1
|
Jantsch J, da Silva Rodrigues F, Silva Dias V, de Farias Fraga G, Eller S, Giovenardi M, Guedes RP. Calorie Restriction Attenuates Memory Impairment and Reduces Neuroinflammation in Obese Aged Rats. Mol Neurobiol 2024:10.1007/s12035-024-04360-9. [PMID: 39037530 DOI: 10.1007/s12035-024-04360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Obesity and aging collectively potentiate inflammatory responses, particularly within the central nervous system. Managing obesity presents a significant challenge, even more so considering the context of aging. Caloric restriction (CR) has been extensively documented in the literature for its multiple health benefits. Motivated by these findings, we hypothesized that CR could serve as a valuable intervention to address the brain alterations and cognitive decline associated with obesity in aged rats. Our investigation revealed that cafeteria diet increased hippocampal and hypothalamic transcripts related to neuroinflammation, along with cognitive deficits determined in the object recognition test in 18-month-old male rats. Western blot data indicate that the obesogenic diet may disrupt the blood-brain barrier and lead to an increase in Toll-like receptor 4 in the hippocampus, events that could contribute to the cognitive deficits observed. Implementing CR after the onset of obesity mitigated neuroinflammatory changes and cognitive impairments. We found that CR increases GABA levels in the hippocampus of aged animals, as demonstrated by liquid chromatography coupled with mass spectrometry analysis. These findings underscore the potential of CR as a therapeutic opportunity to ameliorate the neuroinflammatory and cognitive alterations of obesity, especially in the context of aging.
Collapse
Affiliation(s)
- Jeferson Jantsch
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Victor Silva Dias
- Biomedical Science Undergraduate Program, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Gabriel de Farias Fraga
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Sarah Eller
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Márcia Giovenardi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil.
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil.
| |
Collapse
|
2
|
Pantiya P, Thonusin C, Chunchai T, Pintana H, Ongnok B, Nawara W, Arunsak B, Kongkaew A, Chattipakorn N, Chattipakorn SC. Long-term lifestyle intervention is superior to transient modification for neuroprotection in D-galactose-induced aging rats. Life Sci 2023; 334:122248. [PMID: 37940069 DOI: 10.1016/j.lfs.2023.122248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
AIMS To investigate whether transient dietary restriction or aerobic exercise in young adulthood exert long-lasting protection against brain aging later in life. MAIN METHODS Seven-week-old male Wistar rats were divided into 2 groups and given either normal saline as a vehicle (n = 8) or 150 mg/kg/day of D-galactose (n = 40) for 28 weeks, the D-galactose being used to induce aging. At week 13 of the experiment, D-galactose-treated rats were further divided into 5 groups, 1) no intervention, 2) transient dietary restriction for 6 weeks (week 13-18), 3) transient exercise for 6 weeks (week 13-18), 4) long-term dietary restriction for 16 weeks (week 13-28), and 5) long-term exercise for 16 weeks (week 13-28). At the end of week 28, cognitive function was examined, followed by molecular studies in the hippocampus. KEY FINDINGS Our results showed that either long-term dietary restriction or aerobic exercise effectively attenuated cognitive function in D-galactose-treated rats via the attenuation of oxidative stress, cellular senescence, Alzheimer's-like pathology, neuroinflammation, and improvements in mitochondria, brain metabolism, adult neurogenesis, and synaptic integrity. Although transient interventions provided benefits in some brain parameters in D-galactose-treated rats, an improvement in cognitive function was not observed. SIGNIFICANCE Our findings suggested that transient lifestyle interventions failed to exert a long-lasting protective effect against brain aging. Hence, novel drugs mimicking the neuroprotective effect of long-term dietary restriction or exercise and the combination of the two since young age appear to be more appropriate treatments for the elderly who are unable to engage in long-term dietary restriction or exercise.
Collapse
Affiliation(s)
- Patcharapong Pantiya
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Hiranya Pintana
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Benjamin Ongnok
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Wichwara Nawara
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Busarin Arunsak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
3
|
Shao Y, Fu Z, Wang Y, Yang Z, Lin Y, Li S, Cheng C, Wei M, Liu Z, Xu G, Le W. A metabolome atlas of mouse brain on the global metabolic signature dynamics following short-term fasting. Signal Transduct Target Ther 2023; 8:334. [PMID: 37679319 PMCID: PMC10484938 DOI: 10.1038/s41392-023-01552-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 09/09/2023] Open
Abstract
Calorie restriction (CR) or a fasting regimen is considered one of the most potent non-pharmacological interventions to prevent chronic metabolic disorders, ameliorate autoimmune diseases, and attenuate aging. Despite efforts, the mechanisms by which CR improves health, particularly brain health, are still not fully understood. Metabolic homeostasis is vital for brain function, and a detailed metabolome atlas of the brain is essential for understanding the networks connecting different brain regions. Herein, we applied gas chromatography-mass spectrometry-based metabolomics and lipidomics, covering 797 structurally annotated metabolites, to investigate the metabolome of seven brain regions in fasted (3, 6, 12, and 24 h) and ad libitum fed mice. Using multivariate and univariate statistical techniques, we generated a metabolome atlas of mouse brain on the global metabolic signature dynamics across multiple brain regions following short-term fasting (STF). Significant metabolic differences across brain regions along with STF-triggered region-dependent metabolic remodeling were identified. We found that STF elicited triacylglycerol degradation and lipolysis to compensate for energy demand under fasting conditions. Besides, changes in amino acid profiles were observed, which may play crucial roles in the regulation of energy metabolism, neurotransmitter signaling, and anti-inflammatory and antioxidant in response to STF. Additionally, this study reported, for the first time, that STF triggers a significant elevation of N-acylethanolamines, a class of neuroprotective lipids, in the brain and liver. These findings provide novel insights into the molecular basis and mechanisms of CR and offer a comprehensive resource for further investigation.
Collapse
Affiliation(s)
- Yaping Shao
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, 193 Lianhe Road, 116021, Dalian, China.
| | - Zhenfa Fu
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, 193 Lianhe Road, 116021, Dalian, China
| | - Yanfeng Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China
| | - Zhaofei Yang
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, 193 Lianhe Road, 116021, Dalian, China
| | - Yushan Lin
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, 193 Lianhe Road, 116021, Dalian, China
| | - Song Li
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, 193 Lianhe Road, 116021, Dalian, China
| | - Cheng Cheng
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, 193 Lianhe Road, 116021, Dalian, China
| | - Min Wei
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, 193 Lianhe Road, 116021, Dalian, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China.
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, 193 Lianhe Road, 116021, Dalian, China.
- Institute of Neurology, Sichuan Academy of Medical Science-Sichuan Provincial Hospital, Medical School of UESTC, 611731, Chengdu, China.
| |
Collapse
|
4
|
Hu B, Shi Y, Lu C, Chen H, Zeng Y, Deng J, Zhang L, Lin Q, Li W, Chen Y, Zhong F, Xia X. Raspberry polyphenols alleviate neurodegenerative diseases: through gut microbiota and ROS signals. Food Funct 2023; 14:7760-7779. [PMID: 37555470 DOI: 10.1039/d3fo01835k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Neurodegenerative diseases are neurological disorders that become more prevalent with age, usually caused by damage or loss of neurons or their myelin sheaths, such as Alzheimer's disease and epilepsy. Reactive oxygen species (ROS) are important triggers for neurodegenerative disease development, and mitigation of oxidative stress caused by ROS imbalance in the human body is important for the treatment of these diseases. As a widespread delicious fruit, the raspberry is widely used in the field of food and medicine because of its abundant polyphenols and other bioactive substances. Polyphenols from a wide variety of raspberry sources could alleviate neurodegenerative diseases. This review aims to summarize the current roles of these polyphenols in maintaining neurological stability by regulating the composition and metabolism of the intestinal flora and the gut-brain axis signal transmission. Especially, we discuss the therapeutic effects on neurodegenerative diseases of raspberry polyphenols through intestinal microorganisms and ROS signals, by means of summary and analysis. Finally, methods of improving the digestibility and utilization of raspberry polyphenols are proposed, which will provide a potential way for raspberry polyphenols to guarantee the health of the human nervous system.
Collapse
Affiliation(s)
- Boyong Hu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Yi Shi
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Chunyue Lu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Haixin Chen
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Yuqing Zeng
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Lin Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Yuan Chen
- School of Life Science, Huizhou University, Huizhou 516007, China
| | - Feifei Zhong
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
- Changsha Institute for Food and Drug Control, Changsha 410016, Hunan, China
| | - Xu Xia
- Huaihua Academy of Agricultural Sciences, Huaihua 418000, Hunan, China
| |
Collapse
|
5
|
Boehme M, Guzzetta KE, Wasén C, Cox LM. The gut microbiota is an emerging target for improving brain health during ageing. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2022; 4:E2. [PMID: 37179659 PMCID: PMC10174391 DOI: 10.1017/gmb.2022.11] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The gut microbiota plays crucial roles in maintaining the health and homeostasis of its host throughout lifespan, including through its ability to impact brain function and regulate behaviour during ageing. Studies have shown that there are disparate rates of biologic ageing despite equivalencies in chronologic age, including in the development of neurodegenerative diseases, which suggests that environmental factors may play an important role in determining health outcomes in ageing. Recent evidence demonstrates that the gut microbiota may be a potential novel target to ameliorate symptoms of brain ageing and promote healthy cognition. This review highlights the current knowledge around the relationships between the gut microbiota and host brain ageing, including potential contributions to age-related neurodegenerative diseases. Furthermore, we assess key areas for which gut microbiota-based strategies may present as opportunities for intervention.
Collapse
Affiliation(s)
- Marcus Boehme
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Katherine Elizabeth Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Caroline Wasén
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Laura Michelle Cox
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Shukla P, Chopada K, Sakure A, Hati S. Current Trends and Applications of Food-derived Antihypertensive
Peptides for the Management of Cardiovascular Disease. Protein Pept Lett 2022; 29:408-428. [DOI: 10.2174/0929866529666220106100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/26/2021] [Accepted: 11/20/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Food derived Antihypertensive peptides is considered as a natural supplement for controlling the hypertension. Food protein not only serve as a macronutrient but also act as raw material for biosynthesis of physiologically active peptides. Food sources like milk and milk products, animal protein such as meat, chicken, fish, eggs and plant derived proteins from soy, rice, wheat, mushroom, pumpkins contain high amount of antihypertensive peptides. The food derived antihypertensive peptides has ability to supress the action of rennin and Angiotesin converting enzyme (ACE) which is mainly involved in regulation of blood pressure by RAS. The biosynthesis of endothelial nitric oxide synthase is also improved by ACE inhibitory peptides which increase the production of nitric oxide in vascular walls and encourage vasodilation. Interaction between the angiotensin II and its receptor is also inhibited by the peptides which help to reduce hypertension. This review will explore the novel sources and applications of food derived peptides for the management of hypertension.
Collapse
Affiliation(s)
- Pratik Shukla
- Department of Dairy Microbiology, SMC College of Dairy Science, Anand Agricultural University, Anand- 388110,
Gujarat, India
| | - Keval Chopada
- Department of Dairy Microbiology, SMC College of Dairy Science, Anand Agricultural University, Anand- 388110,
Gujarat, India
| | - Amar Sakure
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand- 388110, Gujarat,
India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Anand Agricultural University, Anand- 388110,
Gujarat, India
| |
Collapse
|
7
|
Eroğlu FE, Sanlier N. Effect of fermented foods on some neurological diseases, microbiota, behaviors: mini review. Crit Rev Food Sci Nutr 2022; 63:8066-8082. [PMID: 35317694 DOI: 10.1080/10408398.2022.2053060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fermented foods are among the traditional foods consumed for centuries. In recent years, awareness of fermented foods has been increasing due to their positive health benefits. Fermented foods contain beneficial microorganisms. Fermented foods, such as kefir, kimchi, sauerkraut, and yoghurt, contain Lactic acid bacteria (LAB), such as Lactobacilli, Bifidobacteria, and their primary metabolites (lactic acid). Although studies on the effect of consumption of fermented foods on diabetes, cardiovascular, obesity, gastrointestinal diseases on chronic diseases have been conducted, more studies are needed regarding the relationship between neurological diseases and microbiota. There are still unexplored mechanisms in the relationship between the brain and intestine. In this review, we answer how the consumption of fermented foods affects the brain and behavior of Alzheimer's disease, Parkinson's disease, multiple sclerosis disease, stroke, and gut microbiota.
Collapse
Affiliation(s)
- Fatma Elif Eroğlu
- Department of Nutrition and Dietetics, Ankara Medipol University, Institute of Health Sciences, Ankara, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Altındağ, Ankara, Turkey
| |
Collapse
|
8
|
Zhao Y, Jia M, Chen W, Liu Z. The neuroprotective effects of intermittent fasting on brain aging and neurodegenerative diseases via regulating mitochondrial function. Free Radic Biol Med 2022; 182:206-218. [PMID: 35218914 DOI: 10.1016/j.freeradbiomed.2022.02.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022]
Abstract
Intermittent fasting (IF) has been studied for its effects on lifespan and the prevention or delay of age-related diseases upon the regulation of metabolic pathways. Mitochondria participate in key metabolic pathways and play important roles in maintaining intracellular signaling networks that modulate various cellular functions. Mitochondrial dysfunction has been described as an early feature of brain aging and neurodegeneration. Although IF has been shown to prevent brain aging and neurodegeneration, the mechanism is still unclear. This review focuses on the mechanisms by which IF improves mitochondrial function, which plays a central role in brain aging and neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. The cellular and molecular mechanisms of IF in brain aging and neurodegeneration involve activation of adaptive cellular stress responses and signaling- and transcriptional pathways, thereby enhancing mitochondrial function, by promoting energy metabolism and reducing oxidant production.
Collapse
Affiliation(s)
- Yihang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengzhen Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Weixuan Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China; German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
| |
Collapse
|
9
|
Chakraborty A, Banerjee S, Mukherjee B, Poddar MK, Ali N. Calorie restriction modulates neuro-immune system differently in young and aged rats. Int Immunopharmacol 2021; 100:108141. [PMID: 34536745 DOI: 10.1016/j.intimp.2021.108141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/19/2021] [Accepted: 09/05/2021] [Indexed: 02/02/2023]
Abstract
Aging weakens and deregulates the immune system and plays an impact on the central nervous system (CNS). A crosstalk in between the CNS-mediated immune system and the body's overall innate immunity is often found to increase and subsequently accelerate neurodegeneration and behavioural impairment during aging. Dietary calorie restriction (CR) is found to be a beneficial non-invasive anti-aging therapy as it shows rejuvenation of stress response, brain functions and behaviour during aging. The present investigation deals with the consequence of CR diet supplementation for two different duration (one and two consecutive months) on aging-related alteration of the immune response in male albino Wistar rats at the level of (a) lymphocyte viability, proliferation, cytotoxicity, and DNA fragmentation in blood, spleen, and thymus and (b) cytokines (IL-6, IL-10, and TNF-α) in blood, spleen, thymus and different brain-regions to understand the effect of CR diet on neuroimmune system. The results depict that CR diet consumption for consecutive one and two months by the aged (18 and 24 months) rats significantly attenuated the aging-related (a) decrease of blood, splenic and thymic lymphocyte viability, proliferative activity, cytotoxicity, and IL-10 level and (b) increase of (i) blood, splenic and thymic DNA fragmentation and (ii) IL-6 and TNF-α level in those tissues and also in different brain regions. Unlike older rats, in young (4 months) rats, the consumption of CR diet under similar conditions affected those above-mentioned immune parameters reversibly and adversely. This study concludes that (a) aging significantly (p < 0.01) deregulates the above-mentioned immune parameters, (b) consecutive consumption of CR diet for one and two months is (i) beneficial (p < 0.05) to the aging-related immune system [lymphocyte viability, lymphocyte proliferation, cytotoxicity, pro (IL-6 and TNF-α)- and anti (IL-10)-inflammatory cytokines], but (ii) adverse (p < 0.05) to the immune parameters of the young rats, and (c) consumption of CR diet for consecutive two months is more potent (p < 0.05) than that due to one month.
Collapse
Affiliation(s)
- Apala Chakraborty
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C Mallick Road, Kolkata 700032, India
| | - Soumyabrata Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C Mallick Road, Kolkata 700032, India; Department of Psychology, Neuroscience Program, Field Neurosciences Institute Research Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C Mallick Road, Kolkata 700032, India
| | - Mrinal K Poddar
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C Mallick Road, Kolkata 700032, India.
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata 700 032, India
| |
Collapse
|
10
|
Banerjee S, Mukherjee B, Poddar MK, Dunbar GL. Carnosine improves aging-induced cognitive impairment and brain regional neurodegeneration in relation to the neuropathological alterations in the secondary structure of amyloid beta (Aβ). J Neurochem 2021; 158:710-723. [PMID: 33768569 DOI: 10.1111/jnc.15357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
Aging-induced proteinopathies, including deterioration of amyloid beta (Aβ) conformation, are associated with reductions in endogenous levels of carnosine and cognitive impairments. Carnosine is a well-known endogenous antioxidant, which counteracts aging-induced Aβ plaque formation. The aim of this study was to investigate the effects of exogenous carnosine treatments on aging-induced changes (a) in the steady-state level of endogenous carnosine and conformation of Aβ secondary structure in the different brain regions (cerebral cortex, hippocampus, hypothalamus, pons-medulla, and cerebellum) and (b) cognitive function. Young (4 months) and aged (18 and 24 months) male albino Wistar rats were treated with carnosine (2.0 μg kg-1 day-1 ; i.t.) or equivalent volumes of vehicle (saline) for 21 consecutive days and were tested for cognition using 8-arm radial maze test. Brains were processed to assess the conformational integrity of Aβ plaques using Raman spectroscopy and endogenous levels of carnosine were measured in the brain regions using HPLC. Results indicated that carnosine treatments improved the aging-induced deficits in cognitive function and reduced the β-sheets in the secondary structure of Aβ protein, as well as mitigating the reduction in the steady-state levels of carnosine and spine density in the brain regions examined. These results thus, suggest that carnosine can attenuate the aging-induced: (a) conformational changes in Aβ secondary structure by reducing the abundance of β-sheets and reductions in carnosine content in the brain regions and (b) cognitive impairment.
Collapse
Affiliation(s)
- Soumyabrata Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.,Department of Psychology, Neuroscience Program, Field Neurosciences Institute Research Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Mrinal K Poddar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Gary L Dunbar
- Department of Psychology, Neuroscience Program, Field Neurosciences Institute Research Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
11
|
Jang CH, Oh J, Lim JS, Kim HJ, Kim JS. Fermented Soy Products: Beneficial Potential in Neurodegenerative Diseases. Foods 2021; 10:foods10030636. [PMID: 33803607 PMCID: PMC8003083 DOI: 10.3390/foods10030636] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Fermented soybean products, such as cheonggukjang (Japanese natto), doenjang (soy paste), ganjang (soy sauce), and douchi, are widely consumed in East Asian countries and are major sources of bioactive compounds. The fermentation of cooked soybean with bacteria (Bacillus spp.) and fungi (Aspergillus spp. and Rhizopus spp.) produces a variety of novel compounds, most of which possess health benefits. This review is focused on the preventive and ameliorative potential of fermented soy foods and their components to manage neurodegenerative diseases, including Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Chan Ho Jang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
| | - Jisun Oh
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
| | - Ji Sun Lim
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
| | - Hyo Jung Kim
- Department of Korean Medicine Development, National Institute for Korean Medicine Development, Gyeongsan 38540, Korea;
| | - Jong-Sang Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
- Department of Integrative Biotechnology, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-5752; Fax: +82-53-950-6750
| |
Collapse
|
12
|
Association of Peripheral Plasma Neurotransmitters with Cognitive Performance in Chronic High-altitude Exposure. Neuroscience 2021; 463:97-107. [PMID: 33540052 DOI: 10.1016/j.neuroscience.2021.01.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022]
Abstract
Long-term living at high altitude causes significant impairment of cognitive function. Central neurotransmitters are potential mediators of cognitive performance. We aimed to determine whether there were significant associations between select peripheral plasma neurotransmitters and cognitive performance in humans with chronic high-altitude (HA) exposure and to determine the association between peripheral plasma neurotransmitters and brain neurotransmitters in rats after chronic hypobaric hypoxia (HH) exposure. We demonstrated that 3,4-dihydroxy-L-phenylalanine (DOPA), dopamine, serotonin, 5-hydroxyindole-3-acetic acid (5-HIAA) and GABA in the peripheral plasma were associated with cognitive performance in humans with HA exposure. Consistent with this result, peripheral plasma DOPA, dopamine, serotonin, 5-HIAA and glutamate were associated with brain neurotransmitter levels after chronic HH exposure in rats. These results provide experimental data indicating that neurotransmitter levels and cognitive performance are modified in chronic high-altitude exposure, with a possible causal effect.
Collapse
|
13
|
Bioactive peptides and gut microbiota: Candidates for a novel strategy for reduction and control of neurodegenerative diseases. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|