1
|
Niharika, Ureka L, Roy A, Patra SK. Dissecting SOX2 expression and function reveals an association with multiple signaling pathways during embryonic development and in cancer progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189136. [PMID: 38880162 DOI: 10.1016/j.bbcan.2024.189136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
SRY (Sex Determining Region) box 2 (SOX2) is an essential transcription factor that plays crucial roles in activating genes involved in pre- and post-embryonic development, adult tissue homeostasis, and lineage specifications. SOX2 maintains the self-renewal property of stem cells and is involved in the generation of induced pluripotency stem cells. SOX2 protein contains a particular high-mobility group domain that enables SOX2 to achieve the capacity to participate in a broad variety of functions. The information about the involvement of SOX2 with gene regulatory elements, signaling networks, and microRNA is gradually emerging, and the higher expression of SOX2 is functionally relevant to various cancer types. SOX2 facilitates the oncogenic phenotype via cellular proliferation and enhancement of invasive tumor properties. Evidence are accumulating in favor of three dimensional (higher order) folding of chromatin and epigenetic control of the SOX2 gene by chromatin modifications, which implies that the expression level of SOX2 can be modulated by epigenetic regulatory mechanisms, specifically, via DNA methylation and histone H3 modification. In view of this, and to focus further insights into the roles SOX2 plays in physiological functions, involvement of SOX2 during development, precisely, the advances of our knowledge in pre- and post-embryonic development, and interactions of SOX2 in this scenario with various signaling pathways in tumor development and cancer progression, its potential as a therapeutic target against many cancers are summarized and discussed in this article.
Collapse
Affiliation(s)
- Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Lina Ureka
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
2
|
Bosgana P, Nikou S, Dimitrakopoulos FI, Bravou V, Kalophonos C, Kourea E, Tzelepi V, Zolota V, Sampsonas F. Expression of Pluripotency Factors OCT4 and LIN28 Correlates with Survival Outcome in Lung Adenocarcinoma. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:870. [PMID: 38929487 PMCID: PMC11205930 DOI: 10.3390/medicina60060870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Lung adenocarcinoma is a leading cause of cancer-related mortality despite recent therapeutic advances. Cancer stem cells have gained increasing attention due to their ability to induce cancer cell proliferation through self-renewal and differentiation into multiple cell lineages. OCT4 and LIN28 (and their homologs A and B) have been identified as key regulators of pluripotency in mammalian embryonic (ES) and induced stem (IS) cells, and they are the crucial regulators of cancer progression. However, their exact role in lung adenocarcinoma has not yet been clarified. Materials and Methods: The aim of this study was to explore the role of the pluripotency factors OCT4 and LIN28 in a cohort of surgically resected human lung adenocarcinomas to reveal possible biomarkers for lung adenocarcinoma prognosis and potential therapeutic targets. The expressions of OCT4, LIN28A and LIN28B were analyzed in formalin-fixed, paraffin-embedded tissue samples from 96 patients with lung adenocarcinoma by immunohistochemistry. The results were analyzed with clinicopathologic parameters and were related to the prognosis of patients. Results: Higher OCT4 expression was related to an improved 5-year overall survival (OS) rate (p < 0.001). Nuclear LIN28B expression was lower in stage I and II tumors (p < 0.05) compared to advanced stage tumors. LIN28B cytoplasmic expression was associated with 5-year OS rates not only in univariate (p < 0.005), but also in multivariate analysis (where age, gender, histopathological subtype and stage were used as cofactors, p < 0.01 HR = 2.592). Patients with lower LIN28B expression showed improved 5-year OS rates compared to patients with increased LIN28B expression. Conclusions: Our findings indicate that OCT4 and LIN28B are implicated in lung adenocarcinoma progression and prognosis outcome; thus, they serve as promising prognostic biomarkers and putative therapeutic targets in lung adenocarcinomas.
Collapse
Affiliation(s)
- Pinelopi Bosgana
- Department of Pathology, Medical School, University of Patras, 26504 Rion, Greece; (P.B.); (E.K.); (V.T.); (V.Z.)
| | - Sophia Nikou
- Department of Anatomy, Embryology and Histology, Medical School, University of Patras, 26504 Rion, Greece; (S.N.); (V.B.)
| | | | - Vasiliki Bravou
- Department of Anatomy, Embryology and Histology, Medical School, University of Patras, 26504 Rion, Greece; (S.N.); (V.B.)
| | - Charalambos Kalophonos
- Division of Oncology, Department of Medicine, Medical School, University of Patras, 26504 Rion, Greece; (F.-I.D.); (C.K.)
| | - Eleni Kourea
- Department of Pathology, Medical School, University of Patras, 26504 Rion, Greece; (P.B.); (E.K.); (V.T.); (V.Z.)
| | - Vasiliki Tzelepi
- Department of Pathology, Medical School, University of Patras, 26504 Rion, Greece; (P.B.); (E.K.); (V.T.); (V.Z.)
| | - Vassiliki Zolota
- Department of Pathology, Medical School, University of Patras, 26504 Rion, Greece; (P.B.); (E.K.); (V.T.); (V.Z.)
| | - Fotios Sampsonas
- Department of Pulmonology, Medical School, University of Patras, 26504 Rion, Greece
| |
Collapse
|
3
|
Zhang Z, Wu Y, Fu J, Yu X, Su Y, Jia S, Cheng H, Shen Y, He X, Ren K, Zheng X, Guan H, Rao F, Zhao L. Proteostatic reactivation of the developmental transcription factor TBX3 drives BRAF/MAPK-mediated tumorigenesis. Nat Commun 2024; 15:4108. [PMID: 38750011 PMCID: PMC11096176 DOI: 10.1038/s41467-024-48173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
MAPK pathway-driven tumorigenesis, often induced by BRAFV600E, relies on epithelial dedifferentiation. However, how lineage differentiation events are reprogrammed remains unexplored. Here, we demonstrate that proteostatic reactivation of developmental factor, TBX3, accounts for BRAF/MAPK-mediated dedifferentiation and tumorigenesis. During embryonic development, BRAF/MAPK upregulates USP15 to stabilize TBX3, which orchestrates organogenesis by restraining differentiation. The USP15-TBX3 axis is reactivated during tumorigenesis, and Usp15 knockout prohibits BRAFV600E-driven tumor development in a Tbx3-dependent manner. Deleting Tbx3 or Usp15 leads to tumor redifferentiation, which parallels their overdifferentiation tendency during development, exemplified by disrupted thyroid folliculogenesis and elevated differentiation factors such as Tpo, Nis, Tg. The clinical relevance is highlighted in that both USP15 and TBX3 highly correlates with BRAFV600E signature and poor tumor prognosis. Thus, USP15 stabilized TBX3 represents a critical proteostatic mechanism downstream of BRAF/MAPK-directed developmental homeostasis and pathological transformation, supporting that tumorigenesis largely relies on epithelial dedifferentiation achieved via embryonic regulatory program reinitiation.
Collapse
Affiliation(s)
- Zhenlei Zhang
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yufan Wu
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jinrong Fu
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xiujie Yu
- Department of Pathology, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin, China
| | - Yang Su
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shikai Jia
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Huili Cheng
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yan Shen
- Department of Pathology, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin, China
| | - Xianghui He
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Kai Ren
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| | - Feng Rao
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Li Zhao
- Department of Thyroid and Neck Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
4
|
Bian Z, Wu X, Chen Q, Gao Q, Xue X, Wang Y. Oct4 activates IL-17A to orchestrate M2 macrophage polarization and cervical cancer metastasis. Cancer Immunol Immunother 2024; 73:73. [PMID: 38430256 PMCID: PMC10908604 DOI: 10.1007/s00262-023-03596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/10/2023] [Indexed: 03/03/2024]
Abstract
BACKGROUND Cervical cancer is a common malignant tumor in the female. Interleukin (IL)-17A is a proinflammatory factor and exerts a vital function in inflammatory diseases and cancers. M2 macrophage has been confirmed to promote tumor development. Nevertheless, it is not yet known whether IL-17A facilitates cervical cancer development by inducing M2 macrophage polarization. Therefore, this study was conducted to investigate the regulatory effect of IL-17A on M2 macrophage polarization and the underlying mechanism in cervical cancer development. METHODS RT-qPCR was utilized for testing IL-17A expression in cancer tissues and cells. Flow cytometry was applied to evaluate the M1 or M2 macrophage polarization. Cell proliferative, migratory, and invasive capabilities were measured through colony formation and transwell assays. ChIP and luciferase reporter assays were applied to determine the interaction between IL-17A and octamer-binding transcription factor 4 (OCT4). RESULTS IL-17A expression and concentration were high in metastatic tissues and cells of cervical cancer. IL-17A was found to facilitate M2 macrophage polarization in cervical cancer. Furthermore, IL-17A facilitated the macrophage-mediated promotion of cervical cancer cell proliferative, migratory, and invasive capabilities. Mechanistic assays manifested that Oct4 binds to and transcriptionally activated IL-17A in cervical cancer cells. Furthermore, Oct4 promoted cervical cancer cell malignant phenotype and M2 macrophage polarization by activating the p38 pathway that, in turn, upregulated IL-17A. Additionally, in vivo experiments confirmed that Oct4 knockdown reduced tumor growth and metastasis. CONCLUSION Oct4 triggers IL-17A to facilitate the polarization of M2 macrophages, which promotes cervical cancer cell metastasis.
Collapse
Affiliation(s)
- Zhuoqiong Bian
- Department of the Fifth Rheumatology, The Fifth Hospital of Xi'an City, Xi'an, 710000, Shaanxi, China
| | - Xiaoling Wu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Xi'an Jiao Tong University, 157 West Fifth Road, Xincheng District, Xi'an, 710000, Shaanxi, China
| | - Qing Chen
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Xi'an Jiao Tong University, 157 West Fifth Road, Xincheng District, Xi'an, 710000, Shaanxi, China
| | - Qing Gao
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Xi'an Jiao Tong University, 157 West Fifth Road, Xincheng District, Xi'an, 710000, Shaanxi, China
| | - Xiang Xue
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Xi'an Jiao Tong University, 157 West Fifth Road, Xincheng District, Xi'an, 710000, Shaanxi, China
| | - Yidong Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Xi'an Jiao Tong University, 157 West Fifth Road, Xincheng District, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
5
|
Zhou W, Yang Y, Wang W, Yang C, Cao Z, Lin X, Zhang H, Xiao Y, Zhang X. Pseudogene OCT4-pg5 upregulates OCT4B expression to promote bladder cancer progression by competing with miR-145-5p. Cell Cycle 2024; 23:645-661. [PMID: 38842275 PMCID: PMC11229759 DOI: 10.1080/15384101.2024.2353554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/05/2024] [Indexed: 06/07/2024] Open
Abstract
Bladder cancer (BC) is one of the most common malignant neoplasms worldwide. Competing endogenous RNA (ceRNA) networks may identify potential biomarkers associated with the progression and prognosis of BC. The OCT4-pg5/miR-145-5p/OCT4B ceRNA network was found to be related to the progression and prognosis of BC. OCT4-pg5 expression was significantly higher in BC cell lines than in normal bladder cells, with OCT4-pg5 expression correlating with OCT4B expression and advanced tumor grade. Overexpression of OCT4-pg5 and OCT4B promoted the proliferation and invasion of BC cells, whereas miR-145-5p suppressed these activities. The 3' untranslated region (3'UTR) of OCT4-pg5 competed for miR-145-5p, thereby increasing OCT4B expression. In addition, OCT4-pg5 promoted epithelial-mesenchymal transition (EMT) by activating the Wnt/β-catenin pathway and upregulating the expression of matrix metalloproteinases (MMPs) 2 and 9 as well as the transcription factors zinc finger E-box binding homeobox (ZEB) 1 and 2. Elevated expression of OCT4-pg5 and OCT4B reduced the sensitivity of BC cells to cisplatin by reducing apoptosis and increasing the proportion of cells in G1. The OCT4-pg5/miR-145-5p/OCT4B axis promotes the progression of BC by inducing EMT via the Wnt/β-catenin pathway and enhances cisplatin resistance. This axis may represent a therapeutic target in patients with BC.
Collapse
Affiliation(s)
- Wuer Zhou
- The Department of Urology, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Yue Yang
- The Department of Urology, General Hospital of Southern Theater Command, PLA, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wei Wang
- The Department of Urology, General Hospital of Southern Theater Command, PLA, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chenglin Yang
- The Department of Urology, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Zhi Cao
- The Department of Urology, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Xiaoyu Lin
- The Department of Urology, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Huifen Zhang
- The Department of Urology, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Yuansong Xiao
- The Department of Urology, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Xiaoming Zhang
- The Department of Urology, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| |
Collapse
|
6
|
Ma Y. OCT4‑positive circulating tumor cells may predict a poor prognosis in patients with metastatic castration‑resistant prostate cancer treated with abiraterone plus prednisone therapy. Oncol Lett 2023; 26:452. [PMID: 37720669 PMCID: PMC10502952 DOI: 10.3892/ol.2023.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/30/2023] [Indexed: 09/19/2023] Open
Abstract
Octamer-binding transcription factor 4 (OCT4) and circulating tumor cells (CTCs) are key factors associated with tumor metastasis and drug resistance in cancer. The present prospective study aimed to investigate the prevalence of OCT4-positive (OCT4+) CTCs and the potential association with the clinical features and survival of patients with metastatic castration-resistant prostate cancer (mCRPC) treated with abiraterone + prednisone. In total, 70 patients with mCRPC treated with abiraterone + prednisone were enrolled in the present study and peripheral blood samples were collected prior to treatment initiation to determine CTC count via a Canpatrol system. RNA in situ hybridization was performed for OCT4+ CTC quantification. Lactate dehydrogenase (LDH) was detected by automatic biochemical analyzer (AU54000, OLYMPUS). Results demonstrated that 34 (48.6%), 21 (30.0%) and 15 (21.4%) patients harbored OCT4+ (CTC+/OCT4+) or OCT4-negative CTCs (CTC+/OCT4-) or were CTC-negative (CTC-), respectively. Notably, CTC+/OCT4+ occurrence was associated with visceral metastasis and high levels of LDH. In addition, radiographic progression-free survival [rPFS; median, 15.0, 95% confidence interval (CI), 9.6-20.4 vs. not reached vs. median, 29.5, 95% CI, 18.6-40.4 months; P=0.001] and overall survival (OS) were significantly decreased (median, 27.3, 95% CI, 20.1-34.5 vs. not reached vs. not reached; P=0.016) in CTC+/OCT4+ compared with CTC+/OCT4- and CTC- patients. Subsequently, the adjustment was performed by multivariate Cox regression models, which revealed that CTC+/OCT4+ (vs. CTC+/OCT4- or CTC-) was independently associated with decreased rPFS [hazard ratio (HR), 3.833; P<0.001] and OS (HR, 3.938; P=0.008). In conclusion, OCT4+ CTCs were highly prevalent in patients with mCRPC and associated with visceral metastasis and increased levels of LDH. Thus, the presence of OCT4+ CTCs may serve as an independent prognostic factor for patients with mCRPC treated with abiraterone + prednisone.
Collapse
Affiliation(s)
- Yong Ma
- Department of Urology, Shanghai Songjiang District Sijing Hospital, Shanghai 201601, P.R. China
| |
Collapse
|
7
|
Zhang J, Wei Z, Qi X, Jiang Y, Liu D, Liu K. Kinesin family member 11 promotes progression of hepatocellular carcinoma via the OCT4 pathway. Funct Integr Genomics 2023; 23:284. [PMID: 37648881 DOI: 10.1007/s10142-023-01209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023]
Abstract
Hepatocellular carcinoma (HCC) is the tumor with the second highest mortality rate worldwide. Recent research data show that KIF11, a member of the kinesin family (KIF), plays an important role in the progression of various tumors. However, its expression and molecular mechanism in HCC remain elusive. Here, we evaluated the potential role of KIF11 in HCC. The effect of KIF11 was evaluated using the hepatocellular carcinoma cell lines, LM3 and Huh7, after genetic or pharmacological treatment. Evaluating the role of KIF11 in the xenograft animal models using its specific inhibitor. The role of KIF11 was systematically evaluated using specimens obtained from the aforementioned animal and cell models after various in vivo and in vitro experiments. The clinicopathological analysis showed that KIF11 was expressed at high levels in patients with hepatocellular carcinoma. Cell experiments in vitro showed that KIF11 deficiency significantly slowed the proliferation of liver tumor cells. And in the experiment using liver cancer cells overexpressing OCT4, overexpression of OCT4 substantially increased the proliferation of tumor cells compared with tumor cells with KIF11 knockdown alone. Both in vitro cell experiment and in vivo xenotransplantation tumor experiment showed that monastrol, an inhibitor of KIF11, could effectively delay the proliferation and migration of tumor cells. Based on these results, KIF11 is expressed at high levels in hepatocellular carcinoma and promotes tumor proliferation in an OCT4-dependent manner. KIF11 may become a therapeutic target for hepatocellular carcinoma, and its inhibitor monastrol may become a clinical antitumor drug.
Collapse
Affiliation(s)
- Ju Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, No. 139 Renminzhong Road, Changsha, 410012, China
| | - Zuxing Wei
- Department of General Surgery, The Second Xiangya Hospital of Central South University, No. 139 Renminzhong Road, Changsha, 410012, China
| | - Xiaoyan Qi
- Department of General Surgery, The Second Xiangya Hospital of Central South University, No. 139 Renminzhong Road, Changsha, 410012, China
| | - Yuhong Jiang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, No. 139 Renminzhong Road, Changsha, 410012, China
| | - Dekun Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, No. 139 Renminzhong Road, Changsha, 410012, China
| | - Kuijie Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, No. 139 Renminzhong Road, Changsha, 410012, China.
| |
Collapse
|
8
|
Lynch-Sutherland CF, McDougall LI, Stockwell PA, Almomani SN, Weeks RJ, Ludgate JL, Gamage TKJB, Chatterjee A, James JL, Eccles MR, Macaulay EC. The transposable element-derived transcript of LIN28B has a placental origin and is not specific to tumours. Mol Genet Genomics 2023:10.1007/s00438-023-02033-1. [PMID: 37269361 PMCID: PMC10363060 DOI: 10.1007/s00438-023-02033-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 05/15/2023] [Indexed: 06/05/2023]
Abstract
Transposable elements (TEs) are genetic elements that have evolved as crucial regulators of human development and cancer, functioning as both genes and regulatory elements. When TEs become dysregulated in cancer cells, they can serve as alternate promoters to activate oncogenes, a process known as onco-exaptation. This study aimed to explore the expression and epigenetic regulation of onco-exaptation events in early human developmental tissues. We discovered co-expression of some TEs and oncogenes in human embryonic stem cells and first trimester and term placental tissues. Previous studies identified onco-exaptation events in various cancer types, including an AluJb SINE element-LIN28B interaction in lung cancer cells, and showed that the TE-derived LIN28B transcript is associated with poor patient prognosis in hepatocellular carcinoma. This study further characterized the AluJb-LIN28B transcript and confirmed that its expression is restricted to the placenta. Targeted DNA methylation analysis revealed differential methylation of the two LIN28B promoters between placenta and healthy somatic tissues, indicating that some TE-oncogene interactions are not cancer-specific but arise from the epigenetic reactivation of developmental TE-derived regulatory events. In conclusion, our findings provide evidence that some TE-oncogene interactions are not limited to cancer and may originate from the epigenetic reactivation of TE-derived regulatory events that are involved in early development. These insights broaden our understanding of the role of TEs in gene regulation and suggest the potential importance of targeting TEs in cancer therapy beyond their conventional use as cancer-specific markers.
Collapse
Affiliation(s)
- Chiemi F Lynch-Sutherland
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand.
| | - Lorissa I McDougall
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Peter A Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Suzan N Almomani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Robert J Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Jackie L Ludgate
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Teena K J B Gamage
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Erin C Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| |
Collapse
|
9
|
Roy A, Niharika, Chakraborty S, Mishra J, Singh SP, Patra SK. Mechanistic aspects of reversible methylation modifications of arginine and lysine of nuclear histones and their roles in human colon cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:261-302. [PMID: 37019596 DOI: 10.1016/bs.pmbts.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Developmental proceedings and maintenance of cellular homeostasis are regulated by the precise orchestration of a series of epigenetic events that eventually control gene expression. DNA methylation and post-translational modifications (PTMs) of histones are well-characterized epigenetic events responsible for fine-tuning gene expression. PTMs of histones bear molecular logic of gene expression at chromosomal territory and have become a fascinating field of epigenetics. Nowadays, reversible methylation on histone arginine and lysine is gaining increasing attention as a significant PTM related to reorganizing local nucleosomal structure, chromatin dynamics, and transcriptional regulation. It is now well-accepted and reported that histone marks play crucial roles in colon cancer initiation and progression by encouraging abnormal epigenomic reprogramming. It is becoming increasingly clear that multiple PTM marks at the N-terminal tails of the core histones cross-talk with one another to intricately regulate DNA-templated biological processes such as replication, transcription, recombination, and damage repair in several malignancies, including colon cancer. These functional cross-talks provide an additional layer of message, which spatiotemporally fine-tunes the overall gene expression regulation. Nowadays, it is evident that several PTMs instigate colon cancer development. How colon cancer-specific PTM patterns or codes are generated and how they affect downstream molecular events are uncovered to some extent. Future studies would address more about epigenetic communication, and the relationship between histone modification marks to define cellular functions in depth. This chapter will comprehensively highlight the importance of histone arginine and lysine-based methylation modifications and their functional cross-talk with other histone marks from the perspective of colon cancer development.
Collapse
|
10
|
Roy A, Patra SK. Lipid Raft Facilitated Receptor Organization and Signaling: A Functional Rheostat in Embryonic Development, Stem Cell Biology and Cancer. Stem Cell Rev Rep 2023; 19:2-25. [PMID: 35997871 DOI: 10.1007/s12015-022-10448-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 01/29/2023]
Abstract
Molecular views of plasma membrane organization and dynamics are gradually changing over the past fifty years. Dynamics of plasma membrane instigate several signaling nexuses in eukaryotic cells. The striking feature of plasma membrane dynamics is that, it is internally transfigured into various subdomains of clustered macromolecules. Lipid rafts are nanoscale subdomains, enriched with cholesterol and sphingolipids, reside as floating entity mostly on the exoplasmic leaflet of the lipid bilayer. In terms of functionality, lipid rafts are unique among other membrane subdomains. Herein, advances on the roles of lipid rafts in cellular physiology and homeostasis are discussed, precisely, on how rafts dynamically harbor signaling proteins, including GPCRs, catalytic receptors, and ionotropic receptors within it and orchestrate multiple signaling pathways. In the developmental proceedings signaling are designed for patterning of overall organism and they differ from the somatic cell physiology and signaling of fully developed organisms. Some of the developmental signals are characteristic in maintenance of stemness and activated during several types of tumor development and cancer progression. The harmony between extracellular signaling and lineage specific transcriptional programs are extremely important for embryonic development. The roles of plasma membrane lipid rafts mediated signaling in lineage specificity, early embryonic development, stem cell maintenance are emerging. In view of this, we have highlighted and analyzed the roles of lipid rafts in receptor organization, cell signaling, and gene expression during embryonic development; from pre-implantation through the post-implantation phase, in stem cell and cancer biology.
Collapse
Affiliation(s)
- Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
11
|
Singh A, Rajeevan A, Gopalan V, Agrawal P, Day CP, Hannenhalli S. Broad misappropriation of developmental splicing profile by cancer in multiple organs. Nat Commun 2022; 13:7664. [PMID: 36509773 PMCID: PMC9744839 DOI: 10.1038/s41467-022-35322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Oncogenesis mimics key aspects of embryonic development. However, the underlying mechanisms are incompletely understood. Here, we demonstrate that the splicing events specifically active during human organogenesis, are broadly reactivated in the organ-specific tumor. Such events are associated with key oncogenic processes and predict proliferation rates in cancer cell lines as well as patient survival. Such events preferentially target nitrosylation and transmembrane-region domains, whose coordinated splicing in multiple genes respectively affect intracellular transport and N-linked glycosylation. We infer critical splicing factors potentially regulating embryonic splicing events and show that such factors are potential oncogenic drivers and are upregulated specifically in malignant cells. Multiple complementary analyses point to MYC and FOXM1 as potential transcriptional regulators of critical splicing factors in brain and liver. Our study provides a comprehensive demonstration of a splicing-mediated link between development and cancer, and suggest anti-cancer targets including splicing events, and their upstream splicing and transcriptional regulators.
Collapse
Affiliation(s)
- Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Arati Rajeevan
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Piyush Agrawal
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Ma J, Zhang L, Li S, Liu H. BRPCA: Bounded Robust Principal Component Analysis to Incorporate Similarity Network for N7-Methylguanosine(m 7G) Site-Disease Association Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3295-3306. [PMID: 34469307 DOI: 10.1109/tcbb.2021.3109055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recent studies have revealed that N7-methylguanosine(m7G) plays a pivotal role in various biological processes and disease pathogenesis. To date, transcriptome-wide m7G modification sites have been identified by high-throughput sequencing approaches, and some related information has been recorded in a few biological databases. However, the mechanism of site action in disease remains uncharted. Wet experiments can help identify true m7G sites with high confidence, but it is time-consuming to find the true ones in such a large number of sites, which will also cost too much. Thus, computational methods are emergently needed to predict the associations between m7G sites and various diseases, thus help to uncover potential active sites for specific diseases. In this article, we proposed a bounded robust principal component analysis (BRPCA) method to predict unknown m7G-disease association based on similarity information. Importantly, BRPCA tolerates the noise and redundancy existing in association and similarity information. Moreover, a suitable bounded constraint is incorporated into BRPCA to ensure that the predicted association scores locate in a meaningful interval. The extensive experiments demonstrate the superiority and robustness of the BRPCA.
Collapse
|
13
|
Abstract
As one of the prevalent posttranscriptional modifications of RNA, N7-methylguanosine (m7G) plays essential roles in RNA processing, metabolism, and function, mainly regulated by the methyltransferase-like 1 (METTL1) and WD repeat domain 4 (WDR4) complex. Emerging evidence suggests that the METTL1/WDR4 complex promoted or inhibited the processes of many tumors, including head and neck, lung, liver, colon, bladder cancer, and teratoma, dependent on close m7G methylation modification of tRNA or microRNA (miRNA). Therefore, METTL1 and m7G modification can be used as biomarkers or potential intervention targets, providing new possibilities for early diagnosis and treatment of tumors. This review will mainly focus on the mechanisms of METTL1/WDR4 via m7G in tumorigenesis and the corresponding detection methods.
Collapse
Affiliation(s)
- Wenli Cheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Aili Gao
- Guangzhou Institution of Dermatology, Guangzhou, Guangdong 510095, P.R. China
| | - Hui Lin
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P. R. China
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
14
|
Patra SK, Szyf M. Epigenetic perspectives of COVID-19: Virus infection to disease progression and therapeutic control. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166527. [PMID: 36002132 PMCID: PMC9393109 DOI: 10.1016/j.bbadis.2022.166527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022]
Abstract
COVID-19 has caused numerous deaths as well as imposed social isolation and upheaval world-wide. Although, the genome and the composition of the virus, the entry process and replication mechanisms are well investigated from by several laboratories across the world, there are many unknown remaining questions. For example, what are the functions of membrane lipids during entry, packaging and exit of virus particles? Also, the metabolic aspects of the infected tissue cells are poorly understood. In the course of virus replication and formation of virus particles within the host cell, the enhanced metabolic activities of the host is directly proportional to viral loads. The epigenetic landscape of the host cells is also altered, particularly the expression/repression of genes associated with cellular metabolism as well as cellular processes that are antagonistic to the virus. Metabolic pathways are enzyme driven processes and the expression profile and mechanism of regulations of the respective genes encoding those enzymes during the course of pathogen invasion might be highly informative on the course of the disease. Recently, the metabolic profile of the patients' sera have been analysed from few patients. In view of this, and to gain further insights into the roles that epigenetic mechanisms might play in this scenario in regulation of metabolic pathways during the progression of COVID-19 are discussed and summarised in this contribution for ensuring best therapy.
Collapse
Affiliation(s)
- Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| | - Moshe Szyf
- Department of Pharmacology & Therapeutics, McIntyre Medical Sciences Building, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
15
|
Morais de Castro E, Barbosa LV, Fonseca AS, Nagashima S, Vaz de Paula CB, Zeni R, Cavalli LR, Torres LFB, de Noronha L, Machado-Souza C. Pediatric Astrocytomas and Their Association With Polymorphisms in Embryonic Stem Cell Marker Genes. J Child Neurol 2022; 37:534-540. [PMID: 35450457 DOI: 10.1177/08830738221091043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Embryonic stem cell markers, such as SOX2, NANOG, and OCT4, are transcription factors expressed in pluripotent stem cells, involved in the mediation of pluripotency and self-renewal. Especially after the discovery of cancer stem cells, these proteins have been associated with several types of neoplasia, including astrocytomas. In the pediatric population, astrocytomas are the most common solid neoplasia and present the highest mortality rates. METHODS Our study evaluated 5 polymorphisms in SOX2, NANOG, and POU5F1 genes in 101 pediatric astrocytoma samples. RESULTS We describe the associations between wild and polymorphic alleles in astrocytomas. CONCLUSIONS In our results, the intronic polymorphic G allele in SOX2 rs77677339 [G/A] had a borderline association with low-grade astrocytomas, and the intronic polymorphic T allele in NANOG rs10845877 [C/T] showed a higher frequency in grade 2, compared to grade 1 astrocytomas, thus showing promising results. IMPACT Our study is relevant because it shows a potential correlation between polymorphic embryonic stem cell marker genes and pediatric astrocytomas.
Collapse
Affiliation(s)
- Eduardo Morais de Castro
- Postgraduation Program in Biotechnology Applied in Health of Children and Adolescent of Faculdades Pequeno Príncipe, 245143Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Leonardo Vinícius Barbosa
- Postgraduation Program in Biotechnology Applied in Health of Children and Adolescent of Faculdades Pequeno Príncipe, 245143Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Aline Simoneti Fonseca
- Postgraduation Program in Biotechnology Applied in Health of Children and Adolescent of Faculdades Pequeno Príncipe, 245143Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Seigo Nagashima
- Postgraduation Program in Health Sciences of School of Medicine, 28100Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Caroline Busatta Vaz de Paula
- Postgraduation Program in Health Sciences of School of Medicine, 28100Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Rafaela Zeni
- 230939Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Luciane R Cavalli
- Postgraduation Program in Biotechnology Applied in Health of Children and Adolescent of Faculdades Pequeno Príncipe, 245143Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | | | - Lucia de Noronha
- Postgraduation Program in Health Sciences of School of Medicine, 28100Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Cleber Machado-Souza
- Postgraduation Program in Biotechnology Applied in Health of Children and Adolescent of Faculdades Pequeno Príncipe, 245143Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| |
Collapse
|
16
|
Zheng Y, You H, Duan J, Chen B, Wu C, Chen P, Wang M. Centromere protein N promotes lung adenocarcinoma progression by activating PI3K/AKT signaling pathway. Genes Genomics 2022; 44:1039-1049. [PMID: 35150399 DOI: 10.1007/s13258-021-01215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND As an important member of centromere family, centromere associated protein N (CENPN) was abnormally expressed in varied malignant tumors. OBJECTIVE This paper aimed to analyze the expression and related mechanism of CENPN in lung adenocarcinoma (LUAD). METHODS The expression of CENPN in LUAD was analyzed by Gene Expression Profiling Interactive Analysis (GEPIA) database. The mRNA expression, protein expression, cell viability, cell invasion, cell apoptosis, cell stem like characteristics were detected by RT-PCR, western blot, CCK8 assay, transwell assay, flow cytometry and spheroidization assay, respectively. Finally, the pathological changes of xenograft were estimated by H&E staining, and the expression of proteins was detected by immunohistochemistry. RESULTS GEPIA analysis showed that the CENPN expression in LUAD was significantly higher than that in normal lung tissue, which was negatively correlated with the prognosis. These results were consistent with our clinical data. Besides, CENPN was highly expressed in LUAD cell lines. In addition, the upregulation of CENPN amplified the cell viability, stemness and invasive ability in PC9 cells. However, the knockdown of CENPN inhibited the cell activity, stemness, invasive ability with increased cell apoptosis in A549. Furthermore, CENPN could positively regulate the phosphorylation of PI3K and AKT. The PI3K inhibitor, 740Y-P, could reverse the effect of CENPN silencing on the expression of Ki-67, cleaved caspase 3, OCT4, and snail 1. Finally, the downregulation of CENPN restrained the growth of xenograft and inactivated the PI3K/AKT pathway. CONCLUSION CENPN was abnormally overexpressed in LUAD, and promoted tumor progression of LUAD by affecting PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Hui You
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Jingzhu Duan
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Biyu Chen
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Chenlin Wu
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Peipei Chen
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Meifang Wang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China.
| |
Collapse
|
17
|
Szymonik J, Wala K, Górnicki T, Saczko J, Pencakowski B, Kulbacka J. The Impact of Iron Chelators on the Biology of Cancer Stem Cells. Int J Mol Sci 2021; 23:ijms23010089. [PMID: 35008527 PMCID: PMC8745085 DOI: 10.3390/ijms23010089] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
Neoplastic diseases are still a major medical challenge, requiring a constant search for new therapeutic options. A serious problem of many cancers is resistance to anticancer drugs and disease progression in metastases or local recurrence. These characteristics of cancer cells may be related to the specific properties of cancer stem cells (CSC). CSCs are involved in inhibiting cells’ maturation, which is essential for maintaining their self-renewal capacity and pluripotency. They show increased expression of transcription factor proteins, which were defined as stemness-related markers. This group of proteins includes OCT4, SOX2, KLF4, Nanog, and SALL4. It has been noticed that the metabolism of cancer cells is changed, and the demand for iron is significantly increased. Iron chelators have been proven to have antitumor activity and influence the expression of stemness-related markers, thus reducing chemoresistance and the risk of tumor cell progression. This prompts further investigation of these agents as promising anticancer novel drugs. The article presents the characteristics of stemness markers and their influence on the development and course of neoplastic disease. Available iron chelators were also described, and their effects on cancer cells and expression of stemness-related markers were analyzed.
Collapse
Affiliation(s)
- Julia Szymonik
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.S.); (K.W.); (T.G.)
| | - Kamila Wala
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.S.); (K.W.); (T.G.)
| | - Tomasz Górnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.S.); (K.W.); (T.G.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Bartosz Pencakowski
- Department of Pharmaceutical Biology and Botany, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-784-06-88
| |
Collapse
|
18
|
Arora I, Tollefsbol TO. Computational methods and next-generation sequencing approaches to analyze epigenetics data: Profiling of methods and applications. Methods 2021; 187:92-103. [PMID: 32941995 PMCID: PMC7914156 DOI: 10.1016/j.ymeth.2020.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
Epigenetics is mainly comprised of features that regulate genomic interactions thereby playing a crucial role in a vast array of biological processes. Epigenetic mechanisms such as DNA methylation and histone modifications influence gene expression by modulating the packaging of DNA in the nucleus. A plethora of studies have emphasized the importance of analyzing epigenetics data through genome-wide studies and high-throughput approaches, thereby providing key insights towards epigenetics-based diseases such as cancer. Recent advancements have been made towards translating epigenetics research into a high throughput approach such as genome-scale profiling. Amongst all, bioinformatics plays a pivotal role in achieving epigenetics-related computational studies. Despite significant advancements towards epigenomic profiling, it is challenging to understand how various epigenetic modifications such as chromatin modifications and DNA methylation regulate gene expression. Next-generation sequencing (NGS) provides accurate and parallel sequencing thereby allowing researchers to comprehend epigenomic profiling. In this review, we summarize different computational methods such as machine learning and other bioinformatics tools, publicly available databases and resources to identify key modifications associated with epigenetic machinery. Additionally, the review also focuses on understanding recent methodologies related to epigenome profiling using NGS methods ranging from library preparation, different sequencing platforms and analytical techniques to evaluate various epigenetic modifications such as DNA methylation and histone modifications. We also provide detailed information on bioinformatics tools and computational strategies responsible for analyzing large scale data in epigenetics.
Collapse
Affiliation(s)
- Itika Arora
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA; Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA; Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA; Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA; Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|