1
|
Kolotyeva NA, Groshkov AA, Rozanova NA, Berdnikov AK, Novikova SV, Komleva YK, Salmina AB, Illarioshkin SN, Piradov MA. Pathobiochemistry of Aging and Neurodegeneration: Deregulation of NAD+ Metabolism in Brain Cells. Biomolecules 2024; 14:1556. [PMID: 39766263 PMCID: PMC11673498 DOI: 10.3390/biom14121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
NAD+ plays a pivotal role in energy metabolism and adaptation to external stimuli and stressful conditions. A significant reduction in intracellular NAD+ levels is associated with aging and contributes to the development of chronic cardiovascular, neurodegenerative, and metabolic diseases. It is of particular importance to maintain optimal levels of NAD+ in cells with high energy consumption, particularly in the brain. Maintaining the tissue level of NAD+ with pharmacological tools has the potential to slow down the aging process, to prevent the development of age-related diseases. This review covers key aspects of NAD+ metabolism in terms of brain metabolic plasticity, including NAD+ biosynthesis and degradation in different types of brain cells, as well as its contribution to the development of neurodegeneration and aging, and highlights up-to-date approaches to modulate NAD+ levels in brain cells.
Collapse
|
2
|
Vaiasicca S, Balietti M, Bevilacqua L, Giorgetti B, Casoli T. Convergence between brain aging and Alzheimer's disease: Focus on mitochondria. Mech Ageing Dev 2024; 222:112001. [PMID: 39490933 DOI: 10.1016/j.mad.2024.112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) accounts for the majority of dementia cases, with aging being the primary risk factor for developing this neurodegenerative condition. Aging and AD share several characteristics, including the formation of amyloid plaques and neurofibrillary tangles, synaptic loss, and neuroinflammation. This overlap suggests that mechanisms driving the aging process might also promote AD; however, the underlying processes are not yet fully understood. In this narrative review, we will focus on the role of mitochondria, not only as the "powerhouse of the cell", but also in programmed cell death, immune response, macromolecular synthesis, and calcium regulation. We will explore both the common changes between aging and AD and the differences between them. Additionally, we will provide an overview of interventions aimed at maintaining mitochondrial function in an attempt to slow the progression of AD. This will include a discussion of antioxidant molecules, factors that trigger mitochondrial biogenesis, compounds capable of restoring the fission/fusion balance, and a particular focus on recent techniques for mitochondrial DNA gene therapy.
Collapse
Affiliation(s)
| | - Marta Balietti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona 60121, Italy.
| | - Lisa Bevilacqua
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona 60121, Italy
| | | | - Tiziana Casoli
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona 60121, Italy
| |
Collapse
|
3
|
Guo R, Yang S, Wiesner HM, Li Y, Zhao Y, Liang ZP, Chen W, Zhu XH. Mapping intracellular NAD content in entire human brain using phosphorus-31 MR spectroscopic imaging at 7 Tesla. Front Neurosci 2024; 18:1389111. [PMID: 38911598 PMCID: PMC11190064 DOI: 10.3389/fnins.2024.1389111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Nicotinamide adenine dinucleotide (NAD) is a crucial molecule in cellular metabolism and signaling. Mapping intracellular NAD content of human brain has long been of interest. However, the sub-millimolar level of cerebral NAD concentration poses significant challenges for in vivo measurement and imaging. Methods In this study, we demonstrated the feasibility of non-invasively mapping NAD contents in entire human brain by employing a phosphorus-31 magnetic resonance spectroscopic imaging (31P-MRSI)-based NAD assay at ultrahigh field (7 Tesla), in combination with a probabilistic subspace-based processing method. Results The processing method achieved about a 10-fold reduction in noise over raw measurements, resulting in remarkably reduced estimation errors of NAD. Quantified NAD levels, observed at approximately 0.4 mM, exhibited good reproducibility within repeated scans on the same subject and good consistency across subjects in group data (2.3 cc nominal resolution). One set of higher-resolution data (1.0 cc nominal resolution) unveiled potential for assessing tissue metabolic heterogeneity, showing similar NAD distributions in white and gray matter. Preliminary analysis of age dependence suggested that the NAD level decreases with age. Discussion These results illustrate favorable outcomes of our first attempt to use ultrahigh field 31P-MRSI and advanced processing techniques to generate a whole-brain map of low-concentration intracellular NAD content in the human brain.
Collapse
Affiliation(s)
- Rong Guo
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Siemens Medical Solutions USA, Inc., Urbana, IL, United States
| | - Shaolin Yang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hannes M. Wiesner
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Yudu Li
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yibo Zhao
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Zhi-Pei Liang
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Wei Chen
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Xiao-Hong Zhu
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
4
|
Rombaut A, Jovancevic D, Wong RCB, Nicol A, Brautaset R, Finkelstein DI, Nguyen CTO, Tribble JR, Williams PA. Intravitreal MPTP drives retinal ganglion cell loss with oral nicotinamide treatment providing robust neuroprotection. Acta Neuropathol Commun 2024; 12:79. [PMID: 38773545 PMCID: PMC11107037 DOI: 10.1186/s40478-024-01782-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
Neurodegenerative diseases have common underlying pathological mechanisms including progressive neuronal dysfunction, axonal and dendritic retraction, and mitochondrial dysfunction resulting in neuronal death. The retina is often affected in common neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Studies have demonstrated that the retina in patients with Parkinson's disease undergoes changes that parallel the dysfunction in the brain. These changes classically include decreased levels of dopamine, accumulation of alpha-synuclein in the brain and retina, and death of dopaminergic nigral neurons and retinal amacrine cells leading to gross neuronal loss. Exploring this disease's retinal phenotype and vision-related symptoms is an important window for elucidating its pathophysiology and progression, and identifying novel ways to diagnose and treat Parkinson's disease. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used to model Parkinson's disease in animal models. MPTP is a neurotoxin converted to its toxic form by astrocytes, transported to neurons through the dopamine transporter, where it causes mitochondrial Complex I inhibition and neuron degeneration. Systemic administration of MPTP induces retinal changes in different animal models. In this study, we assessed the effects of MPTP on the retina directly via intravitreal injection in mice (5 mg/mL and 50 mg/mL to 7, 14 and 21 days post-injection). MPTP treatment induced the reduction of retinal ganglion cells-a sensitive neuron in the retina-at all time points investigated. This occurred without a concomitant loss of dopaminergic amacrine cells or neuroinflammation at any of the time points or concentrations tested. The observed neurodegeneration which initially affected retinal ganglion cells indicated that this method of MPTP administration could yield a fast and straightforward model of retinal ganglion cell neurodegeneration. To assess whether this model could be amenable to neuroprotection, mice were treated orally with nicotinamide (a nicotinamide adenine dinucleotide precursor) which has been demonstrated to be neuroprotective in several retinal ganglion cell injury models. Nicotinamide was strongly protective following intravitreal MPTP administration, further supporting intravitreal MPTP use as a model of retinal ganglion cell injury. As such, this model could be utilized for testing neuroprotective treatments in the context of Parkinson's disease and retinal ganglion cell injury.
Collapse
Affiliation(s)
- Anne Rombaut
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Danica Jovancevic
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Raymond Ching-Bong Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| | - Alan Nicol
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Rune Brautaset
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - David I Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Christine T O Nguyen
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| | - James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Samson JS, Ramesh A, Parvathi VD. Development of Midbrain Dopaminergic Neurons and the Advantage of Using hiPSCs as a Model System to Study Parkinson's Disease. Neuroscience 2024; 546:1-19. [PMID: 38522661 DOI: 10.1016/j.neuroscience.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Midbrain dopaminergic (mDA) neurons are significantly impaired in patients inflicted with Parkinson's disease (PD), subsequently affecting a variety of motor functions. There are four pathways through which dopamine elicits its function, namely, nigrostriatal, mesolimbic, mesocortical and tuberoinfundibular dopamine pathways. SHH and Wnt signalling pathways in association with favourable expression of a variety of genes, promotes the development and differentiation of mDA neurons in the brain. However, there is a knowledge gap regarding the complex signalling pathways involved in development of mDA neurons. hiPSC models have been acclaimed to be effective in generating complex disease phenotypes. These models mimic the microenvironment found in vivo thus ensuring maximum reliability. Further, a variety of therapeutic compounds can be screened using hiPSCs since they can be used to generate neurons that could carry an array of mutations associated with both familial and sporadic PD. Thus, culturing hiPSCs to study gene expression and dysregulation of cellular processes associated with PD can be useful in developing targeted therapies that will be a step towards halting disease progression.
Collapse
Affiliation(s)
- Jennifer Sally Samson
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India
| | - Anuradha Ramesh
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India.
| |
Collapse
|
6
|
Iqbal T, Nakagawa T. The therapeutic perspective of NAD + precursors in age-related diseases. Biochem Biophys Res Commun 2024; 702:149590. [PMID: 38340651 DOI: 10.1016/j.bbrc.2024.149590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is the fundamental molecule that performs numerous biological reactions and is crucial for maintaining cellular homeostasis. Studies have found that NAD+ decreases with age in certain tissues, and age-related NAD+ depletion affects physiological functions and contributes to various aging-related diseases. Supplementation of NAD+ precursor significantly elevates NAD+ levels in murine tissues, effectively mitigates metabolic syndrome, enhances cardiovascular health, protects against neurodegeneration, and boosts muscular strength. Despite the versatile therapeutic functions of NAD+ in animal studies, the efficacy of NAD+ precursors in clinical studies have been limited compared with that in the pre-clinical study. Clinical studies have demonstrated that NAD+ precursor treatment efficiently increases NAD+ levels in various tissues, though their clinical proficiency is insufficient to ameliorate the diseases. However, the latest studies regarding NAD+ precursors and their metabolism highlight the significant role of gut microbiota. The studies found that orally administered NAD+ intermediates interact with the gut microbiome. These findings provide compelling evidence for future trials to further explore the involvement of gut microbiota in NAD+ metabolism. Also, the reduced form of NAD+ precursor shows their potential to raise NAD+, though preclinical studies have yet to discover their efficacy. This review sheds light on NAD+ therapeutic efficiency in preclinical and clinical studies and the effect of the gut microbiota on NAD+ metabolism.
Collapse
Affiliation(s)
- Tooba Iqbal
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan; Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan.
| |
Collapse
|
7
|
Pugel AD, Schoenfeld AM, Alsaifi SZ, Holmes JR, Morrison BE. The Role of NAD + and NAD +-Boosting Therapies in Inflammatory Response by IL-13. Pharmaceuticals (Basel) 2024; 17:226. [PMID: 38399441 PMCID: PMC10893221 DOI: 10.3390/ph17020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The essential role of nicotinamide adenine dinucleotide+ (NAD+) in redox reactions during oxidative respiration is well known, yet the coenzyme and regulator functions of NAD+ in diverse and important processes are still being discovered. Maintaining NAD+ levels through diet is essential for health. In fact, the United States requires supplementation of the NAD+ precursor niacin into the food chain for these reasons. A large body of research also indicates that elevating NAD+ levels is beneficial for numerous conditions, including cancer, cardiovascular health, inflammatory response, and longevity. Consequently, strategies have been created to elevate NAD+ levels through dietary supplementation with NAD+ precursor compounds. This paper explores current research regarding these therapeutic compounds. It then focuses on the NAD+ regulation of IL-13 signaling, which is a research area garnering little attention. IL-13 is a critical regulator of allergic response and is associated with Parkinson's disease and cancer. Evidence supporting the notion that increasing NAD+ levels might reduce IL-13 signal-induced inflammatory response is presented. The assessment is concluded with an examination of reports involving popular precursor compounds that boost NAD+ and their associations with IL-13 signaling in the context of offering a means for safely and effectively reducing inflammatory response by IL-13.
Collapse
Affiliation(s)
- Anton D. Pugel
- Biomolecular Ph.D. Program, Boise State University, Boise, ID 83725, USA;
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| | - Alyssa M. Schoenfeld
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| | - Sara Z. Alsaifi
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| | - Jocelyn R. Holmes
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| | - Brad E. Morrison
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| |
Collapse
|
8
|
Trinh D, Israwi AR, Brar H, Villafuerte JEA, Laylo R, Patel H, Jafri S, Al Halabi L, Sinnathurai S, Reehal K, Shi A, Gnanamanogaran V, Garabedian N, Pham I, Thrasher D, Monnier PP, Volpicelli-Daley LA, Nash JE. Parkinson's disease pathology is directly correlated to SIRT3 in human subjects and animal models: Implications for AAV.SIRT3-myc as a disease-modifying therapy. Neurobiol Dis 2023; 187:106287. [PMID: 37704058 DOI: 10.1016/j.nbd.2023.106287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023] Open
Abstract
In Parkinson's disease (PD), post-mortem studies in affected brain regions have demonstrated a decline in mitochondrial number and function. This combined with many studies in cell and animal models suggest that mitochondrial dysfunction is central to PD pathology. We and others have shown that the mitochondrial protein deacetylase, SIRT3, has neurorestorative effects in PD models. In this study, to determine whether there is a link between PD pathology and SIRT3, we analysed SIRT3 levels in human subjects with PD, and compared to age-matched controls. In the SNc of PD subjects, SIRT3 was reduced by 56.8 ± 15.5% compared to control, regardless of age (p < 0.05, R = 0.6539). Given that age is the primary risk factor for PD, this finding suggests that reduced SIRT3 may contribute to PD pathology. Next, we measured whether there was a correlation between α-synuclein and SIRT3. In a parallel study, we assessed the disease-modifying potential of SIRT3 over-expression in a seeding model of α-synuclein. In PFF rats, infusion of rAAV1.SIRT3-myc reduced abundance of α-synuclein inclusions by 30.1 ± 18.5%. This was not observed when deacetylation deficient SIRT3H248Y was transduced, demonstrating the importance of SIRT3 deacetylation in reducing α-synuclein aggregation. These studies confirm that there is a clear difference in SIRT3 levels in subjects with PD compared to age-matched controls, suggesting a link between SIRT3 and the progression of PD. We also demonstrate that over-expression of SIRT3 reduces α-synuclein aggregation, further validating AAV.SIRT3-myc as a potential disease-modifying solution for PD.
Collapse
Affiliation(s)
- Dennison Trinh
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Ahmad R Israwi
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Harsimar Brar
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Jose E A Villafuerte
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Ruella Laylo
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Humaiyra Patel
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Sabika Jafri
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Lina Al Halabi
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Shaumia Sinnathurai
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Kiran Reehal
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Alyssa Shi
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | - Natalie Garabedian
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Ivy Pham
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Drake Thrasher
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Philippe P Monnier
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Joanne E Nash
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Perez MJ, Deleidi M. New insights into the autophagy-NAD axis in brain disease. Cell Rep 2023; 42:112420. [PMID: 37083331 DOI: 10.1016/j.celrep.2023.112420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Sun et al. demonstrate that defects in autophagy cause nicotinamide adenine dinucleotide (NAD) depletion and neurotoxicity.1 Restoring NAD levels rescues cytotoxicity in autophagy-deficient neurons, providing a potential therapy for neurodegenerative and lysosomal storage diseases associated with autophagy defects.
Collapse
Affiliation(s)
- Maria Jose Perez
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Michela Deleidi
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Institut Imagine, INSERM UMR1163 Paris Cité University, 24 boulevard du Montparnasse, 75015 Paris, France.
| |
Collapse
|
10
|
Chen L, Chen M, Luo M, Li Y, Liao B, Hu M, Yu Q. Ratiometric NAD + Sensors Reveal Subcellular NAD + Modulators. ACS Sens 2023; 8:1518-1528. [PMID: 36931900 DOI: 10.1021/acssensors.2c02565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Mapping NAD+ dynamics in live cells and human is essential for translating NAD+ interventions into effective therapies. Yet, genetically encoded NAD+ sensors with better specificity and pH resistance are still needed for the cost-effective monitoring of NAD+ in both subcellular compartments and clinical samples. Here, we introduce multicolor, resonance energy transfer-based NAD+ sensors covering nano- to millimolar concentration ranges for clinical NAD+ measurement and subcellular NAD+ visualization. The sensors captured the blood NAD+ increase induced by NMN supplementation and revealed the distinct subcellular effects of NAD+ precursors and modulators. The sensors then enabled high-throughput screenings for mitochondrial and nuclear NAD+ modulators and identified α-GPC, a cognition-related metabolite that induces NAD+ redistribution from mitochondria to the nucleus relative to the total adenine nucleotides, which was further confirmed by NAD+ FRET microscopy.
Collapse
Affiliation(s)
- Liuqing Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen 518055, China
| | - Meiting Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mupeng Luo
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yong Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bagen Liao
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510150, China
| | - Min Hu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510150, China
| | - Qiuliyang Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen 518055, China
| |
Collapse
|
11
|
ATP and NAD + Deficiency in Parkinson's Disease. Nutrients 2023; 15:nu15040943. [PMID: 36839301 PMCID: PMC9961646 DOI: 10.3390/nu15040943] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The goal of this study is to identify a signature of bioenergetic and functional markers in the muscles of individuals with Parkinson's disease (PD). Quantitative physiological properties of in vivo hand muscle (FDI, first dorsal interosseus) and leg muscle (TA, Tibialis Anterior) of older individuals with PD were compared to historical age/gender-matched controls (N = 30). Magnetic resonance spectroscopy and imaging (MRS) were used to assess in vivo mitochondrial and cell energetic dysfunction, including maximum mitochondrial ATP production (ATPmax), NAD concentrations linked to energy/stress pathways, and muscle size. Muscle function was measured via a single muscle fatigue test. TA ATPmax and NAD levels were significantly lower in the PD cohort compared to controls (ATPmax: 0.66 mM/s ± 0.03 vs. 0.76 ± 0.02; NAD: 0.75 mM ± 0.05 vs. 0.91 ± 0.04). Muscle endurance and specific force were also lower in both hand and leg muscles in the PD subjects. Exploratory analyses of mitochondrial markers and individual symptoms suggested that higher ATPmax was associated with a greater sense of motivation and engagement and less REM sleep behavior disorder (RBD). ATPmax was not associated with clinical severity or individual symptom(s), years since diagnosis, or quality of life. Results from this pilot study contribute to a growing body of evidence that PD is not a brain disease, but a systemic metabolic syndrome with disrupted cellular energetics and function in peripheral tissues. The significant impairment of both mitochondrial ATP production and resting metabolite levels in the TA muscles of the PD patients suggests that skeletal muscle mitochondrial function may be an important tool for mechanistic understanding and clinical application in PD patients. This study looked at individuals with mid-stage PD; future research should evaluate whether the observed metabolic perturbations in muscle dysfunction occur in the early stages of the disease and whether they have value as theragnostic biomarkers.
Collapse
|
12
|
Effects of lifespan-extending interventions on cognitive healthspan. Expert Rev Mol Med 2022; 25:e2. [PMID: 36377361 DOI: 10.1017/erm.2022.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ageing is known to be the primary risk factor for most neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Huntington's disease. They are currently incurable and worsen over time, which has broad implications in the context of lifespan and healthspan extension. Adding years to life and even to physical health is suboptimal or even insufficient, if cognitive ageing is not adequately improved. In this review, we will examine how interventions that have the potential to extend lifespan in animals affect the brain, and if they would be able to thwart or delay the development of cognitive dysfunction and/or neurodegeneration. These interventions range from lifestyle (caloric restriction, physical exercise and environmental enrichment) through pharmacological (nicotinamide adenine dinucleotide precursors, resveratrol, rapamycin, metformin, spermidine and senolytics) to epigenetic reprogramming. We argue that while many of these interventions have clear potential to improve cognitive health and resilience, large-scale and long-term randomised controlled trials are needed, along with studies utilising washout periods to determine the effects of supplementation cessation, particularly in aged individuals.
Collapse
|