affected by ES, while in hippocampus, ES altered the expression of genes involved in fission and antioxidant defence. In adulthood, alterations in ETC complex activity were observed in the hypothalamus specifically, whereas in muscle and hippocampus ES affected the expression of genes involved in mitophagy and fission, respectively. Our study demonstrates that ES affects peripheral and central mitochondria biology throughout life, thereby uncovering a converging mechanism that might contribute to the ES-induced vulnerability for both metabolic diseases and cognitive dysfunction, which could serve as a novel target for intervention.
Collapse
Affiliation(s)
- S R Ruigrok
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - K Yim
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - T L Emmerzaal
- Department of Medical Imaging - Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - B Geenen
- Department of Medical Imaging - Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - N Stöberl
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - J L den Blaauwen
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - M R Abbink
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - A J Kiliaan
- Department of Medical Imaging - Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - E M van Schothorst
- Human and Animal Physiology, Wageningen University, 6700AH Wageningen, The Netherlands
| | - T Kozicz
- Department of Medical Imaging - Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - A Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Howard AC, Mir D, Snow S, Horrocks J, Sayed H, Ma Z, Rogers AN. Anabolic Function Downstream of TOR Controls Trade-offs Between Longevity and Reproduction at the Level of Specific Tissues in C. elegans. FRONTIERS IN AGING 2021; 2:725068. [PMID: 35340273 PMCID: PMC8953723 DOI: 10.3389/fragi.2021.725068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022]
Abstract
As the most energetically expensive cellular process, translation must be finely tuned to environmental conditions. Dietary restriction attenuates signaling through the nutrient sensing mTOR pathway, which reduces translation and redirects resources to preserve the soma. These responses are associated with increased lifespan but also anabolic impairment, phenotypes also observed when translation is genetically suppressed. Here, we restricted translation downstream of mTOR separately in major tissues in C. elegans to better understand their roles in systemic adaptation and whether consequences to anabolic impairment were separable from positive effects on lifespan. Lowering translation in neurons, hypodermis, or germline tissue led to increased lifespan under well-fed conditions and improved survival upon withdrawal of food, indicating that these are key tissues coordinating enhanced survival when protein synthesis is reduced. Surprisingly, lowering translation in body muscle during development shortened lifespan while accelerating and increasing reproduction, a reversal of phenotypic trade-offs associated with systemic translation suppression. Suppressing mTORC1 selectively in body muscle also increased reproduction while slowing motility during development. In nature, this may be indicative of reduced energy expenditure related to foraging, acting as a "GO!" signal for reproduction. Together, results indicate that low translation in different tissues helps direct distinct systemic adaptations and suggest that unknown endocrine signals mediate these responses. Furthermore, mTOR or translation inhibitory therapeutics that target specific tissues may achieve desired interventions to aging without loss of whole-body anabolism.
Collapse
Affiliation(s)
- Amber C. Howard
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Bar Harbor, ME, United States
- Department of Natural Sciences, Middle Georgia State University, Cochran, GA, United States
| | - Dilawar Mir
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Bar Harbor, ME, United States
| | - Santina Snow
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Bar Harbor, ME, United States
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Jordan Horrocks
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Bar Harbor, ME, United States
| | - Hussein Sayed
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Bar Harbor, ME, United States
| | - Zhengxin Ma
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Bar Harbor, ME, United States
| | - Aric N. Rogers
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Bar Harbor, ME, United States
| |
Collapse
|
7
|
Acetyl-CoA Metabolism and Histone Acetylation in the Regulation of Aging and Lifespan. Antioxidants (Basel) 2021; 10:antiox10040572. [PMID: 33917812 PMCID: PMC8068152 DOI: 10.3390/antiox10040572] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
Acetyl-CoA is a metabolite at the crossroads of central metabolism and the substrate of histone acetyltransferases regulating gene expression. In many tissues fasting or lifespan extending calorie restriction (CR) decreases glucose-derived metabolic flux through ATP-citrate lyase (ACLY) to reduce cytoplasmic acetyl-CoA levels to decrease activity of the p300 histone acetyltransferase (HAT) stimulating pro-longevity autophagy. Because of this, compounds that decrease cytoplasmic acetyl-CoA have been described as CR mimetics. But few authors have highlighted the potential longevity promoting roles of nuclear acetyl-CoA. For example, increasing nuclear acetyl-CoA levels increases histone acetylation and administration of class I histone deacetylase (HDAC) inhibitors increases longevity through increased histone acetylation. Therefore, increased nuclear acetyl-CoA likely plays an important role in promoting longevity. Although cytoplasmic acetyl-CoA synthetase 2 (ACSS2) promotes aging by decreasing autophagy in some peripheral tissues, increased glial AMPK activity or neuronal differentiation can stimulate ACSS2 nuclear translocation and chromatin association. ACSS2 nuclear translocation can result in increased activity of CREB binding protein (CBP), p300/CBP-associated factor (PCAF), and other HATs to increase histone acetylation on the promoter of neuroprotective genes including transcription factor EB (TFEB) target genes resulting in increased lysosomal biogenesis and autophagy. Much of what is known regarding acetyl-CoA metabolism and aging has come from pioneering studies with yeast, fruit flies, and nematodes. These studies have identified evolutionary conserved roles for histone acetylation in promoting longevity. Future studies should focus on the role of nuclear acetyl-CoA and histone acetylation in the control of hypothalamic inflammation, an important driver of organismal aging.
Collapse
|
8
|
Wright TJ, Davis RW, Holser RR, Hückstädt LA, Danesi CP, Porter C, Widen SG, Williams TM, Costa DP, Sheffield-Moore M. Changes in Northern Elephant Seal Skeletal Muscle Following Thirty Days of Fasting and Reduced Activity. Front Physiol 2020; 11:564555. [PMID: 33123026 PMCID: PMC7573231 DOI: 10.3389/fphys.2020.564555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
Northern elephant seals (NES, Mirounga angustirostris) undergo an annual molt during which they spend ∼40 days fasting on land with reduced activity and lose approximately one-quarter of their body mass. Reduced activity and muscle load in stereotypic terrestrial mammalian models results in decreased muscle mass and capacity for force production and aerobic metabolism. However, the majority of lost mass in fasting female NES is from fat while muscle mass is largely preserved. Although muscle mass is preserved, potential changes to the metabolic and contractile capacity are unknown. To assess potential changes in NES skeletal muscle during molt, we collected muscle biopsies from 6 adult female NES before the molt and after ∼30 days at the end of the molt. Skeletal muscle was assessed for respiratory capacity using high resolution respirometry, and RNA was extracted to assess changes in gene expression. Despite a month of reduced activity, fasting, and weight loss, skeletal muscle respiratory capacity was preserved with no change in OXPHOS respiratory capacity. Molt was associated with 162 upregulated genes including those favoring lipid metabolism. We identified 172 downregulated genes including those coding for ribosomal proteins and genes associated with skeletal muscle force transduction and glucose metabolism. Following ∼30 days of molt, NES skeletal muscle metabolic capacity is preserved although mechanotransduction may be compromised. In the absence of exercise stimulus, fasting-induced shifts in muscle metabolism may stimulate pathways associated with preserving the mass and metabolic capacity of slow oxidative muscle.
Collapse
Affiliation(s)
- Traver J Wright
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States.,Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Randall W Davis
- Department of Marine Biology, Texas A&M University, Galveston, TX, United States
| | - Rachel R Holser
- Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Luis A Hückstädt
- Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Christopher P Danesi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Craig Porter
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Terrie M Williams
- Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Daniel P Costa
- Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Melinda Sheffield-Moore
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States.,Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
9
|
Kvedaras M, Minderis P, Krusnauskas R, Ratkevicius A. Effects of ten-week 30% caloric restriction on metabolic health and skeletal muscles of adult and old C57BL/6J mice. Mech Ageing Dev 2020; 190:111320. [DOI: 10.1016/j.mad.2020.111320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
|
10
|
Ng LT, Ng LF, Tang RMY, Barardo D, Halliwell B, Moore PK, Gruber J. Lifespan and healthspan benefits of exogenous H 2S in C. elegans are independent from effects downstream of eat-2 mutation. NPJ Aging Mech Dis 2020; 6:6. [PMID: 32566245 PMCID: PMC7287109 DOI: 10.1038/s41514-020-0044-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/12/2020] [Indexed: 12/23/2022] Open
Abstract
Caloric restriction (CR) is one of the most effective interventions to prolong lifespan and promote health. Recently, it has been suggested that hydrogen sulfide (H2S) may play a pivotal role in mediating some of these CR-associated benefits. While toxic at high concentrations, H2S at lower concentrations can be biologically advantageous. H2S levels can be artificially elevated via H2S-releasing donor drugs. In this study, we explored the function of a novel, slow-releasing H2S donor drug (FW1256) and used it as a tool to investigate H2S in the context of CR and as a potential CR mimetic. We show that exposure to FW1256 extends lifespan and promotes health in Caenorhabditis elegans (C. elegans) more robustly than some previous H2S-releasing compounds, including GYY4137. We looked at the extent to which FW1256 reproduces CR-associated physiological effects in normal-feeding C. elegans. We found that FW1256 promoted healthy longevity to a similar degree as CR but with fewer fitness costs. In contrast to CR, FW1256 actually enhanced overall reproductive capacity and did not reduce adult body length. FW1256 further extended the lifespan of already long-lived eat-2 mutants without further detriments in developmental timing or fertility, but these lifespan and healthspan benefits required H2S exposure to begin early in development. Taken together, these observations suggest that FW1256 delivers exogenous H2S efficiently and supports a role for H2S in mediating longevity benefits of CR. Delivery of H2S via FW1256, however, does not mimic CR perfectly, suggesting that the role of H2S in CR-associated longevity is likely more complex than previously described.
Collapse
Affiliation(s)
- Li Theng Ng
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, 138527 Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600 Singapore.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456 Singapore
| | - Li Fang Ng
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, 138527 Singapore
| | - Richard Ming Yi Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596 Singapore.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456 Singapore.,NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore, 117456 Singapore
| | - Diogo Barardo
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, 138527 Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596 Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596 Singapore.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456 Singapore
| | - Philip Keith Moore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600 Singapore.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456 Singapore
| | - Jan Gruber
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, 138527 Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596 Singapore
| |
Collapse
|
11
|
Dawson N, Salmón P. Age-related increase in mitochondrial quantity may mitigate a decline in mitochondrial quality in red blood cells from zebra finches (Taeniopygia guttata). Exp Gerontol 2020; 133:110883. [DOI: 10.1016/j.exger.2020.110883] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022]
|
12
|
Costs of exploratory behavior: the energy trade-off hypothesis and the allocation model tested under caloric restriction. Sci Rep 2020; 10:4156. [PMID: 32139739 PMCID: PMC7058060 DOI: 10.1038/s41598-020-61102-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/20/2019] [Indexed: 11/30/2022] Open
Abstract
In order to maintain the energy balance, animals often exhibit several physiological adjustments when subjected to a decrease in resource availability. Specifically, some rodents show increases in behavioral activity in response to food restriction; a response regarded as a paradox because it would imply an investment in locomotor activity, despite the lack of trophic resources. Here, we aim to explore the possible existence of trade-offs between metabolic variables and behavioral responses when rodents are faced to stochastic deprivation of food and caloric restriction. Adult BALB/c mice were acclimatized for four weeks to four food treatments: two caloric regimens (ad libitum and 60% restriction) and two periodicities (continuous and stochastic). In these mice, we analyzed: exploratory behavior and home-cage behavior, basal metabolic rate, citrate synthase and cytochrome oxidase c enzyme activity (in liver and skeletal muscle), body temperature and non-shivering thermogenesis. Our results support the model of allocation, which indicates commitments between metabolic rates and exploratory behavior, in a caloric restricted environment. Specifically, we identify the role of thermogenesis as a pivotal budget item, modulating the reallocation of energy between behavior and basal metabolic rate. We conclude that brown adipose tissue and liver play a key role in the development of paradoxical responses when facing decreased dietary availability.
Collapse
|
13
|
Bettedi L, Yan A, Schuster E, Alic N, Foukas LC. Increased mitochondrial and lipid metabolism is a conserved effect of Insulin/PI3K pathway downregulation in adipose tissue. Sci Rep 2020; 10:3418. [PMID: 32099025 PMCID: PMC7042323 DOI: 10.1038/s41598-020-60210-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/31/2020] [Indexed: 11/28/2022] Open
Abstract
The Insulin/IGF-1 signalling (IIS) pathway plays an essential role in the regulation of glucose and lipid homeostasis. At the same time, a reduction in the IIS pathway activity can extend lifespan and healthspan in various model organisms. Amongst a number of body organs that sense and respond to insulin/IGF-1, the adipose tissue has a central role in both the metabolic and lifespan effects of IIS at the organismal level. Genetic inactivation of IIS components specifically in the adipose tissue has been shown before to improve metabolic profile and extend lifespan in various model organisms. We sought to identify conserved molecular mechanisms that may underlie the beneficial effects of IIS inhibition in the adipose tissue, specifically at the level of phosphoinositide 3-kinase (PI3K), a key IIS effector molecule. To this end, we inactivated PI3K by genetic means in the fly fat body and by pharmacological inhibition in mammalian adipocytes. Gene expression studies revealed changes to metabolism and upregulation of mitochondrial activity in mouse adipocytes and fly fat bodies with downregulated PI3K, which were confirmed by biochemical assays in mammalian adipocytes. These data suggest that PI3K inactivation has a conserved effect of upregulating mitochondrial metabolism in both fly and mammalian adipose tissue, which likely contributes to the health- and life-span extending effect of IIS pathway downregulation.
Collapse
Affiliation(s)
- Lucia Bettedi
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.,National Institutes of Child Health and Human Development (NICHD), Bethesda, MD, 20814, USA
| | - Anqi Yan
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Eugene Schuster
- Endocrinology Team, Breast Cancer Now, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Nazif Alic
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Lazaros C Foukas
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
14
|
Gao P, Zhang H, Zhang Q, Fang X, Wu H, Wang M, Lu Z, Wei X, Yang G, Yan Z, Liu D, Zhu Z. Caloric Restriction Exacerbates Angiotensin II-Induced Abdominal Aortic Aneurysm in the Absence of p53. Hypertension 2019; 73:547-560. [PMID: 30686087 DOI: 10.1161/hypertensionaha.118.12086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
p53-dependent vascular smooth muscle cell senescence is a key pathological process of abdominal aortic aneurysm (AAA). Caloric restriction (CR) is a nonpharmacological intervention that prevents AAA formation. However, whether p53 is indispensable to the protective role of CR remains unknown. In this study, we investigated the necessity of p53 in the beneficial role of CR in AAA formation and the underlying mechanisms. We subjected p53+/+ and p53-/- mice to 12 weeks of CR and then examined the incidence of Ang II (angiotensin II)-induced AAA formation. We found that both CR and p53 knockout reduced Ang II-induced AAA formation; however, CR markedly increased the incidence of AAA formation and exacerbated aortic elastin degradation in p53-/- mice, accompanied by increased vascular senescence, reactive oxygen species generation, and reduced energy production. Analysis of mitochondrial respiratory activity revealed that dysfunctional complex IV accounts for the abnormal mitochondrial respiration in p53-/- vascular smooth muscle cells treated by CR serum. Mechanistically, ablation of p53 almost totally blocked the protective role of CR by inhibiting SCO2 (cytochrome C oxidase assembly protein 2)-dependent mitochondrial complex IV activity. Overexpression of SCO2 restored the beneficial effect of CR on antagonizing Ang II-induced expression of AAA-related molecules and reactive oxygen species generation in p53-/- vascular smooth muscle cells. Together, our findings demonstrate that the existence of p53 in vascular smooth muscle cells is critical to the protective role of CR in Ang II-induced AAA formation by maintaining an appropriate mitochondrial function.
Collapse
Affiliation(s)
- Peng Gao
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., H.Z., H.W., Z.L., X.W., Z.Y., D.L., Z.Z.)
| | - Hexuan Zhang
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., H.Z., H.W., Z.L., X.W., Z.Y., D.L., Z.Z.)
| | - Qin Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University and Chongqing Clinical Research Center for Geriatrics, China (Q.Z., X.F., M.W., G.Y.)
| | - Xia Fang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University and Chongqing Clinical Research Center for Geriatrics, China (Q.Z., X.F., M.W., G.Y.)
| | - Hao Wu
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., H.Z., H.W., Z.L., X.W., Z.Y., D.L., Z.Z.)
| | - Miao Wang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University and Chongqing Clinical Research Center for Geriatrics, China (Q.Z., X.F., M.W., G.Y.)
| | - Zongshi Lu
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., H.Z., H.W., Z.L., X.W., Z.Y., D.L., Z.Z.)
| | - Xiao Wei
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., H.Z., H.W., Z.L., X.W., Z.Y., D.L., Z.Z.)
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University and Chongqing Clinical Research Center for Geriatrics, China (Q.Z., X.F., M.W., G.Y.)
| | - Zhencheng Yan
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., H.Z., H.W., Z.L., X.W., Z.Y., D.L., Z.Z.)
| | - Daoyan Liu
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., H.Z., H.W., Z.L., X.W., Z.Y., D.L., Z.Z.)
| | - Zhiming Zhu
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., H.Z., H.W., Z.L., X.W., Z.Y., D.L., Z.Z.)
| |
Collapse
|
15
|
Page MM, Schuster EF, Mudaliar M, Herzyk P, Withers DJ, Selman C. Common and unique transcriptional responses to dietary restriction and loss of insulin receptor substrate 1 (IRS1) in mice. Aging (Albany NY) 2019; 10:1027-1052. [PMID: 29779018 PMCID: PMC5990393 DOI: 10.18632/aging.101446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/08/2018] [Indexed: 11/25/2022]
Abstract
Dietary restriction (DR) is the most widely studied non-genetic intervention capable of extending lifespan across multiple taxa. Modulation of genes, primarily within the insulin/insulin-like growth factor signalling (IIS) and the mechanistic target of rapamycin (mTOR) signalling pathways also act to extend lifespan in model organisms. For example, mice lacking insulin receptor substrate-1 (IRS1) are long-lived and protected against several age-associated pathologies. However, it remains unclear how these particular interventions act mechanistically to produce their beneficial effects. Here, we investigated transcriptional responses in wild-type and IRS1 null mice fed an ad libitum diet (WTAL and KOAL) or fed a 30% DR diet (WTDR or KODR). Using an RNAseq approach we noted a high correlation coefficient of differentially expressed genes existed within the same tissue across WTDR and KOAL mice and many metabolic features were shared between these mice. Overall, we report that significant overlap exists in the tissue-specific transcriptional response between long-lived DR mice and IRS1 null mice. However, there was evidence of disconnect between transcriptional signatures and certain phenotypic measures between KOAL and KODR, in that additive effects on body mass were observed but at the transcriptional level DR induced a unique set of genes in these already long-lived mice.
Collapse
Affiliation(s)
- Melissa M Page
- Institute des Sciences de la Vie, Faculty of Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Eugene F Schuster
- The Breast Cancer Now Toby Robins Research Centre The Institute of Cancer Research, London, UK
| | - Manikhandan Mudaliar
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Glasgow Molecular Pathology Node, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Present address: Cerevance, Cambridge Science Park, Cambridge, UK
| | - Pawel Herzyk
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Garscube Campus, Bearsden, UK.,Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Dominic J Withers
- MRC London Institute of Medical Sciences, London, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
16
|
Yi HS, Chang JY, Shong M. The mitochondrial unfolded protein response and mitohormesis: a perspective on metabolic diseases. J Mol Endocrinol 2018; 61:R91-R105. [PMID: 30307158 PMCID: PMC6145237 DOI: 10.1530/jme-18-0005] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitochondria perform essential roles as crucial organelles for cellular and systemic energy homeostasis, and as signaling hubs, which coordinate nuclear transcriptional responses to the intra- and extra-cellular environment. Complex human diseases, including diabetes, obesity, fatty liver disease and aging-related degenerative diseases are associated with alterations in mitochondrial oxidative phosphorylation (OxPhos) function. However, a recent series of studies in animal models have revealed that an integrated response to tolerable mitochondrial stress appears to render cells less susceptible to subsequent aging processes and metabolic stresses, which is a key feature of mitohormesis. The mitochondrial unfolded protein response (UPRmt) is a central part of the mitohormetic response and is a retrograde signaling pathway, which utilizes the mitochondria-to-nucleus communication network. Our understanding of the UPRmt has contributed to elucidating the role of mitochondria in metabolic adaptation and lifespan regulation. In this review, we discuss and integrate recent data from the literature on the present status of mitochondrial OxPhos function in the development of metabolic diseases, relying on evidence from human and other animal studies, which points to alterations in mitochondrial function as a key factor in the regulation of metabolic diseases and conclude with a discussion on the specific roles of UPRmt and mitohormesis as a novel therapeutic strategy for the treatment of obesity and insulin resistance.
Collapse
Affiliation(s)
- Hyon-Seung Yi
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Correspondence should be addressed to M Shong:
| |
Collapse
|
17
|
Mulvey L, Sands WA, Salin K, Carr AE, Selman C. Disentangling the effect of dietary restriction on mitochondrial function using recombinant inbred mice. Mol Cell Endocrinol 2017; 455:41-53. [PMID: 27597651 DOI: 10.1016/j.mce.2016.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/22/2016] [Accepted: 09/01/2016] [Indexed: 12/12/2022]
Abstract
Dietary restriction (DR) extends lifespan and healthspan in many species, but precisely how it elicits its beneficial effects is unclear. We investigated the impact of DR on mitochondrial function within liver and skeletal muscle of female ILSXISS mice that exhibit strain-specific variation in lifespan under 40% DR. Strains TejJ89 (lifespan increased under DR), TejJ48 (lifespan unaffected by DR) and TejJ114 (lifespan decreased under DR) were studied following 10 months of 40% DR (13 months of age). Oxygen consumption rates (OCR) within isolated liver mitochondria were unaffected by DR in TejJ89 and TejJ48, but decreased by DR in TejJ114. DR had no effect on hepatic protein levels of PGC-1a, TFAM, and OXPHOS complexes IV. Mitonuclear protein imbalance (nDNA:mtDNA ratio) was unaffected by DR, but HSP90 protein levels were reduced in TejJ114 under DR. Surprisingly hepatic mitochondrial hydrogen peroxide (H2O2) production was elevated by DR in TejJ89, with total superoxide dismutase activity and protein carbonyls increased by DR in both TejJ89 and TejJ114. In skeletal muscle, DR had no effect on mitochondrial OCR, OXPHOS complexes or mitonuclear protein imbalance, but H2O2 production was decreased in TejJ114 and nuclear PGC-1a increased in TejJ89 under DR. Our findings indicate that hepatic mitochondrial dysfunction associated with reduced lifespan of TejJ114 mice under 40% DR, but similar dysfunction was not apparent in skeletal muscle mitochondria. We highlight tissue-specific differences in the mitochondrial response in ILSXISS mice to DR, and underline the importance and challenges of exploiting genetic heterogeneity to help understand mechanisms of ageing.
Collapse
Affiliation(s)
- Lorna Mulvey
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - William A Sands
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Karine Salin
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Amanda E Carr
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
18
|
Evidence that S6K1, but not 4E-BP1, mediates skeletal muscle pathology associated with loss of A-type lamins. Cell Discov 2017; 3:17039. [PMID: 29736257 PMCID: PMC5931234 DOI: 10.1038/celldisc.2017.39] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/04/2017] [Indexed: 12/22/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) signaling pathway plays a central role in aging and a number of different disease states. Rapamycin, which suppresses activity of the mTOR complex 1 (mTORC1), shows preclinical (and sometimes clinical) efficacy in a number of disease models. Among these are Lmna-/- mice, which serve as a mouse model for dystrophy-associated laminopathies. To confirm that elevated mTORC1 signaling is responsible for the pathology manifested in Lmna-/- mice and to decipher downstream genetic mechanisms underlying the benefits of rapamycin, we tested in Lmna-/- mice whether survival could be extended and disease pathology suppressed either by reduced levels of S6K1 or enhanced levels of 4E-BP1, two canonical mTORC1 substrates. Global heterozygosity for S6K1 ubiquitously extended lifespan of Lmna-/- mice (Lmna-/-S6K1+/- mice). This life extension is due to improving muscle, but not heart or adipose, function, consistent with the observation that genetic ablation of S6K1 specifically in muscle tissue also extended survival of Lmna-/- mice. In contrast, whole-body overexpression of 4E-BP1 shortened the survival of Lmna-/- mice, likely by accelerating lipolysis. Thus, rapamycin-mediated lifespan extension in Lmna-/- mice is in part due to the improvement of skeletal muscle function and can be phenocopied by reduced S6K1 activity, but not 4E-BP1 activation.
Collapse
|
19
|
The effect of calorie restriction on mouse skeletal muscle is sex, strain and time-dependent. Sci Rep 2017; 7:5160. [PMID: 28698572 PMCID: PMC5505993 DOI: 10.1038/s41598-017-04896-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/22/2017] [Indexed: 01/07/2023] Open
Abstract
Loss of skeletal muscle mass and function occurs with increasing age. Calorie restriction (CR) increases the lifespan of C57Bl/6 mice, but not in the shorter-lived DBA/2 strain. There is some evidence that calorie restriction reduces or delays many of the age-related defects that occur in rodent skeletal muscle. We therefore investigated the effect of short (2.5 month) and longer term (8.5 and 18.5 months) CR on skeletal muscle in male and female C57Bl/6 and DBA/2 mice. We found that short-term CR increased the satellite cell number and collagen VI content of muscle, but resulted in a delayed regenerative response to injury.Consistent with this, the in vitro proliferation of satellite cells derived from these muscles was reduced by CR. The percentage of stromal cells, macrophages, hematopoietic stem cells and fibroadipogenic cells in the mononucleated cell population derived from skeletal muscle was reduced by CR at various stages. But overall, these changes are neither consistent over time, nor between strain and sex. The fact that changes induced by CR do not persist with time and the dissimilarities between the two mouse strains, combined with sex differences, urge caution in applying CR to improve skeletal muscle function across the lifespan in humans.
Collapse
|
20
|
Fujii N, Narita T, Okita N, Kobayashi M, Furuta Y, Chujo Y, Sakai M, Yamada A, Takeda K, Konishi T, Sudo Y, Shimokawa I, Higami Y. Sterol regulatory element-binding protein-1c orchestrates metabolic remodeling of white adipose tissue by caloric restriction. Aging Cell 2017; 16:508-517. [PMID: 28256090 PMCID: PMC5418191 DOI: 10.1111/acel.12576] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2017] [Indexed: 12/31/2022] Open
Abstract
Caloric restriction (CR) can delay onset of several age‐related pathophysiologies and extend lifespan in various species, including rodents. CR also induces metabolic remodeling involved in activation of lipid metabolism, enhancement of mitochondrial biogenesis, and reduction of oxidative stress in white adipose tissue (WAT). In studies using genetically modified mice with extended lifespans, WAT characteristics influenced mammalian lifespans. However, molecular mechanisms underlying CR‐associated metabolic remodeling of WAT remain unclear. Sterol regulatory element‐binding protein‐1c (Srebp‐1c), a master transcription factor of fatty acid (FA) biosynthesis, is responsible for the pathogenesis of fatty liver (steatosis). Our study showed that, under CR conditions, Srebp‐1c enhanced mitochondrial biogenesis via increased expression of peroxisome proliferator‐activated receptor gamma coactivator‐1α (Pgc‐1α) and upregulated expression of proteins involved in FA biosynthesis within WAT. However, via Srebp‐1c, most of these CR‐associated metabolic alterations were not observed in other tissues, including the liver. Moreover, our data indicated that Srebp‐1c may be an important factor both for CR‐associated suppression of oxidative stress, through increased synthesis of glutathione in WAT, and for the prolongevity action of CR. Our results strongly suggested that Srebp‐1c, the primary FA biosynthesis‐promoting transcriptional factor implicated in fatty liver disease, is also the food shortage‐responsive factor in WAT. This indicated that Srebp‐1c is a key regulator of metabolic remodeling leading to the beneficial effects of CR.
Collapse
Affiliation(s)
- Namiki Fujii
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Takumi Narita
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
- Translational Research Center, Research Institute of Science and Technology; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Naoyuki Okita
- Translational Research Center, Research Institute of Science and Technology; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
- Department of Internal Medicine Research; Sasaki Institute; Sasaki Foundation; 2-2 Kandasurugadai Chiyoda-ku, Tokyo 101-0062 Japan
| | - Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
- Translational Research Center, Research Institute of Science and Technology; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Yurika Furuta
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Yoshikazu Chujo
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Masahiro Sakai
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Atsushi Yamada
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Kanae Takeda
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Tomokazu Konishi
- Faculty of Bioresource Sciences; Akita Prefectural University; Shimoshinjo Nakano, Akita 010-0195 Japan
| | - Yuka Sudo
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
- Translational Research Center, Research Institute of Science and Technology; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Isao Shimokawa
- Translational Research Center, Research Institute of Science and Technology; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
- Department of Pathology; Nagasaki University Graduate School of Biomedical Sciences; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
- Translational Research Center, Research Institute of Science and Technology; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| |
Collapse
|
21
|
Mc Auley MT, Guimera AM, Hodgson D, Mcdonald N, Mooney KM, Morgan AE, Proctor CJ. Modelling the molecular mechanisms of aging. Biosci Rep 2017; 37:BSR20160177. [PMID: 28096317 PMCID: PMC5322748 DOI: 10.1042/bsr20160177] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/15/2016] [Accepted: 01/16/2017] [Indexed: 01/09/2023] Open
Abstract
The aging process is driven at the cellular level by random molecular damage that slowly accumulates with age. Although cells possess mechanisms to repair or remove damage, they are not 100% efficient and their efficiency declines with age. There are many molecular mechanisms involved and exogenous factors such as stress also contribute to the aging process. The complexity of the aging process has stimulated the use of computational modelling in order to increase our understanding of the system, test hypotheses and make testable predictions. As many different mechanisms are involved, a wide range of models have been developed. This paper gives an overview of the types of models that have been developed, the range of tools used, modelling standards and discusses many specific examples of models that have been grouped according to the main mechanisms that they address. We conclude by discussing the opportunities and challenges for future modelling in this field.
Collapse
Affiliation(s)
- Mark T Mc Auley
- Faculty of Science and Engineering, University of Chester, Chester, U.K
| | - Alvaro Martinez Guimera
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), Newcastle University, Newcastle upon Tyne, Ormskirk, U.K
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, U.K
| | - David Hodgson
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), Newcastle University, Newcastle upon Tyne, Ormskirk, U.K
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, U.K
| | - Neil Mcdonald
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), Newcastle University, Newcastle upon Tyne, Ormskirk, U.K
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, U.K
| | | | - Amy E Morgan
- Faculty of Science and Engineering, University of Chester, Chester, U.K
| | - Carole J Proctor
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), Newcastle University, Newcastle upon Tyne, Ormskirk, U.K.
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, U.K
| |
Collapse
|
22
|
Kitaoka Y, Nakazato K, Ogasawara R. Combined effects of resistance training and calorie restriction on mitochondrial fusion and fission proteins in rat skeletal muscle. J Appl Physiol (1985) 2016; 121:806-810. [PMID: 27539498 DOI: 10.1152/japplphysiol.00465.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/12/2016] [Indexed: 02/04/2023] Open
Abstract
Recent studies have demonstrated that resistance exercise leads not only to muscle hypertrophy, but it also improves mitochondrial function. Because calorie restriction (CR) has been suggested as a way to induce mitochondrial biogenesis, we examined the effects of resistance training with or without CR on muscle weight and key mitochondrial parameters in rat skeletal muscle. Four weeks of resistance training (thrice/wk) resulted in increased gastrocnemius muscle weight by 14% in rats fed ad libitum (AL). The degree of muscle-weight increase via resistance training was lower in rats with CR (7.4%). CR showed no effect on phosphorylation of mammalian target of rapamycin (mTOR) signaling proteins rpS6 and ULK1. Our results revealed that CR resulted in elevated levels of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) protein, a known master regulator of mitochondrial biogenesis. Resistance training alone also resulted in increased PGC-1α levels in skeletal muscle. The magnitude of the increase in PGC-1α was similar in rats in both the CR and AL groups. Moreover, we found that resistance training with CR resulted in elevated levels of proteins involved in mitochondrial fusion (Opa1 and Mfn1), and oxidative phosphorylation, whereas there was no effect of CR on the fission-regulatory proteins Fis1 and Drp1. These results indicate that CR attenuates resistance training-induced muscle hypertrophy, and that it may enhance mitochondrial adaptations in skeletal muscle.
Collapse
Affiliation(s)
- Yu Kitaoka
- Department of Sports Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan; and
| | - Riki Ogasawara
- Department of Sports Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
23
|
Fernström M, Bakkman L, Loogna P, Rooyackers O, Svensson M, Jakobsson T, Brandt L, Lagerros YT. Improved Muscle Mitochondrial Capacity Following Gastric Bypass Surgery in Obese Subjects. Obes Surg 2015; 26:1391-7. [DOI: 10.1007/s11695-015-1932-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
Chen CNJ, Lin SY, Liao YH, Li ZJ, Wong AMK. Late-onset caloric restriction alters skeletal muscle metabolism by modulating pyruvate metabolism. Am J Physiol Endocrinol Metab 2015; 308:E942-9. [PMID: 26032513 DOI: 10.1152/ajpendo.00508.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/07/2015] [Indexed: 12/20/2022]
Abstract
Caloric restriction (CR) attenuates age-related muscle loss. However, the underlying mechanism responsible for this attenuation is not fully understood. This study evaluated the role of energy metabolism in the CR-induced attenuation of muscle loss. The aims of this study were twofold: 1) to evaluate the effect of CR on energy metabolism and determine its relationship with muscle mass, and 2) to determine whether the effects of CR are age dependent. Young and middle-aged rats were randomized into either 40% CR or ad libitum (AL) diet groups for 14 wk. Major energy-producing pathways in muscles, i.e., glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), were examined. We found that the effects of CR were age dependent. CR improved muscle metabolism and normalized muscle mass in middle-aged animals but not young animals. CR decreased glycolysis and increased the cellular dependency for OXPHOS vs. glycolysis in muscles of middle-aged rats, which was associated with the improvement of normalized muscle mass. The metabolic reprogramming induced by CR was related to modulation of pyruvate metabolism and increased mitochondrial biogenesis. Compared with animals fed AL, middle-aged animals with CR had lower lactate dehydrogenase A content and greater mitochondrial pyruvate carrier content. Markers of mitochondrial biogenesis, including AMPK activation levels and SIRT1 and COX-IV content, also showed increased levels. In conclusion, 14 wk of CR improved muscle metabolism and preserved muscle mass in middle-aged animals but not in young developing animals. CR-attenuated age-related muscle loss is associated with reprogramming of the metabolic pathway from glycolysis to OXPHOS.
Collapse
Affiliation(s)
- Chiao-Nan Joyce Chen
- Department of Physical Therapy, Medical School, Chang Gung University, Tao-Yuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Tao-Yuan, Taiwan;
| | - Shang-Ying Lin
- Department of Physical Therapy, Medical School, Chang Gung University, Tao-Yuan, Taiwan
| | - Yi-Hung Liao
- Department of Exercise and Health Science, College of Human Development and Health, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan; and
| | - Zhen-Jie Li
- Department of Physical Therapy, Medical School, Chang Gung University, Tao-Yuan, Taiwan
| | - Alice May-Kuen Wong
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
25
|
Chang HW, Shtessel L, Lee SS. Collaboration between mitochondria and the nucleus is key to long life in Caenorhabditis elegans. Free Radic Biol Med 2015; 78:168-78. [PMID: 25450327 PMCID: PMC4280335 DOI: 10.1016/j.freeradbiomed.2014.10.576] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 02/07/2023]
Abstract
Recent findings in diverse organisms strongly support a conserved role for mitochondrial electron transport chain dysfunction in longevity modulation, but the underlying mechanisms are not well understood. One way cells cope with mitochondrial dysfunction is through a retrograde transcriptional reprogramming response. In this review, we primarily focus on the work that has been performed in Caenorhabditis elegans to elucidate these mechanisms. We describe several transcription factors that participate in mitochondria-to-nucleus signaling and discuss how they mediate the relationship between mitochondrial dysfunction and life span.
Collapse
Affiliation(s)
- Hsin-Wen Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Ludmila Shtessel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
26
|
Castelein N, Muschol M, Dhondt I, Cai H, De Vos WH, Dencher NA, Braeckman BP. Mitochondrial efficiency is increased in axenically cultured Caenorhabditis elegans. Exp Gerontol 2014; 56:26-36. [DOI: 10.1016/j.exger.2014.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 11/25/2022]
|
27
|
Long YC, Tan TMC, Takao I, Tang BL. The biochemistry and cell biology of aging: metabolic regulation through mitochondrial signaling. Am J Physiol Endocrinol Metab 2014; 306:E581-91. [PMID: 24452454 DOI: 10.1152/ajpendo.00665.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cellular and organ metabolism affects organismal lifespan. Aging is characterized by increased risks for metabolic disorders, with age-associated degenerative diseases exhibiting varying degrees of mitochondrial dysfunction. The traditional view of the role of mitochondria generated reactive oxygen species (ROS) in cellular aging, assumed to be causative and simply detrimental for a long time now, is in need of reassessment. While there is little doubt that high levels of ROS are detrimental, mounting evidence points toward a lifespan extension effect exerted by mild to moderate ROS elevation. Dietary caloric restriction, inhibition of insulin-like growth factor-I signaling, and inhibition of the nutrient-sensing mechanistic target of rapamycin are robust longevity-promoting interventions. All of these appear to elicit mitochondrial retrograde signaling processes (defined as signaling from the mitochondria to the rest of the cell, for example, the mitochondrial unfolded protein response, or UPR(mt)). The effects of mitochondrial retrograde signaling may even spread to other cells/tissues in a noncell autonomous manner by yet unidentified signaling mediators. Multiple recent publications support the notion that an evolutionarily conserved, mitochondria-initiated signaling is central to the genetic and epigenetic regulation of cellular aging and organismal lifespan.
Collapse
Affiliation(s)
- Yun Chau Long
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore; and
| | | | | | | |
Collapse
|
28
|
Eriocitrin ameliorates diet-induced hepatic steatosis with activation of mitochondrial biogenesis. Sci Rep 2014; 4:3708. [PMID: 24424211 PMCID: PMC3892443 DOI: 10.1038/srep03708] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 12/10/2013] [Indexed: 02/06/2023] Open
Abstract
Lemon (Citrus limon) contains various bioactive flavonoids, and prevents obesity and obesity-associated metabolic diseases. We focused on eriocitrin (eriodictyol 7-rutinoside), a powerful antioxidative flavonoid in lemon with lipid-lowering effects in a rat model of high-fat diet. To investigate the mechanism of action of eriocitrin, we conducted feeding experiments on zebrafish with diet-induced obesity. Oral administration of eriocitrin (32 mg/kg/day for 28 days) improved dyslipidaemia and decreased lipid droplets in the liver. DNA microarray analysis revealed that eriocitrin increased mRNA of mitochondrial biogenesis genes, such as mitochondria transcription factor, nuclear respiratory factor 1, cytochrome c oxidase subunit 4, and ATP synthase. In HepG2 cells, eriocitrin also induced the corresponding orthologues, and reduced lipid accumulation under conditions of lipid loading. Eriocitrin increased mitochondrial size and mtDNA content, which resulted in ATP production in HepG2 cells and zebrafish. In summary, dietary eriocitrin ameliorates diet-induced hepatic steatosis with activation of mitochondrial biogenesis.
Collapse
|
29
|
Abstract
Dietary restriction (DR) has been shown to extend both median and maximum lifespan in a range of animals, although recent findings suggest that these effects are not universally enjoyed across all animals. In particular, the lifespan effect following DR in mice is highly strain-specific and there is little current evidence that DR induces a positive effect on all-cause mortality in non-human primates. However, the positive effects of DR on health appear to be highly conserved across the vast majority of species, including human subjects. Despite these effects on health, it is highly unlikely that DR will become a realistic or popular life choice for most human subjects given the level of restraint required. Consequently significant research is focusing on identifying compounds that will bestow the benefits of DR without the obligation to adhere to stringent reductions in daily food intake. Several such compounds, including rapamycin, metformin and resveratrol, have been identified as potential DR mimetics. Although these compounds show significant promise, there is a need to properly understand the mechanisms through which these drugs act. This review will discuss the importance in understanding the role that genetic background and heterogeneity play in mediating the lifespan and healthspan effects of DR. It will also provide an overview of the most promising current DR mimetics and their effects on healthy lifespan.
Collapse
|
30
|
Wasko BM, Kaeberlein M. Yeast replicative aging: a paradigm for defining conserved longevity interventions. FEMS Yeast Res 2013; 14:148-59. [PMID: 24119093 DOI: 10.1111/1567-1364.12104] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/22/2013] [Accepted: 09/26/2013] [Indexed: 12/15/2022] Open
Abstract
The finite replicative life span of budding yeast mother cells was demonstrated as early as 1959, but the idea that budding yeast could be used to model aging of multicellular eukaryotes did not enter the scientific mainstream until relatively recently. Despite continued skepticism by some, there are now abundant data that several interventions capable of extending yeast replicative life span have a similar effect in multicellular eukaryotes including nematode worms, fruit flies, and rodents. In particular, dietary restriction, mTOR signaling, and sirtuins are among the most studied longevity interventions in the field. Here, we describe key conserved longevity pathways in yeast and discuss relationships that may help explain how such broad conservation of aging processes could have evolved.
Collapse
Affiliation(s)
- Brian M Wasko
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
31
|
Pulliam DA, Bhattacharya A, Van Remmen H. Mitochondrial dysfunction in aging and longevity: a causal or protective role? Antioxid Redox Signal 2013; 19:1373-87. [PMID: 23025472 DOI: 10.1089/ars.2012.4950] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Among the most highly investigated theories of aging is the mitochondrial theory of aging. The basis of this theory includes a central role for altered or compromised mitochondrial function in the pathophysiologic declines associated with aging. In general, studies in various organisms, including nematodes, rodents, and humans, have largely upheld that aging is associated with mitochondrial dysfunction. However, results from a number of studies directly testing the mitochondrial theory of aging by modulating oxidant production or scavenging in vivo in rodents have generally been inconsistent with predictions of the theory. RECENT ADVANCES Interestingly, electron transport chain mutations or deletions in invertebrates and mice that causes mitochondrial dysfunction paradoxically leads to enhanced longevity, further challenging the mitochondrial theory of aging. CRITICAL ISSUES How can mitochondrial dysfunction contribute to lifespan extension in the mitochondrial mutants, and what does it mean for the mitochondrial theory of aging? FUTURE DIRECTIONS It will be important to determine the potential mechanisms that lead to enhanced longevity in the mammalian mitochondrial mutants.
Collapse
Affiliation(s)
- Daniel A Pulliam
- 1 Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | | | | |
Collapse
|
32
|
Hwang AB, Jeong DE, Lee SJ. Mitochondria and organismal longevity. Curr Genomics 2013; 13:519-32. [PMID: 23633912 PMCID: PMC3468885 DOI: 10.2174/138920212803251427] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 06/11/2012] [Accepted: 07/25/2012] [Indexed: 12/03/2022] Open
Abstract
Mitochondria are essential for various biological processes including cellular energy production. The oxidative stress theory of aging proposes that mitochondria play key roles in aging by generating reactive oxygen species (ROS), which indiscriminately damage macromolecules and lead to an age-dependent decline in biological function. However, recent studies show that increased levels of ROS or inhibition of mitochondrial function can actually delay aging and increase lifespan. The aim of this review is to summarize recent findings regarding the role of mitochondria in organismal aging processes. We will discuss how mitochondria contribute to evolutionarily conserved longevity pathways, including mild inhibition of respiration, dietary restriction, and target of rapamycin (TOR) signaling.
Collapse
Affiliation(s)
- Ara B Hwang
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk, South Korea
| | | | | |
Collapse
|
33
|
Gouspillou G, Hepple RT. Facts and controversies in our understanding of how caloric restriction impacts the mitochondrion. Exp Gerontol 2013; 48:1075-84. [PMID: 23523973 DOI: 10.1016/j.exger.2013.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/26/2013] [Accepted: 03/11/2013] [Indexed: 12/11/2022]
Abstract
Caloric restriction (CR) has pronounced benefits in promoting healthy aging. Amongst the most frequently implicated physiological mechanisms implicated in this benefit is altered mitochondrial function. Whereas a reduction in mitochondrial reactive oxygen species (ROS) production is a widely consistent effect of CR, an increase in mitochondrial biogenesis, which is accepted by many as fact, is contradicted on several levels, most critically by a lack of increase in mitochondrial protein synthesis rate in vivo. Furthermore, an increase in PGC-1α protein and markers of mitochondrial content with CR is a highly variable observation between studies. On the other hand, deacetylation of several mitochondrial proteins by the sirtuin, Sirt3, is an increasingly reported observation and at least so far, this observation is consistent between studies. Notwithstanding this point, the controversies evident in the published literature underscore the significant questions that remain in our understanding of how CR impacts the mitochondrion and suggest we have yet to fully understand the complexities herein.
Collapse
Affiliation(s)
- Gilles Gouspillou
- McGill University Health Center, Department of Kinesiology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
34
|
Edwards CB, Copes N, Brito AG, Canfield J, Bradshaw PC. Malate and fumarate extend lifespan in Caenorhabditis elegans. PLoS One 2013; 8:e58345. [PMID: 23472183 PMCID: PMC3589421 DOI: 10.1371/journal.pone.0058345] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 02/03/2013] [Indexed: 11/18/2022] Open
Abstract
Malate, the tricarboxylic acid (TCA) cycle metabolite, increased lifespan and thermotolerance in the nematode C. elegans. Malate can be synthesized from fumarate by the enzyme fumarase and further oxidized to oxaloacetate by malate dehydrogenase with the accompanying reduction of NAD. Addition of fumarate also extended lifespan, but succinate addition did not, although all three intermediates activated nuclear translocation of the cytoprotective DAF-16/FOXO transcription factor and protected from paraquat-induced oxidative stress. The glyoxylate shunt, an anabolic pathway linked to lifespan extension in C. elegans, reversibly converts isocitrate and acetyl-CoA to succinate, malate, and CoA. The increased longevity provided by malate addition did not occur in fumarase (fum-1), glyoxylate shunt (gei-7), succinate dehydrogenase flavoprotein (sdha-2), or soluble fumarate reductase F48E8.3 RNAi knockdown worms. Therefore, to increase lifespan, malate must be first converted to fumarate, then fumarate must be reduced to succinate by soluble fumarate reductase and the mitochondrial electron transport chain complex II. Reduction of fumarate to succinate is coupled with the oxidation of FADH2 to FAD. Lifespan extension induced by malate depended upon the longevity regulators DAF-16 and SIR-2.1. Malate supplementation did not extend the lifespan of long-lived eat-2 mutant worms, a model of dietary restriction. Malate and fumarate addition increased oxygen consumption, but decreased ATP levels and mitochondrial membrane potential suggesting a mild uncoupling of oxidative phosphorylation. Malate also increased NADPH, NAD, and the NAD/NADH ratio. Fumarate reduction, glyoxylate shunt activity, and mild mitochondrial uncoupling likely contribute to the lifespan extension induced by malate and fumarate by increasing the amount of oxidized NAD and FAD cofactors.
Collapse
Affiliation(s)
- Clare B. Edwards
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida Tampa, Florida, United States of America
| | - Neil Copes
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida Tampa, Florida, United States of America
| | - Andres G. Brito
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida Tampa, Florida, United States of America
| | - John Canfield
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida Tampa, Florida, United States of America
| | - Patrick C. Bradshaw
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
35
|
Tahara EB, Cunha FM, Basso TO, Della Bianca BE, Gombert AK, Kowaltowski AJ. Calorie restriction hysteretically primes aging Saccharomyces cerevisiae toward more effective oxidative metabolism. PLoS One 2013; 8:e56388. [PMID: 23409181 PMCID: PMC3569431 DOI: 10.1371/journal.pone.0056388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/08/2013] [Indexed: 01/12/2023] Open
Abstract
Calorie restriction (CR) is an intervention known to extend the lifespan of a wide variety of organisms. In S. cerevisiae, chronological lifespan is prolonged by decreasing glucose availability in the culture media, a model for CR. The mechanism has been proposed to involve an increase in the oxidative (versus fermentative) metabolism of glucose. Here, we measured wild-type and respiratory incompetent (ρ(0)) S. cerevisiae biomass formation, pH, oxygen and glucose consumption, and the evolution of ethanol, glycerol, acetate, pyruvate and succinate levels during the course of 28 days of chronological aging, aiming to identify metabolic changes responsible for the effects of CR. The concomitant and quantitative measurements allowed for calculations of conversion factors between different pairs of substrates and products, maximum specific substrate consumption and product formation rates and maximum specific growth rates. Interestingly, we found that the limitation of glucose availability in CR S. cerevisiae cultures hysteretically increases oxygen consumption rates many hours after the complete exhaustion of glucose from the media. Surprisingly, glucose-to-ethanol conversion and cellular growth supported by glucose were not quantitatively altered by CR. Instead, we found that CR primed the cells for earlier, faster and more efficient metabolism of respiratory substrates, especially ethanol. Since lifespan-enhancing effects of CR are absent in respiratory incompetent ρ(0) cells, we propose that the hysteretic effect of glucose limitation on oxidative metabolism is central toward chronological lifespan extension by CR in this yeast.
Collapse
Affiliation(s)
- Erich B. Tahara
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Fernanda M. Cunha
- Escola deArtes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Thiago O. Basso
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Bianca E. Della Bianca
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Andreas K. Gombert
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail: (AJK); (AKG)
| | - Alicia J. Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail: (AJK); (AKG)
| |
Collapse
|