1
|
Zhang M, Wang Z, Su Y, Yan W, Ouyang Y, Fan Y, Huang Y, Yang H. TDP1 represents a promising therapeutic target for overcoming tumor resistance to chemotherapeutic agents: progress and potential. Bioorg Chem 2025; 154:108072. [PMID: 39705934 DOI: 10.1016/j.bioorg.2024.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an enzyme that plays a crucial role in repairing DNA lesions caused by the entrapment of DNA topoisomerase IB (TOP1)-DNA break-associated crosslinks. TDP1 inhibitors exhibit synergistic effects with TOP1 inhibitors in cancer cells, effectively overcoming resistance to TOP1 inhibitors. Therefore, this approach presents a promising strategy for reversing tumor resistance to TOP1 inhibitors. This review comprehensively outlines the structural and biological features of TDP1, the substrates involved in its catalytic hydrolysis, and its potential as a therapeutic target in oncology. Additionally, we summarize the various screening methods used to identify TDP1 inhibitors, alongside the latest advancements in TDP1 inhibitor research.
Collapse
Affiliation(s)
- Meimei Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Ziqiang Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yan Su
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Wenbo Yan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yifan Ouyang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, School of Medicine, Ningde Normal University, Ningde, Fujian 352100, People's Republic of China.
| | - Yanru Fan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| | - Yu Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| | - Hao Yang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| |
Collapse
|
2
|
Geraud M, Cristini A, Salimbeni S, Bery N, Jouffret V, Russo M, Ajello AC, Fernandez Martinez L, Marinello J, Cordelier P, Trouche D, Favre G, Nicolas E, Capranico G, Sordet O. TDP1 mutation causing SCAN1 neurodegenerative syndrome hampers the repair of transcriptional DNA double-strand breaks. Cell Rep 2024; 43:114214. [PMID: 38761375 DOI: 10.1016/j.celrep.2024.114214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024] Open
Abstract
TDP1 removes transcription-blocking topoisomerase I cleavage complexes (TOP1ccs), and its inactivating H493R mutation causes the neurodegenerative syndrome SCAN1. However, the molecular mechanism underlying the SCAN1 phenotype is unclear. Here, we generate human SCAN1 cell models using CRISPR-Cas9 and show that they accumulate TOP1ccs along with changes in gene expression and genomic distribution of R-loops. SCAN1 cells also accumulate transcriptional DNA double-strand breaks (DSBs) specifically in the G1 cell population due to increased DSB formation and lack of repair, both resulting from abortive removal of transcription-blocking TOP1ccs. Deficient TDP1 activity causes increased DSB production, and the presence of mutated TDP1 protein hampers DSB repair by a TDP2-dependent backup pathway. This study provides powerful models to study TDP1 functions under physiological and pathological conditions and unravels that a gain of function of the mutated TDP1 protein, which prevents DSB repair, rather than a loss of TDP1 activity itself, could contribute to SCAN1 pathogenesis.
Collapse
Affiliation(s)
- Mathéa Geraud
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Agnese Cristini
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Simona Salimbeni
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France; Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Nicolas Bery
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Virginie Jouffret
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France; BigA Core Facility, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31062 Toulouse, France
| | - Marco Russo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Andrea Carla Ajello
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Lara Fernandez Martinez
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Jessica Marinello
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Pierre Cordelier
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Didier Trouche
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Estelle Nicolas
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Olivier Sordet
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France.
| |
Collapse
|
3
|
Farias TG, Rodrigues JA, Dos Santos MS, Mencalha AL, de Souza da Fonseca A. Effects of low‑power red laser and blue LED on mRNA levels from DNA repair genes in human breast cancer cells. Lasers Med Sci 2024; 39:56. [PMID: 38329547 DOI: 10.1007/s10103-024-04001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
Photobiomodulation (PBM) induced by non-ionizing radiations emitted from low-power lasers and light-emitting diodes (LEDs) has been used for various therapeutic purposes due to its molecular, cellular, and systemic effects. At the molecular level, experimental data have suggested that PBM modulates base excision repair (BER), which is responsible for restoring DNA damage. There is a relationship between the misfunction of the BER DNA repair pathway and the development of tumors, including breast cancer. However, the effects of PBM on cancer cells have been controversial. Breast cancer (BC) is the main public health problem in the world and is the most diagnosed type of cancer among women worldwide. Therefore, the evaluation of new strategies, such as PBM, could increase knowledge about BC and improve therapies against BC. Thus, this work aims to evaluate the effects of low-power red laser (658 nm) and blue LED (470 nm) on the mRNA levels from BER genes in human breast cancer cells. MCF-7 and MDA-MB-231 cells were irradiated with a low-power red laser (69 J cm-2, 0.77 W cm-2) and blue LED (482 J cm-2, 5.35 W cm-2), alone or in combination, and the relative mRNA levels of the APTX, PolB, and PCNA genes were assessed by reverse transcription-quantitative polymerase chain reaction. The results suggested that exposure to low-power red laser and blue LED decreased the mRNA levels from APTX, PolB, and PCNA genes in human breast cancer cells. Our research shows that photobiomodulation induced by low-power red laser and blue LED decreases the mRNA levels of repair genes from the base excision repair pathway in MCF-7 and MDA-MB-231 cells.
Collapse
Affiliation(s)
- Thayssa Gomes Farias
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil.
| | - Juliana Alves Rodrigues
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil
| | - Márcia Soares Dos Santos
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro, 20211040, Brazil
| |
Collapse
|
4
|
Eidhof I, Krebbers A, van de Warrenburg B, Schenck A. Ataxia-associated DNA repair genes protect the Drosophila mushroom body and locomotor function against glutamate signaling-associated damage. Front Neural Circuits 2023; 17:1148947. [PMID: 37476399 PMCID: PMC10354283 DOI: 10.3389/fncir.2023.1148947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
The precise control of motor movements is of fundamental importance to all behaviors in the animal kingdom. Efficient motor behavior depends on dedicated neuronal circuits - such as those in the cerebellum - that are controlled by extensive genetic programs. Autosomal recessive cerebellar ataxias (ARCAs) provide a valuable entry point into how interactions between genetic programs maintain cerebellar motor circuits. We previously identified a striking enrichment of DNA repair genes in ARCAs. How dysfunction of ARCA-associated DNA repair genes leads to preferential cerebellar dysfunction and impaired motor function is however unknown. The expression of ARCA DNA repair genes is not specific to the cerebellum. Only a limited number of animal models for DNA repair ARCAs exist, and, even for these, the interconnection between DNA repair defects, cerebellar circuit dysfunction, and motor behavior is barely established. We used Drosophila melanogaster to characterize the function of ARCA-associated DNA repair genes in the mushroom body (MB), a structure in the Drosophila central brain that shares structural features with the cerebellum. Here, we demonstrate that the MB is required for efficient startle-induced and spontaneous motor behaviors. Inhibition of synaptic transmission and loss-of-function of ARCA-associated DNA repair genes in the MB affected motor behavior in several assays. These motor deficits correlated with increased levels of MB DNA damage, MB Kenyon cell apoptosis and/or alterations in MB morphology. We further show that expression of genes involved in glutamate signaling pathways are highly, specifically, and persistently elevated in the postnatal human cerebellum. Manipulation of glutamate signaling in the MB induced motor defects, Kenyon cell DNA damage and apoptosis. Importantly, pharmacological reduction of glutamate signaling in the ARCA DNA repair models rescued the identified motor deficits, suggesting a role for aberrant glutamate signaling in ARCA-DNA repair disorders. In conclusion, our data highlight the importance of ARCA-associated DNA repair genes and glutamate signaling pathways to the cerebellum, the Drosophila MB and motor behavior. We propose that glutamate signaling may confer preferential cerebellar vulnerability in ARCA-associated DNA repair disorders. Targeting glutamate signaling could provide an exciting therapeutic entry point in this large group of so far untreatable disorders.
Collapse
Affiliation(s)
- Ilse Eidhof
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alina Krebbers
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
5
|
Imamura R, Saito M, Shimada M, Kobayashi J, Ishiai M, Matsumoto Y. APTX acts in DNA double-strand break repair in a manner distinct from XRCC4. JOURNAL OF RADIATION RESEARCH 2023; 64:485-495. [PMID: 36940705 DOI: 10.1093/jrr/rrad007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/03/2023] [Indexed: 05/27/2023]
Abstract
Aprataxin (APTX), the product of the causative gene for hereditary neurogenerative syndromes Ataxia-oculomotor apraxia 1 and early onset ataxia with oculomotor apraxia and hypoalbuminemia, has an enzymatic activity of removing adenosine monophosphate from DNA 5'-end, which arises from abortive ligation by DNA ligases. It is also reported that APTX physically binds to XRCC1 and XRCC4, suggesting its involvement in DNA single-strand break repair (SSBR) and DNA double-strand break repair (DSBR) via non-homologous end joining pathway. Although the involvement of APTX in SSBR in association with XRCC1 has been established, the significance of APTX in DSBR and its interaction with XRCC4 have remained unclear. Here, we generated APTX knock-out (APTX-/-) cell from human osteosarcoma U2OS through CRISPR/Cas9-mediated genome editing system. APTX-/- cells exhibited increased sensitivity toward ionizing radiation (IR) and Camptothecin in association with retarded DSBR, as shown by increased number of retained γH2AX foci. However, the number of retained 53BP1 foci in APTX-/- cell was not discernibly different from wild-type cells, in stark contrast to XRCC4-depleted cells. The recruitment of GFP-tagged APTX (GFP-APTX) to the DNA damage sites was examined by laser micro-irradiation and live-cell imaging analysis using confocal microscope. The accumulation of GFP-APTX on the laser track was attenuated by siRNA-mediated depletion of XRCC1, but not XRCC4. Moreover, the deprivation of APTX and XRCC4 displayed additive inhibitory effects on DSBR after IR exposure and end joining of GFP reporter. These findings collectively suggest that APTX acts in DSBR in a manner distinct from XRCC4.
Collapse
Affiliation(s)
- Rikiya Imamura
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Mizuki Saito
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Mikio Shimada
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Junya Kobayashi
- Department of Radiological Sciences, School of Health Science at Narita, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba 286-8686, Japan
| | - Masamichi Ishiai
- National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yoshihisa Matsumoto
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
6
|
Barzilai A, Mitiagin Y. Ataxia-telangiectasia mutated plays an important role in cerebellar integrity and functionality. Neural Regen Res 2023; 18:497-502. [DOI: 10.4103/1673-5374.350194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Jha JS, Yin J, Haldar T, Wang Y, Gates KS. Reconsidering the Chemical Nature of Strand Breaks Derived from Abasic Sites in Cellular DNA: Evidence for 3'-Glutathionylation. J Am Chem Soc 2022; 144:10471-10482. [PMID: 35612610 DOI: 10.1021/jacs.2c02703] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The hydrolytic loss of coding bases from cellular DNA is a common and unavoidable reaction. The resulting abasic sites can undergo β-elimination of the 3'-phosphoryl group to generate a strand break with an electrophilic α,β-unsaturated aldehyde residue on the 3'-terminus. The work reported here provides evidence that the thiol residue of the cellular tripeptide glutathione rapidly adds to the alkenal group on the 3'-terminus of an AP-derived strand break. The resulting glutathionylated adduct is the only major cleavage product observed when β-elimination occurs at an AP site in the presence of glutathione. Formation of the glutathionylated cleavage product is reversible, but in the presence of physiological concentrations of glutathione, the adduct persists for days. Biochemical experiments provided evidence that the 3'-phosphodiesterase activity of the enzyme apurinic/apyrimidinic endonuclease (APE1) can remove the glutathionylated sugar remnant from an AP-derived strand break to generate the 3'OH residue required for repair via base excision or single-strand break repair pathways. The results suggest that a previously unrecognized 3'glutathionylated sugar remnant─and not the canonical α,β-unsaturated aldehyde end group─may be the true strand cleavage product arising from β-elimination at an abasic site in cellular DNA. This work introduces the 3'glutathionylated cleavage product as the major blocking group that must be trimmed to enable repair of abasic site-derived strand breaks by the base excision repair or single-strand break repair pathways.
Collapse
|
8
|
Ataxia with Ocular Apraxia Type 1 (AOA1) (APTX, W279* Mutation): Neurological, Neuropsychological, and Molecular Outlining of a Heterogenous Phenotype in Four Colombian Siblings. Mol Neurobiol 2022; 59:3845-3858. [PMID: 35420381 DOI: 10.1007/s12035-022-02821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
Abstract
Hereditary ataxias are a group of devastating neurological disorders that affect coordination of gait and are often associated with poor coordination of hands, speech, and eye movements. Ataxia with ocular apraxia type 1 (AOA1) (OMIM: 606,350.0006) is characterized by slowly progressive symptoms of childhood-onset and pathogenic mutations in APTX; the only known cause underpinning AOA1. APTX encodes the protein aprataxin, composed of three domains sharing homology with proteins involved in DNA damage, signaling, and repair. We present four siblings from an endogamic family in a rural, isolated town of Colombia with ataxia and ocular apraxia of childhood-onset and confirmed molecular diagnosis of AOA1, homozygous for the W279* p.Trp279Ter mutation. We predicted the mutated APTX with AlphaFold to demonstrate the effects of this stop-gain mutation that deletes three beta helices encoded by amino acid 270 to 339 rescinding the C2H2-type zinc fingers (Znf) (C2H2 Znf) DNA-binding, the DNA-repair domain, and the whole 3D structure of APTX. All siblings exhibited different ages of onset (4, 6, 8, and 11 years old) and heterogeneous patterns of dysarthria (ranging from absence to mild-moderate dysarthria). Neuropsychological evaluation showed no neurocognitive impairment in three siblings, but one sibling showed temporospatial disorientation, semantic and phonologic fluency impairment, episodic memory affection, constructional apraxia, moderate anomia, low executive function, and symptoms of depression. To our knowledge, this report represents the most extensive series of siblings affected with AOA1 in Latin America, and the genetic analysis completed adds important knowledge to outline this family's disease and general complex phenotype of hereditary ataxias.
Collapse
|
9
|
Jiang B, Murray C, Cole BL, Glover JNM, Chan GK, Deschenes J, Mani RS, Subedi S, Nerva JD, Wang AC, Lockwood CM, Mefford HC, Leary SES, Ojemann JG, Weinfeld M, Ene CI. Mutations of the DNA repair gene PNKP in a patient with microcephaly, seizures, and developmental delay (MCSZ) presenting with a high-grade brain tumor. Sci Rep 2022; 12:5386. [PMID: 35354845 PMCID: PMC8967877 DOI: 10.1038/s41598-022-09097-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/04/2022] [Indexed: 11/08/2022] Open
Abstract
Polynucleotide Kinase-Phosphatase (PNKP) is a bifunctional enzyme that possesses both DNA 3'-phosphatase and DNA 5'-kinase activities, which are required for processing termini of single- and double-strand breaks generated by reactive oxygen species (ROS), ionizing radiation and topoisomerase I poisons. Even though PNKP is central to DNA repair, there have been no reports linking PNKP mutations in a Microcephaly, Seizures, and Developmental Delay (MSCZ) patient to cancer. Here, we characterized the biochemical significance of 2 germ-line point mutations in the PNKP gene of a 3-year old male with MSCZ who presented with a high-grade brain tumor (glioblastoma multiforme) within the cerebellum. Functional and biochemical studies demonstrated these PNKP mutations significantly diminished DNA kinase/phosphatase activities, altered its cellular distribution, caused defective repair of DNA single/double stranded breaks, and were associated with a higher propensity for oncogenic transformation. Our findings indicate that specific PNKP mutations may contribute to tumor initiation within susceptible cells in the CNS by limiting DNA damage repair and increasing rates of spontaneous mutations resulting in pediatric glioma associated driver mutations such as ATRX and TP53.
Collapse
Affiliation(s)
- Bingcheng Jiang
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave., Edmonton, AB, T6G 1Z2, Canada
| | - Cameron Murray
- Department of Biochemistry, University of Alberta, Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Bonnie L Cole
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Gordon K Chan
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave., Edmonton, AB, T6G 1Z2, Canada
| | - Jean Deschenes
- Department of Laboratory Medicine and Pathology, University of Alberta, Cross Cancer Institute, 11560 University Ave., Edmonton, AB, T6G 1Z2, Canada
| | - Rajam S Mani
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave., Edmonton, AB, T6G 1Z2, Canada
| | - Sudip Subedi
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave., Edmonton, AB, T6G 1Z2, Canada
| | - John D Nerva
- Department of Neurological Surgery, Tulane University, New Orleans, LA, USA
| | - Anthony C Wang
- Department of Neurological Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Heather C Mefford
- Division of Genetics Medicine, University of Washington, Seattle, WA, USA
| | - Sarah E S Leary
- Division of Pediatric Hematology/Oncology, Seattle Children's Hospital, Seattle, WA, USA
| | - Jeffery G Ojemann
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Michael Weinfeld
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave., Edmonton, AB, T6G 1Z2, Canada.
| | - Chibawanye I Ene
- Department of Neurological Surgery, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Bhattacharjee S, Rehman I, Nandy S, Das BB. Post-translational regulation of Tyrosyl-DNA phosphodiesterase (TDP1 and TDP2) for the repair of the trapped topoisomerase-DNA covalent complex. DNA Repair (Amst) 2022; 111:103277. [DOI: 10.1016/j.dnarep.2022.103277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 12/23/2022]
|
11
|
Chakraborty A, Tapryal N, Islam A, Mitra S, Hazra T. Transcription coupled base excision repair in mammalian cells: So little is known and so much to uncover. DNA Repair (Amst) 2021; 107:103204. [PMID: 34390916 DOI: 10.1016/j.dnarep.2021.103204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/06/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
Oxidized bases in the genome has been implicated in various human pathologies, including cancer, aging and neurological diseases. Their repair is initiated with excision by DNA glycosylases (DGs) in the base excision repair (BER) pathway. Among the five oxidized base-specific human DGs, OGG1 and NTH1 preferentially excise oxidized purines and pyrimidines, respectively, while NEILs remove both oxidized purines and pyrimidines. However, little is known about why cells possess multiple DGs with overlapping substrate specificities. Studies of the past decades revealed that some DGs are involved in repair of oxidized DNA base lesions in the actively transcribed regions. Preferential removal of lesions from the transcribed strands of active genes, called transcription-coupled repair (TCR), was discovered as a distinct sub-pathway of nucleotide excision repair; however, such repair of oxidized DNA bases had not been established until our recent demonstration of NEIL2's role in TC-BER of the nuclear genome. We have shown that NEIL2 forms a distinct transcriptionally active, repair proficient complex. More importantly, we for the first time reconstituted TC-BER using purified components. These studies are important for characterizing critical requirement for the process. However, because NEIL2 cannot remove all types of oxidized bases, it is unlikely to be the only DNA glycosylase involved in TC-BER. Hence, we postulate TC-BER process to be universally involved in maintaining the functional integrity of active genes, especially in post-mitotic, non-growing cells. We further postulate that abnormal bases (e.g., uracil), and alkylated and other small DNA base adducts are also repaired via TC-BER. In this review, we have provided an overview of the various aspects of TC-BER in mammalian cells with the hope of generating significant interest of many researchers in the field. Further studies aimed at better understanding the mechanistic aspects of TC-BER could help elucidate the linkage of TC-BER deficiency to various human pathologies.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Nisha Tapryal
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Azharul Islam
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sankar Mitra
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Tapas Hazra
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
12
|
Cellular functions of the protein kinase ATM and their relevance to human disease. Nat Rev Mol Cell Biol 2021; 22:796-814. [PMID: 34429537 DOI: 10.1038/s41580-021-00394-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
The protein kinase ataxia telangiectasia mutated (ATM) is a master regulator of double-strand DNA break (DSB) signalling and stress responses. For three decades, ATM has been investigated extensively to elucidate its roles in the DNA damage response (DDR) and in the pathogenesis of ataxia telangiectasia (A-T), a human neurodegenerative disease caused by loss of ATM. Although hundreds of proteins have been identified as ATM phosphorylation targets and many important roles for this kinase have been identified, it is still unclear how ATM deficiency leads to the early-onset cerebellar degeneration that is common in all individuals with A-T. Recent studies suggest the existence of links between ATM deficiency and other cerebellum-specific neurological disorders, as well as the existence of broader similarities with more common neurodegenerative disorders. In this Review, we discuss recent structural insights into ATM regulation, and possible aetiologies of A-T phenotypes, including reactive oxygen species, mitochondrial dysfunction, alterations in transcription, R-loop metabolism and alternative splicing, defects in cellular proteostasis and metabolism, and potential pathogenic roles for hyper-poly(ADP-ribosyl)ation.
Collapse
|
13
|
Shin W, Alpaugh W, Hallihan LJ, Sinha S, Crowther E, Martin GR, Scheidl-Yee T, Yang X, Yoon G, Goldsmith T, Berger ND, de Almeida LG, Dufour A, Dobrinski I, Weinfeld M, Jirik FR, Biernaskie J. PNKP is required for maintaining the integrity of progenitor cell populations in adult mice. Life Sci Alliance 2021; 4:4/9/e202000790. [PMID: 34226276 PMCID: PMC8321660 DOI: 10.26508/lsa.202000790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/24/2022] Open
Abstract
Knockout of Pnkp in adult mice impairs the growth of hair follicle, spermatogonial, and neural progenitor populations. DNA repair proteins are critical to the maintenance of genomic integrity. Specific types of genotoxic factors, including reactive oxygen species generated during normal cellular metabolism or as a result of exposure to exogenous oxidative agents, frequently leads to “ragged” single-strand DNA breaks. The latter exhibits abnormal free DNA ends containing either a 5′-hydroxyl or 3′-phosphate requiring correction by the dual function enzyme, polynucleotide kinase phosphatase (PNKP), before DNA polymerase and ligation reactions can occur to seal the break. Pnkp gene deletion during early murine development leads to lethality; in contrast, the role of PNKP in adult mice is unknown. To investigate the latter, we used an inducible conditional mutagenesis approach to cause global disruption of the Pnkp gene in adult mice. This resulted in a premature aging-like phenotype, characterized by impaired growth of hair follicles, seminiferous tubules, and neural progenitor cell populations. These results point to an important role for PNKP in maintaining the normal growth and survival of these murine progenitor populations.
Collapse
Affiliation(s)
- Wisoo Shin
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Whitney Alpaugh
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Laura J Hallihan
- McCaig Institute for Bone and Joint Health, Calgary, Canada.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Emilie Crowther
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Gary R Martin
- McCaig Institute for Bone and Joint Health, Calgary, Canada.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | | | - Xiaoyan Yang
- Department of Oncology, University of Alberta, and Cross Cancer Institute, Edmonton, Canada
| | - Grace Yoon
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Taylor Goldsmith
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Nelson D Berger
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Luiz Gn de Almeida
- McCaig Institute for Bone and Joint Health, Calgary, Canada.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Antoine Dufour
- McCaig Institute for Bone and Joint Health, Calgary, Canada.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Michael Weinfeld
- Department of Oncology, University of Alberta, and Cross Cancer Institute, Edmonton, Canada
| | - Frank R Jirik
- McCaig Institute for Bone and Joint Health, Calgary, Canada .,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, Calgary, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada .,Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada.,Department of Surgery, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, Calgary, Canada
| |
Collapse
|
14
|
D'Errico M, Parlanti E, Pascucci B, Filomeni G, Mastroberardino PG, Dogliotti E. The interplay between mitochondrial functionality and genome integrity in the prevention of human neurologic diseases. Arch Biochem Biophys 2021; 710:108977. [PMID: 34174223 DOI: 10.1016/j.abb.2021.108977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/23/2022]
Abstract
As mitochondria are vulnerable to oxidative damage and represent the main source of reactive oxygen species (ROS), they are considered key tuners of ROS metabolism and buffering, whose dysfunction can progressively impact neuronal networks and disease. Defects in DNA repair and DNA damage response (DDR) may also affect neuronal health and lead to neuropathology. A number of congenital DNA repair and DDR defective syndromes, indeed, show neurological phenotypes, and a growing body of evidence indicate that defects in the mechanisms that control genome stability in neurons acts as aging-related modifiers of common neurodegenerative diseases such as Alzheimer, Parkinson's, Huntington diseases and Amyotrophic Lateral Sclerosis. In this review we elaborate on the established principles and recent concepts supporting the hypothesis that deficiencies in either DNA repair or DDR might contribute to neurodegeneration via mechanisms involving mitochondrial dysfunction/deranged metabolism.
Collapse
Affiliation(s)
| | - Eleonora Parlanti
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Pascucci
- Institute of Crystallography, Consiglio Nazionale Delle Ricerche, Rome, Italy
| | - Giuseppe Filomeni
- Redox Biology, Danish Cancer Society Research Center, Copenhagen, Denmark; Center for Healthy Aging, Copenhagen University, Copenhagen, Denmark; Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Pier Giorgio Mastroberardino
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands; IFOM- FIRC Institute of Molecular Oncology, Milan, Italy; Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Eugenia Dogliotti
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
15
|
Renaud M, Tranchant C, Koenig M, Anheim M. Autosomal Recessive Cerebellar Ataxias With Elevated Alpha-Fetoprotein: Uncommon Diseases, Common Biomarker. Mov Disord 2020; 35:2139-2149. [PMID: 33044027 DOI: 10.1002/mds.28307] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
alpha-Fetoprotein (AFP) is a biomarker of several autosomal recessive cerebellar ataxias (ARCAs), especially ataxia telangiectasia (AT) and ataxia with oculomotor apraxia (AOA) type 2 (AOA2). More recently, slightly elevated AFP has been reported in AOA1 and AOA4. Interestingly, AOA1, AOA2, AOA4, and AT are overlapping ARCAs characterized by oculomotor apraxia, with oculocephalic dissociation, choreo-dystonia, and/or axonal sensorimotor neuropathy, in addition to cerebellar ataxia with cerebellar atrophy. The genetic backgrounds in these disorders play central roles in nuclear maintenance through DNA repair [ATM (AT), APTX (AOA1), or PNKP (AOA4)] or RNA termination [SETX (AOA2)]. Partially discriminating thresholds of AFP have been proposed as a way to distinguish between ARCAs with elevated AFP. In these entities, elevated AFP may be an epiphenomenon as a result of liver transcriptional dysregulation. AFP is a simple and reliable biomarker for the diagnosis of ARCA in performance and interpretation of next-generation sequencing. Here, we evaluated clinical, laboratory, imaging, and molecular data of the group of ARCAs that share elevated AFP serum levels that have been described in the past two decades. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mathilde Renaud
- Service de Génétique Clinique, CHRU de Nancy, Nancy, France.,INSERM-U1256 NGERE, Université de Lorraine, Nancy, France
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Michel Koenig
- Laboratoire de Génétique de Maladies Rares EA7402, Institut Universitaire de Recherche Clinique, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Cristini A, Ricci G, Britton S, Salimbeni S, Huang SYN, Marinello J, Calsou P, Pommier Y, Favre G, Capranico G, Gromak N, Sordet O. Dual Processing of R-Loops and Topoisomerase I Induces Transcription-Dependent DNA Double-Strand Breaks. Cell Rep 2020; 28:3167-3181.e6. [PMID: 31533039 DOI: 10.1016/j.celrep.2019.08.041] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/08/2019] [Accepted: 08/12/2019] [Indexed: 12/25/2022] Open
Abstract
Although accumulation of DNA damage and genomic instability in resting cells can cause neurodegenerative disorders, our understanding of how transcription produces DNA double-strand breaks (DSBs) is limited. Transcription-blocking topoisomerase I cleavage complexes (TOP1ccs) are frequent events that prime DSB production in non-replicating cells. Here, we report a mechanism of their formation by showing that they arise from two nearby single-strand breaks (SSBs) on opposing DNA strands: one SSB from the removal of transcription-blocking TOP1ccs by the TDP1 pathway and the other from the cleavage of R-loops by endonucleases, including XPF, XPG, and FEN1. Genetic defects in TOP1cc removal (TDP1, PNKP, and XRCC1) or in the resolution of R-loops (SETX) enhance DSB formation and prevent their repair. Such deficiencies cause neurological disorders. Owing to the high frequency of TOP1cc trapping and the widespread distribution of R-loops, these persistent transcriptional DSBs could accumulate over time in neuronal cells, contributing to the neurodegenerative diseases.
Collapse
Affiliation(s)
- Agnese Cristini
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France; Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Giulia Ricci
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France; Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Sébastien Britton
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Equipe Labellisée Ligue contre le Cancer 2018, 31077 Toulouse, France
| | - Simona Salimbeni
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France; Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jessica Marinello
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Equipe Labellisée Ligue contre le Cancer 2018, 31077 Toulouse, France
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Gilles Favre
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Olivier Sordet
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France.
| |
Collapse
|
17
|
Shiloh Y. The cerebellar degeneration in ataxia-telangiectasia: A case for genome instability. DNA Repair (Amst) 2020; 95:102950. [PMID: 32871349 DOI: 10.1016/j.dnarep.2020.102950] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023]
Abstract
Research on the molecular pathology of genome instability disorders has advanced our understanding of the complex mechanisms that safeguard genome stability and cellular homeostasis at large. Once the culprit genes and their protein products are identified, an ongoing dialogue develops between the research lab and the clinic in an effort to link specific disease symptoms to the functions of the proteins that are missing in the patients. Ataxi A-T elangiectasia (A-T) is a prominent example of this process. A-T's hallmarks are progressive cerebellar degeneration, immunodeficiency, chronic lung disease, cancer predisposition, endocrine abnormalities, segmental premature aging, chromosomal instability and radiation sensitivity. The disease is caused by absence of the powerful protein kinase, ATM, best known as the mobilizer of the broad signaling network induced by double-strand breaks (DSBs) in the DNA. In parallel, ATM also functions in the maintenance of the cellular redox balance, mitochondrial function and turnover and many other metabolic circuits. An ongoing discussion in the A-T field revolves around the question of which ATM function is the one whose absence is responsible for the most debilitating aspect of A-T - the cerebellar degeneration. This review suggests that it is the absence of a comprehensive role of ATM in responding to ongoing DNA damage induced mainly by endogenous agents. It is the ensuing deterioration and eventual loss of cerebellar Purkinje cells, which are very vulnerable to ATM absence due to a unique combination of physiological features, which kindles the cerebellar decay in A-T.
Collapse
Affiliation(s)
- Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University Medical School, Tel Aviv, 69978, Israel.
| |
Collapse
|
18
|
Marcilla Vázquez C, Carrascosa Romero MDC, Martínez Gutiérrez A, Baquero Cano M, Alfaro Ponce B, Dabad Moreno MJ. A Novel c.968C > T homozygous Mutation in the Polynucleotide Kinase 3' - Phosphatase Gene Related to the Syndrome of Microcephaly, Seizures, and Developmental Delay. J Pediatr Genet 2020; 10:164-172. [PMID: 34040816 DOI: 10.1055/s-0040-1710540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/12/2020] [Indexed: 10/24/2022]
Abstract
Microcephaly is defined by a head circumference that is at least two standard deviations below the mean for age and sex of the general population in a specific race. Primary microcephaly may occur as an isolated inborn error, which may damage to the central nervous system or as part of the congenital abnormalities associated with genetic syndrome, affecting multiple organ systems. One of the syndromic forms consists of microcephaly, seizures, and developmental delay caused by biallelic mutations in the gene that encode polynucleotide kinase 3' - phosphatase protein (PNKP). In this article, we reported a newborn male who presented with microcephaly, severe developmental delay, and early-onset refractories seizures, caused by a novel homozygous mutation of the PNKP gene.
Collapse
|
19
|
Thomsen H, Chattopadhyay S, Hoffmann P, Nöthen MM, Kalirai H, Coupland SE, Jonas JB, Hemminki K, Försti A. Genome-wide study on uveal melanoma patients finds association to DNA repair gene TDP1. Melanoma Res 2020; 30:166-172. [PMID: 31626034 DOI: 10.1097/cmr.0000000000000641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Uveal melanoma is a life-threatening disease for which data on germline predisposition are essentially limited to mutations in the BAP1 gene. Many risk factors are shared between uveal melanoma and cutaneous melanoma, and these include fair skin color and light eye color. We carried out a genome-wide association study on 590 uveal melanoma patients and 5199 controls. Using a P-value limit of 10 we identified 11 loci with related odds ratios for the risk alleles ranging from 1.32 to 1.78. The smallest P-value in the overall analysis reached 1.07 × 10 for rs3759710 at 14q32.11, which is intronic to TDP1 (tyrosyl-DNA phosphodiesterase 1). This locus emerged as a genome-wide significant association for uveal melanoma clinical subtypes with any chromosomal aberrations (P = 10) and presence of epithelioid cells (P = 10). TDP1 is a DNA repair enzyme capable of repairing many types of DNA damage, including oxidative DNA lesions which may be relevant for uveal melanoma. We additionally wanted to replicate the previous candidate locus for uveal melanoma at chromosome 5p15.33 intronic to the CLPTM1L gene. Our analysis gave an odds ratio of 1.23 (95% confidence interval: 1.09-1.38; P = 0.0008) for the C allele of rs421284 and 1.21 (95% confidence interval: 1.07-1.36; P = 0.002) for the C allele of rs452932. Our data thus replicated the association of uveal melanoma with the CLPTM1L locus. Our data on TDP1 offer an attractive model positing that oxidative damage in pigmented tissue may be an initiation event in uveal melanoma and the level of damage may be regulated by the degree and type of iris pigmentation.
Collapse
Affiliation(s)
- Hauke Thomsen
- Division of Molecular Genetic Epidemiology of German Cancer Research Center (DKFZ), Heidelberg
| | - Subhayan Chattopadhyay
- Division of Molecular Genetic Epidemiology of German Cancer Research Center (DKFZ), Heidelberg
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Research Center, University of Bonn, Bonn, Germany
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, Department of Molecular & Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool
| | - Sarah E Coupland
- Liverpool Ocular Oncology Research Group, Department of Molecular & Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool
- Department of Cellular Pathology, Royal Liverpool University Hospital, Liverpool, UK
| | - Jost B Jonas
- Department of Ophthalmology of the Medical Faculty Mannheim of the Ruprecht-Karls-University, Heidelberg, Germany
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology of German Cancer Research Center (DKFZ), Heidelberg
| | - Asta Försti
- Division of Molecular Genetic Epidemiology of German Cancer Research Center (DKFZ), Heidelberg
| |
Collapse
|
20
|
Beaudin M, Matilla-Dueñas A, Soong BW, Pedroso JL, Barsottini OG, Mitoma H, Tsuji S, Schmahmann JD, Manto M, Rouleau GA, Klein C, Dupre N. The Classification of Autosomal Recessive Cerebellar Ataxias: a Consensus Statement from the Society for Research on the Cerebellum and Ataxias Task Force. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1098-1125. [PMID: 31267374 PMCID: PMC6867988 DOI: 10.1007/s12311-019-01052-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is currently no accepted classification of autosomal recessive cerebellar ataxias, a group of disorders characterized by important genetic heterogeneity and complex phenotypes. The objective of this task force was to build a consensus on the classification of autosomal recessive ataxias in order to develop a general approach to a patient presenting with ataxia, organize disorders according to clinical presentation, and define this field of research by identifying common pathogenic molecular mechanisms in these disorders. The work of this task force was based on a previously published systematic scoping review of the literature that identified autosomal recessive disorders characterized primarily by cerebellar motor dysfunction and cerebellar degeneration. The task force regrouped 12 international ataxia experts who decided on general orientation and specific issues. We identified 59 disorders that are classified as primary autosomal recessive cerebellar ataxias. For each of these disorders, we present geographical and ethnical specificities along with distinctive clinical and imagery features. These primary recessive ataxias were organized in a clinical and a pathophysiological classification, and we present a general clinical approach to the patient presenting with ataxia. We also identified a list of 48 complex multisystem disorders that are associated with ataxia and should be included in the differential diagnosis of autosomal recessive ataxias. This classification is the result of a consensus among a panel of international experts, and it promotes a unified understanding of autosomal recessive cerebellar disorders for clinicians and researchers.
Collapse
Affiliation(s)
- Marie Beaudin
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Antoni Matilla-Dueñas
- Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Bing-Weng Soong
- Department of Neurology, Shuang Ho Hospital and Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan, Republic of China
- National Yang-Ming University School of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Jose Luiz Pedroso
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Orlando G Barsottini
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Shoji Tsuji
- The University of Tokyo, Tokyo, Japan
- International University of Health and Welfare, Chiba, Japan
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, UMons, Mons, Belgium
| | | | | | - Nicolas Dupre
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
21
|
Maiuri T, Suart CE, Hung CLK, Graham KJ, Barba Bazan CA, Truant R. DNA Damage Repair in Huntington's Disease and Other Neurodegenerative Diseases. Neurotherapeutics 2019; 16:948-956. [PMID: 31364066 PMCID: PMC6985310 DOI: 10.1007/s13311-019-00768-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent genome-wide association studies of Huntington's disease (HD) primarily highlighted genes involved in DNA damage repair mechanisms as modifiers of age at onset and disease severity, consistent with evidence that more DNA repair genes are being implicated in late age-onset neurodegenerative diseases. This provides an exciting opportunity to advance therapeutic development in HD, as these pathways have already been under intense investigation in cancer research. Also emerging are the roles of other polyglutamine disease proteins in DNA damage repair mechanisms. A potential universal trigger of oxidative DNA damage shared in these late age-onset diseases is the increase of reactive oxygen species (ROS) in human aging, defining an age-related mechanism that has defied other hypotheses of neurodegeneration. We discuss the potential commonality of DNA damage repair pathways in HD and other neurodegenerative diseases. Potential targets for therapy that may prove beneficial across many of these diseases are also identified, defining nodes in the ataxia telangiectasia-mutated (ATM) complex, mismatch repair, and poly ADP-ribose polymerases (PARPs).
Collapse
Affiliation(s)
- T Maiuri
- Department of Biochemistry and Biomedical Sciences, McMaster University, HSC 4N54, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada
| | - C E Suart
- Department of Biochemistry and Biomedical Sciences, McMaster University, HSC 4N54, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada
| | - C L K Hung
- Department of Biochemistry and Biomedical Sciences, McMaster University, HSC 4N54, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada
| | - K J Graham
- Department of Biochemistry and Biomedical Sciences, McMaster University, HSC 4N54, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada
| | - C A Barba Bazan
- Department of Biochemistry and Biomedical Sciences, McMaster University, HSC 4N54, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada
| | - R Truant
- Department of Biochemistry and Biomedical Sciences, McMaster University, HSC 4N54, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada.
| |
Collapse
|
22
|
Kawale AS, Povirk LF. Tyrosyl-DNA phosphodiesterases: rescuing the genome from the risks of relaxation. Nucleic Acids Res 2019; 46:520-537. [PMID: 29216365 PMCID: PMC5778467 DOI: 10.1093/nar/gkx1219] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022] Open
Abstract
Tyrosyl–DNA Phosphodiesterases 1 (TDP1) and 2 (TDP2) are eukaryotic enzymes that clean-up after aberrant topoisomerase activity. While TDP1 hydrolyzes phosphotyrosyl peptides emanating from trapped topoisomerase I (Top I) from the 3′ DNA ends, topoisomerase 2 (Top II)-induced 5′-phosphotyrosyl residues are processed by TDP2. Even though the canonical functions of TDP1 and TDP2 are complementary, they exhibit little structural or sequence similarity. Homozygous mutations in genes encoding these enzymes lead to the development of severe neurodegenerative conditions due to the accumulation of transcription-dependent topoisomerase cleavage complexes underscoring the biological significance of these enzymes in the repair of topoisomerase–DNA lesions in the nervous system. TDP1 can promiscuously process several blocked 3′ ends generated by DNA damaging agents and nucleoside analogs in addition to hydrolyzing 3′-phosphotyrosyl residues. In addition, deficiency of these enzymes causes hypersensitivity to anti-tumor topoisomerase poisons. Thus, TDP1 and TDP2 are promising therapeutic targets and their inhibitors are expected to significantly synergize the effects of current anti-tumor therapies including topoisomerase poisons and other DNA damaging agents. This review covers the structural aspects, biology and regulation of these enzymes, along with ongoing developments in the process of discovering safe and effective TDP inhibitors.
Collapse
Affiliation(s)
- Ajinkya S Kawale
- Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lawrence F Povirk
- Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
23
|
Nitiss KC, Nitiss JL, Hanakahi LA. DNA Damage by an essential enzyme: A delicate balance act on the tightrope. DNA Repair (Amst) 2019; 82:102639. [PMID: 31437813 DOI: 10.1016/j.dnarep.2019.102639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 01/07/2023]
Abstract
DNA topoisomerases are essential for DNA metabolic processes such as replication and transcription. Since DNA is double stranded, the unwinding needed for these processes results in DNA supercoiling and catenation of replicated molecules. Changing the topology of DNA molecules to relieve supercoiling or resolve catenanes requires that DNA be transiently cut. While topoisomerases carry out these processes in ways that minimize the likelihood of genome instability, there are several ways that topoisomerases may fail. Topoisomerases can be induced to fail by therapeutic small molecules such as by fluoroquinolones that target bacterial topoisomerases, or a variety of anti-cancer agents that target the eukaryotic enzymes. Increasingly, there have been a large number of agents and processes, including natural products and their metabolites, DNA damage, and the intrinsic properties of the enzymes that can lead to long-lasting DNA breaks that subsequently lead to genome instability, cancer, and other diseases. Understanding the processes that can interfere with topoisomerases and how cells respond when topoisomerases fail will be important in minimizing the consequences when enzymes need to transiently interfere with DNA integrity.
Collapse
Affiliation(s)
- Karin C Nitiss
- University of Illinois College of Medicine, Department of Biomedical Sciences, Rockford, IL, 61107, United States; University of Illinois College of Pharmacy, Biopharmaceutical Sciences Department, Rockford IL, 61107, United States
| | - John L Nitiss
- University of Illinois College of Pharmacy, Biopharmaceutical Sciences Department, Rockford IL, 61107, United States.
| | - Leslyn A Hanakahi
- University of Illinois College of Pharmacy, Biopharmaceutical Sciences Department, Rockford IL, 61107, United States.
| |
Collapse
|
24
|
Rudenskaya GE, Surkova EI, Konovalov FA. [Ataxia with oculomotor apraxia type 4 detected by next-generation sequencing]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 118:10-14. [PMID: 29652299 DOI: 10.17116/jnevro20181183110-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ataxias with oculomotor apraxia (AOA) belong to autosomal recessive ataxias. Their common feature is oculomotor apraxia: inability to coordinate eye movements not due to muscle weakness. Next-generation sequencing (NGS) gives unique opportunities of rare disorders diagnostics and discovering of new forms, including AOA. In 2015, AOA type 4 produced by PNKP mutations was delineated in a group of Portuguese patients. We diagnosed AOA4 in a 9-year-old boy from Byelorussian family. He presented with ataxia since 2 years and deterioration in 8 years, oculomotor apraxia, dystonic hyperkinesia, dysarthria, polyneuropathy, borderline/mildly impaired intelligence, cerebellar atrophy on MRI and moderate hypercholesterolemia. Panel NGS detected two PNKP mutations: c.1123G>T (p.Gly375Trp) common in Portuguese patients, and novel c.1270_1283dupACAAACCCAGACGC (p.Ala429fs). This is one of a few world AOA4 cases and first non-Portuguese case with 'Portuguese' common mutation. The case illustrates NGS diagnostic value, particularly in rare heterogeneous disorders like AOA.
Collapse
|
25
|
Scott P, Al Kindi A, Al Fahdi A, Al Yarubi N, Bruwer Z, Al Adawi S, Nandhagopal R. Spinocerebellar ataxia with axonal neuropathy type 1 revisited. J Clin Neurosci 2019; 67:139-144. [PMID: 31182267 DOI: 10.1016/j.jocn.2019.05.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/03/2019] [Accepted: 05/28/2019] [Indexed: 01/17/2023]
Abstract
Spinocerebellar ataxia with axonal neuropathy type 1 (SCAN1; OMIM #607250), an exceedingly rare disorder having been documented in only a single family from Saudi Arabia, is the result of an unusual mutation in the tyrosyl DNA phosphodiesterase 1 gene (TDP1). We performed high-throughput sequencing (whole exome and ataxia gene panel) in two apparently unrelated Omani families segregating sensorimotor neuropathy and ataxia in an autosomal recessive fashion. Following validation by Sanger sequencing, all affected subjects (n = 4) were confirmed to carry the known SCAN1 pathogenic homozygous variant in the TDP1 gene, NM_001008744.1:c.1478A > G (p.His493Arg). In keeping with the initial description, our patients demonstrated progressive ataxia, cerebellar atrophy and disabling axonal sensori-motor neuropathy (n = 4), hypercholesterolemia (n = 2) and elevated serum alpha fetoprotein (n = 3). In addition, our patients also had mild cognitive deficits in multiple domains (n = 3), a feature not previously reported. Our findings independently revalidate the phenotype of TDP1 mutation and expand the clinical spectrum to include mild cognitive deficits. Haplotype sharing, as determined by DNA microarray (CytoScan HD), attests to a possible common founder mutation in the Arab population.
Collapse
Affiliation(s)
- Patrick Scott
- Molecular Genetics and Genomics Laboratory (PS, AAF, NAY), P.O. Box. 35, Sultan Qaboos University Hospital, Al-Khod, Zip 123, Muscat, Oman
| | - Adila Al Kindi
- Department of Clinical Genetics (AAK, ZB), P.O. Box. 35, Sultan Qaboos University Hospital, Al-Khod, Zip 123, Muscat, Oman
| | - Amira Al Fahdi
- Molecular Genetics and Genomics Laboratory (PS, AAF, NAY), P.O. Box. 35, Sultan Qaboos University Hospital, Al-Khod, Zip 123, Muscat, Oman
| | - Naeema Al Yarubi
- Molecular Genetics and Genomics Laboratory (PS, AAF, NAY), P.O. Box. 35, Sultan Qaboos University Hospital, Al-Khod, Zip 123, Muscat, Oman
| | - Zandre Bruwer
- Department of Clinical Genetics (AAK, ZB), P.O. Box. 35, Sultan Qaboos University Hospital, Al-Khod, Zip 123, Muscat, Oman
| | - Samir Al Adawi
- Department of Behavioral Medicine (SAA), P.O. Box. 35, Sultan Qaboos University Hospital, Al-Khod, Zip 123, Muscat, Oman
| | - Ramachandiran Nandhagopal
- Neurology Unit, Department of Medicine (RN), P.O. Box. 35, Sultan Qaboos University, Al-Khod, Zip 123, Muscat, Oman. https://orcid.org/0000-0002-2379-0055
| |
Collapse
|
26
|
Bermúdez-Guzmán L, Leal A. DNA repair deficiency in neuropathogenesis: when all roads lead to mitochondria. Transl Neurodegener 2019; 8:14. [PMID: 31110700 PMCID: PMC6511134 DOI: 10.1186/s40035-019-0156-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Mutations in DNA repair enzymes can cause two neurological clinical manifestations: a developmental impairment and a degenerative disease. Polynucleotide kinase 3'-phosphatase (PNKP) is an enzyme that is actively involved in DNA repair in both single and double strand break repair systems. Mutations in this protein or others in the same pathway are responsible for a complex group of diseases with a broad clinical spectrum. Besides, mitochondrial dysfunction also has been consolidated as a hallmark of brain degeneration. Here we provide evidence that supports a shared role between mitochondrial dysfunction and DNA repair defects in the pathogenesis of the nervous system. As models, we analyze PNKP-related disorders, focusing on Charcot-Marie-Tooth disease and ataxia. A better understanding of the molecular dynamics of this relationship could provide improved diagnosis and treatment for neurological diseases.
Collapse
Affiliation(s)
- Luis Bermúdez-Guzmán
- Section of Genetics and Biotechnology, School of Biology, Universidad de Costa Rica, San José, 11501 Costa Rica
| | - Alejandro Leal
- Section of Genetics and Biotechnology, School of Biology, Universidad de Costa Rica, San José, 11501 Costa Rica
- Neuroscience Research Center, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
27
|
Kalasova I, Hanzlikova H, Gupta N, Li Y, Altmüller J, Reynolds JJ, Stewart GS, Wollnik B, Yigit G, Caldecott KW. Novel PNKP mutations causing defective DNA strand break repair and PARP1 hyperactivity in MCSZ. NEUROLOGY-GENETICS 2019; 5:e320. [PMID: 31041400 PMCID: PMC6454307 DOI: 10.1212/nxg.0000000000000320] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/07/2019] [Indexed: 11/29/2022]
Abstract
Objective To address the relationship between novel mutations in polynucleotide 5'-kinase 3'-phosphatase (PNKP), DNA strand break repair, and neurologic disease. Methods We have employed whole-exome sequencing, Sanger sequencing, and molecular/cellular biology. Results We describe here a patient with microcephaly with early onset seizures (MCSZ) from the Indian sub-continent harboring 2 novel mutations in PNKP, including a pathogenic mutation in the fork-head associated domain. In addition, we confirm that MCSZ is associated with hyperactivation of the single-strand break sensor protein protein poly (ADP-ribose) polymerase 1 (PARP1) following the induction of abortive topoisomerase I activity, a source of DNA strand breakage associated previously with neurologic disease. Conclusions These data expand the spectrum of PNKP mutations associated with MCSZ and show that PARP1 hyperactivation at unrepaired topoisomerase-induced DNA breaks is a molecular feature of this disease.
Collapse
Affiliation(s)
- Ilona Kalasova
- Department of Genome Dynamics (I.K., H.H., K.W.C.), Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Republic; Genome Damage and Stability Centre (H.H., K.W.C.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK; Institute of Human Genetics (Y.L., B.W., G.Y.), University Medical Center Göttingen, Germany; Cologne Center for Genomics (J.A.), University of Cologne, Germany; Institute of Cancer and Genomic Sciences (J.J.R., G.S.S.), College of Medical and Dental Sciences, University of Birmingham, UK; and Division of Genetics (N.G.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Hana Hanzlikova
- Department of Genome Dynamics (I.K., H.H., K.W.C.), Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Republic; Genome Damage and Stability Centre (H.H., K.W.C.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK; Institute of Human Genetics (Y.L., B.W., G.Y.), University Medical Center Göttingen, Germany; Cologne Center for Genomics (J.A.), University of Cologne, Germany; Institute of Cancer and Genomic Sciences (J.J.R., G.S.S.), College of Medical and Dental Sciences, University of Birmingham, UK; and Division of Genetics (N.G.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Gupta
- Department of Genome Dynamics (I.K., H.H., K.W.C.), Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Republic; Genome Damage and Stability Centre (H.H., K.W.C.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK; Institute of Human Genetics (Y.L., B.W., G.Y.), University Medical Center Göttingen, Germany; Cologne Center for Genomics (J.A.), University of Cologne, Germany; Institute of Cancer and Genomic Sciences (J.J.R., G.S.S.), College of Medical and Dental Sciences, University of Birmingham, UK; and Division of Genetics (N.G.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Yun Li
- Department of Genome Dynamics (I.K., H.H., K.W.C.), Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Republic; Genome Damage and Stability Centre (H.H., K.W.C.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK; Institute of Human Genetics (Y.L., B.W., G.Y.), University Medical Center Göttingen, Germany; Cologne Center for Genomics (J.A.), University of Cologne, Germany; Institute of Cancer and Genomic Sciences (J.J.R., G.S.S.), College of Medical and Dental Sciences, University of Birmingham, UK; and Division of Genetics (N.G.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Janine Altmüller
- Department of Genome Dynamics (I.K., H.H., K.W.C.), Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Republic; Genome Damage and Stability Centre (H.H., K.W.C.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK; Institute of Human Genetics (Y.L., B.W., G.Y.), University Medical Center Göttingen, Germany; Cologne Center for Genomics (J.A.), University of Cologne, Germany; Institute of Cancer and Genomic Sciences (J.J.R., G.S.S.), College of Medical and Dental Sciences, University of Birmingham, UK; and Division of Genetics (N.G.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - John J Reynolds
- Department of Genome Dynamics (I.K., H.H., K.W.C.), Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Republic; Genome Damage and Stability Centre (H.H., K.W.C.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK; Institute of Human Genetics (Y.L., B.W., G.Y.), University Medical Center Göttingen, Germany; Cologne Center for Genomics (J.A.), University of Cologne, Germany; Institute of Cancer and Genomic Sciences (J.J.R., G.S.S.), College of Medical and Dental Sciences, University of Birmingham, UK; and Division of Genetics (N.G.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Grant S Stewart
- Department of Genome Dynamics (I.K., H.H., K.W.C.), Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Republic; Genome Damage and Stability Centre (H.H., K.W.C.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK; Institute of Human Genetics (Y.L., B.W., G.Y.), University Medical Center Göttingen, Germany; Cologne Center for Genomics (J.A.), University of Cologne, Germany; Institute of Cancer and Genomic Sciences (J.J.R., G.S.S.), College of Medical and Dental Sciences, University of Birmingham, UK; and Division of Genetics (N.G.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Bernd Wollnik
- Department of Genome Dynamics (I.K., H.H., K.W.C.), Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Republic; Genome Damage and Stability Centre (H.H., K.W.C.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK; Institute of Human Genetics (Y.L., B.W., G.Y.), University Medical Center Göttingen, Germany; Cologne Center for Genomics (J.A.), University of Cologne, Germany; Institute of Cancer and Genomic Sciences (J.J.R., G.S.S.), College of Medical and Dental Sciences, University of Birmingham, UK; and Division of Genetics (N.G.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Gökhan Yigit
- Department of Genome Dynamics (I.K., H.H., K.W.C.), Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Republic; Genome Damage and Stability Centre (H.H., K.W.C.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK; Institute of Human Genetics (Y.L., B.W., G.Y.), University Medical Center Göttingen, Germany; Cologne Center for Genomics (J.A.), University of Cologne, Germany; Institute of Cancer and Genomic Sciences (J.J.R., G.S.S.), College of Medical and Dental Sciences, University of Birmingham, UK; and Division of Genetics (N.G.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Keith W Caldecott
- Department of Genome Dynamics (I.K., H.H., K.W.C.), Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Republic; Genome Damage and Stability Centre (H.H., K.W.C.), School of Life Sciences, University of Sussex, Falmer, Brighton, UK; Institute of Human Genetics (Y.L., B.W., G.Y.), University Medical Center Göttingen, Germany; Cologne Center for Genomics (J.A.), University of Cologne, Germany; Institute of Cancer and Genomic Sciences (J.J.R., G.S.S.), College of Medical and Dental Sciences, University of Birmingham, UK; and Division of Genetics (N.G.), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
28
|
Gohla A. Do metabolic HAD phosphatases moonlight as protein phosphatases? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:153-166. [DOI: 10.1016/j.bbamcr.2018.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/12/2018] [Indexed: 12/14/2022]
|
29
|
Converging pathways in neurodegeneration, from genetics to mechanisms. Nat Neurosci 2018; 21:1300-1309. [PMID: 30258237 DOI: 10.1038/s41593-018-0237-7] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/07/2018] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases cause progressive loss of cognitive and/or motor function and pose major challenges for societies with rapidly aging populations. Human genetics studies have shown that disease-causing rare mutations and risk-associated common alleles overlap in different neurodegenerative disorders. Here we review the intricate genotype-phenotype relationships and common cellular pathways emerging from recent genetic and mechanistic studies. Shared pathological mechanisms include defective protein quality-control and degradation pathways, dysfunctional mitochondrial homeostasis, stress granules, and maladaptive innate immune responses. Research efforts have started to bear fruit, as shown by recent treatment successes and an encouraging therapeutic outlook.
Collapse
|
30
|
Tdp1 processes chromate-induced single-strand DNA breaks that collapse replication forks. PLoS Genet 2018; 14:e1007595. [PMID: 30148840 PMCID: PMC6128646 DOI: 10.1371/journal.pgen.1007595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/07/2018] [Accepted: 07/26/2018] [Indexed: 01/20/2023] Open
Abstract
Hexavalent chromium [Cr(VI)] damages DNA and causes cancer, but it is unclear which DNA damage responses (DDRs) most critically protect cells from chromate toxicity. Here, genome-wide quantitative functional profiling, DDR measurements and genetic interaction assays in Schizosaccharomyces pombe reveal a chromate toxicogenomic profile that closely resembles the cancer chemotherapeutic drug camptothecin (CPT), which traps Topoisomerase 1 (Top1)-DNA covalent complex (Top1cc) at the 3’ end of single-stand breaks (SSBs), resulting in replication fork collapse. ATR/Rad3-dependent checkpoints that detect stalled and collapsed replication forks are crucial in Cr(VI)-treated cells, as is Mus81-dependent sister chromatid recombination (SCR) that repairs single-ended double-strand breaks (seDSBs) at broken replication forks. Surprisingly, chromate resistance does not require base excision repair (BER) or interstrand crosslink (ICL) repair, nor does co-elimination of XPA-dependent nucleotide excision repair (NER) and Rad18-mediated post-replication repair (PRR) confer chromate sensitivity in fission yeast. However, co-elimination of Tdp1 tyrosyl-DNA phosphodiesterase and Rad16-Swi10 (XPF-ERCC1) NER endonuclease synergistically enhances chromate toxicity in top1Δ cells. Pnk1 polynucleotide kinase phosphatase (PNKP), which restores 3’-hydroxyl ends to SSBs processed by Tdp1, is also critical for chromate resistance. Loss of Tdp1 ameliorates pnk1Δ chromate sensitivity while enhancing the requirement for Mus81. Thus, Tdp1 and PNKP, which prevent neurodegeneration in humans, repair an important class of Cr-induced SSBs that collapse replication forks. Hexavalent chromium is a carcinogen that is found at toxic waste sites and in some groundwater supplies. Cellular metabolism converts chromium into DNA-damaging chromate, but it is unclear which types of chromate-DNA lesions are most dangerous, and which cellular mechanisms most critically prevent chromium toxicity. This study uses whole-genome profiling to identify DNA repair pathways that are crucial for chromate resistance in fission yeast. The resulting ‘toxicogenomic’ profile of chromate closely matches camptothecin, a natural product representing a class of chemotherapeutic drugs that cause replication fork collapse by poisoning Topoisomerase 1 (Top1), which relaxes supercoiled DNA by creating and resealing single-strand breaks (SSBs). Genetic interaction analyses uncover important roles for Tdp1 tyrosyl-DNA phosphodiesterase and Pnk1 polynucleotide 5’-kinase 3’-phosphatase (PNKP), which repair camptothecin-induced SSBs and prevent neurological disease in humans. However, chromium toxicity does not involve Top1. As Tdp1 and Pnk1 repair SSBs with 3’-blocked termini, these data suggest that Top1-independent 3’-blocked SSBs contribute to the carcinogenic and mutagenic properties of chromium.
Collapse
|
31
|
N6-Furfuryladenine is protective in Huntington's disease models by signaling huntingtin phosphorylation. Proc Natl Acad Sci U S A 2018; 115:E7081-E7090. [PMID: 29987005 DOI: 10.1073/pnas.1801772115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The huntingtin N17 domain is a modulator of mutant huntingtin toxicity and is hypophosphorylated in Huntington's disease (HD). We conducted high-content analysis to find compounds that could restore N17 phosphorylation. One lead compound from this screen was N6-furfuryladenine (N6FFA). N6FFA was protective in HD model neurons, and N6FFA treatment of an HD mouse model corrects HD phenotypes and eliminates cortical mutant huntingtin inclusions. We show that N6FFA restores N17 phosphorylation levels by being salvaged to a triphosphate form by adenine phosphoribosyltransferase (APRT) and used as a phosphate donor by casein kinase 2 (CK2). N6FFA is a naturally occurring product of oxidative DNA damage. Phosphorylated huntingtin functionally redistributes and colocalizes with CK2, APRT, and N6FFA DNA adducts at sites of induced DNA damage. We present a model in which this natural product compound is salvaged to provide a triphosphate substrate to signal huntingtin phosphorylation via CK2 during low-ATP stress under conditions of DNA damage, with protective effects in HD model systems.
Collapse
|
32
|
Ramaekers VT, Segers K, Sequeira JM, Koenig M, Van Maldergem L, Bours V, Kornak U, Quadros EV. Genetic assessment and folate receptor autoantibodies in infantile-onset cerebral folate deficiency (CFD) syndrome. Mol Genet Metab 2018; 124:87-93. [PMID: 29661558 DOI: 10.1016/j.ymgme.2018.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Cerebral folate deficiency (CFD) syndromes are defined as neuro-psychiatric conditions with low CSF folate and attributed to different causes such as autoantibodies against the folate receptor-alpha (FR) protein that can block folate transport across the choroid plexus, FOLR1 gene mutations or mitochondrial disorders. High-dose folinic acid treatment restores many neurologic deficits. STUDY AIMS AND METHODS Among 36 patients from 33 families the infantile-onset CFD syndrome was diagnosed based on typical clinical features and low CSF folate. All parents were healthy. Three families had 2 affected siblings, while parents from 4 families were first cousins. We analysed serum FR autoantibodies and the FOLR1 and FOLR2 genes. Among three consanguineous families homozygosity mapping attempted to identify a monogenetic cause. Whole exome sequencing (WES) was performed in the fourth consanguineous family, where two siblings also suffered from polyneuropathy as an atypical finding. RESULTS Boys (72%) outnumbered girls (28%). Most patients (89%) had serum FR autoantibodies fluctuating over 5-6 weeks. Two children had a genetic FOLR1 variant without pathological significance. Homozygosity mapping failed to detect a single autosomal recessive gene. WES revealed an autosomal recessive polynucleotide kinase 3´phosphatase (PNKP) gene abnormality in the siblings with polyneuropathy. DISCUSSION Infantile-onset CFD was characterized by serum FR autoantibodies as its predominant pathology whereas pathogenic FOLR1 gene mutations were absent. Homozygosity mapping excluded autosomal recessive inheritance of any single responsible gene. WES in one consanguineous family identified a PNKP gene abnormality that explained the polyneuropathy and also its contribution to the infantile CFD syndrome because the PNKP gene plays a dual role in both neurodevelopment and immune-regulatory function. Further research for candidate genes predisposing to FRα-autoimmunity is suggested to include X-chromosomal and non-coding DNA regions.
Collapse
Affiliation(s)
- V Th Ramaekers
- Center of Autism and Department of Genetics, University Hospital Liège (CHU), Belgium.
| | - K Segers
- Center of Autism and Department of Genetics, University Hospital Liège (CHU), Belgium
| | - J M Sequeira
- Department of Medicine, SUNY-Downstate Medical Center, Brooklyn, New York, USA
| | - M Koenig
- EA7402 Institut Universitaire de Recherche Clinique, Montpellier, France
| | - L Van Maldergem
- Center Human Genetics, Université de Franche-Comté, Besançon, France
| | - V Bours
- Center of Autism and Department of Genetics, University Hospital Liège (CHU), Belgium
| | - U Kornak
- Institut für Humangenetik, Charité-University Berlin, Berlin, Germany
| | - E V Quadros
- Department of Medicine, SUNY-Downstate Medical Center, Brooklyn, New York, USA
| |
Collapse
|
33
|
Horton JK, Stefanick DF, Çağlayan M, Zhao ML, Janoshazi AK, Prasad R, Gassman NR, Wilson SH. XRCC1 phosphorylation affects aprataxin recruitment and DNA deadenylation activity. DNA Repair (Amst) 2018; 64:26-33. [DOI: 10.1016/j.dnarep.2018.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 11/26/2022]
|
34
|
|
35
|
Yoon G, Caldecott KW. Nonsyndromic cerebellar ataxias associated with disorders of DNA single-strand break repair. HANDBOOK OF CLINICAL NEUROLOGY 2018; 155:105-115. [DOI: 10.1016/b978-0-444-64189-2.00007-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Nibbeling EAR, Duarri A, Verschuuren-Bemelmans CC, Fokkens MR, Karjalainen JM, Smeets CJLM, de Boer-Bergsma JJ, van der Vries G, Dooijes D, Bampi GB, van Diemen C, Brunt E, Ippel E, Kremer B, Vlak M, Adir N, Wijmenga C, van de Warrenburg BPC, Franke L, Sinke RJ, Verbeek DS. Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia. Brain 2017; 140:2860-2878. [PMID: 29053796 DOI: 10.1093/brain/awx251] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/05/2017] [Indexed: 12/17/2022] Open
Abstract
The autosomal dominant cerebellar ataxias, referred to as spinocerebellar ataxias in genetic nomenclature, are a rare group of progressive neurodegenerative disorders characterized by loss of balance and coordination. Despite the identification of numerous disease genes, a substantial number of cases still remain without a genetic diagnosis. Here, we report five novel spinocerebellar ataxia genes, FAT2, PLD3, KIF26B, EP300, and FAT1, identified through a combination of exome sequencing in genetically undiagnosed families and targeted resequencing of exome candidates in a cohort of singletons. We validated almost all genes genetically, assessed damaging effects of the gene variants in cell models and further consolidated a role for several of these genes in the aetiology of spinocerebellar ataxia through network analysis. Our work links spinocerebellar ataxia to alterations in synaptic transmission and transcription regulation, and identifies these as the main shared mechanisms underlying the genetically diverse spinocerebellar ataxia types.
Collapse
Affiliation(s)
- Esther A R Nibbeling
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anna Duarri
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Michiel R Fokkens
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Juha M Karjalainen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cleo J L M Smeets
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jelkje J de Boer-Bergsma
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerben van der Vries
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dennis Dooijes
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Giovana B Bampi
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cleo van Diemen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ewout Brunt
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elly Ippel
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Berry Kremer
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Monique Vlak
- Department of Neurology, Medical Center Haaglanden and Bronovo-Nebo, Den Hague, The Netherlands
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Israel
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Richard J Sinke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
37
|
Havali-Shahriari Z, Weinfeld M, Glover JNM. Characterization of DNA Substrate Binding to the Phosphatase Domain of the DNA Repair Enzyme Polynucleotide Kinase/Phosphatase. Biochemistry 2017; 56:1737-1745. [PMID: 28276686 DOI: 10.1021/acs.biochem.6b01236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Polynucleotide kinase/phosphatase (PNKP) is a DNA strand break repair enzyme that uses separate 5' kinase and 3' phosphatase active sites to convert damaged 5'-hydroxyl/3'-phosphate strand termini to ligatable 5'-phosphate/3'-hydroxyl ends. The phosphatase active site has received particular attention as a target of inhibition in cancer therapy development. The phosphatase domain dephosphorylates a range of single- and double-stranded substrates; however, structural studies have shown that the phosphatase catalytic cleft can bind only single-stranded substrates. Here we use a catalytically inactive but structurally intact phosphatase mutant to probe interactions between PNKP and a variety of single- and double-stranded DNA substrates using an electrophoretic mobility shift assay. This work indicates that the phosphatase domain binds 3'-phosphorylated single-stranded DNAs in a manner that is highly dependent on the presence of the 3'-phosphate. Double-stranded substrate binding, in contrast, is not as dependent on the 3'-phosphate. Experiments comparing blunt-end, 3'-overhanging, and frayed-end substrates indicate that the predicted loss of energy due to base pair disruption upon binding of the phosphatase active site is likely balanced by favorable interactions between the liberated complementary strand and PNKP. Comparison of the effects on substrate binding of mutations within the phosphatase active site cleft with mutations in surrounding positively charged surfaces suggests that the surrounding surfaces are important for binding to double-stranded substrates. We further show that while fluorescence polarization methods can detect specific binding of single-stranded DNAs with the phosphatase domain, this method does not detect specific interactions between the PNKP phosphatase and double-stranded substrates.
Collapse
Affiliation(s)
| | - Michael Weinfeld
- Department of Oncology, University of Alberta, Cross Cancer Institute , 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta , Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
38
|
Tallaksen CME, Müller U. Cancer and neurodegeneration: Time to move beyond Janus? Neurology 2017; 88:1106-1107. [PMID: 28202693 DOI: 10.1212/wnl.0000000000003727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Chantal M E Tallaksen
- From the Department of Neurology (C.M.E.T.), Oslo University Hospital; Faculty of Medicine (U.M.), University of Oslo, Norway; and Institute of Human Genetics (U.M.), Justus-Liebig-University, Giessen, Germany
| | - Ulrich Müller
- From the Department of Neurology (C.M.E.T.), Oslo University Hospital; Faculty of Medicine (U.M.), University of Oslo, Norway; and Institute of Human Genetics (U.M.), Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
39
|
Affiliation(s)
- Christopher A Ross
- Departments of Psychiatry, Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Ray Truant
- Departments of Psychiatry, Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|