1
|
Wang L, Han Q, Liu Y, Ma X, Han H, Yan L, Shen Z, Ji P, Wang B, Liu G. Activation of aryl hydrocarbon receptor protein promotes testosterone synthesis to alleviate abnormal spermatogenesis caused by cholestasis. Int J Biol Macromol 2024; 282:136478. [PMID: 39393744 DOI: 10.1016/j.ijbiomac.2024.136478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
In this study, we have investigated potential roles of cholestasis played in spermatogenesis in the cholestatic animal model generated by giving the mice DDC diet. The data showed that cholestasis jeopardized the testicular structure and function by downregulating the expressions of genes related to the androgen's synthesis. Mechanistically, the cholestasis disturbers the liver's tryptophan metabolism and its metabolites. These tryptophan metabolites including serotonin, 5-Hydroxyindoleacetic acid, 4-(2-Aminophenyl)-2,4-dioxobutanoic acid and Quinoline-4,8-diol were significantly reduced in the cholestatic mice model compared to their controlled counterparts. These tryptophan metabolites are the endogenous ligands of AHR and their levels are positively correlated to the expressions of genes related to the androgen's synthesis and AHR. Notably, supplementation of AHR ligand ITE promoted the expression of genes related to the testosterone synthesis and alleviated abnormal spermatogenesis. In addition, the bacteria that disturbed the tryptophan metabolism in cholestatic mice were identified by 16S rDNA sequencing and Spearman correlation analysis. Briefly, we have identified a cholestasis associated gut microbiota-testis axis. This axis is responsible for the cholestasis induced abnormal spermatogenesis and male reproductive dysfunction. Breaking vicious cycle of this axis may be a suitable strategy to prevent and treat the cholestasis associated male infertility.
Collapse
Affiliation(s)
- Likai Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, China
| | - Qi Han
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, China
| | - Yunjie Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, China
| | - Xiao Ma
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, China
| | - Huigang Han
- College of Animal Science, Xinjiang Agricultural University, China
| | - Laiqing Yan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, China
| | - Zixia Shen
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, China
| | - Pengyun Ji
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, China
| | - Bingyuan Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, China.
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, China.
| |
Collapse
|
2
|
Parra-Martínez C, Selma-Royo M, Callejón-Leblic B, Collado MC, Abril N, García-Barrera T. Gut-gonad crosstalk in mice exposed to a "chemical cocktail" combining metabolomics and microbial profile by amplicon sequencing. Food Chem Toxicol 2024; 188:114627. [PMID: 38561037 DOI: 10.1016/j.fct.2024.114627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Testes are very prone to be damaged by environmental pollutants, but there is a lack of information about the impact of "chemical cocktails" (CC) on the testicular metabolome and the possible influence in the gut-gonad crosstalk. For this, BALB/c mice were given flumequine and diclofenac orally in food and potentially toxic trace elements (Cd, Hg, As) in drinking water. A mice group was supplemented with selenium, a well-known antagonist against many pollutants. Our results revealed that the steroid 5-alpha-androstan-17-beta-ol propionate, suggested as a parameter of androgenicity independent of testosterone levels, proline that improves reproductive indicators in male rabbits affected by environmental stress) among others metabolites are only present after CC exposure with rodent and selenium supplemented diet. Selenium also antagonized the up-or down-regulation of anandamide (20:l, n-9) (p < 0.001 and FC 0.54 of CC vs C but p > 0,05 and FC 0.74 of CC-Se vs C), that regulates gonadotropin-releasing hormones in mammals, 2,3-dinor-11b-PGF2a (p < 0.001 and FC 0.12 of CC vs C but p > 0,05 and FC 0.34 of CC-Se vs C), which has been related with reproductive hormones, besides others testicular metabolites altered by the exposure to the CC and reversed the levels to control. Moreover, numerous significant associations between gut microbes and testicular metabolites indicated a possible impact of pollutants in the testes mediated by gut microbiota due to a gut-gonad crosstalk.
Collapse
Affiliation(s)
- C Parra-Martínez
- Research Center of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Ave., 21007, Huelva, Spain
| | - M Selma-Royo
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - B Callejón-Leblic
- Research Center of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Ave., 21007, Huelva, Spain
| | - M C Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - N Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - T García-Barrera
- Research Center of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Ave., 21007, Huelva, Spain.
| |
Collapse
|
3
|
Zou C, Wang W, Shu C, Liang S, Zou Y, Wang L, Wu Z, Liu Y, You F. Expression characteristics of Hsd3b7 in the gonads of Paralichthys olivaceus. Comp Biochem Physiol B Biochem Mol Biol 2023; 266:110848. [PMID: 36933762 DOI: 10.1016/j.cbpb.2023.110848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/20/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
Steroidogenesis is an important biological process for gonadal differentiation and development. In mammals, 3β-hydroxysteroid dehydrogenase 7 (HSD3B7) could convert 3β-hydroxy of 7α-hydroxycholesterol into a ketone and form 7α-hydroxy-4-cholesten-3-one, which may affect steroidogenesis. However, in fish, the study of Hsd3b7 is still lacking. In this study, Hsd3b7 was identified in the olive flounder Paralichthys olivaceus, an important mariculture fish. According to bioinformatics analysis, Hsd3b7 belongs to a Rossmann-fold NAD(P)(+)-binding protein and can interact in a predictable manner with Hsd17b2, -3, and - 4, which play a role in steroidogenesis. In the adult flounder, Hsd3b7 was expressed in various tissues, at particularly high level in male muscle. The expression levels of Hsd3b7 at gonadal development stages I-V initially increased and then decreased, with an inflection point in the ovary at stage III and in the testis at stage IV. At stage III, the expression level of Hsd3b7 was significantly higher in the ovary than in the testis (P < 0.01). The results of in situ hybridization (ISH) revealed that it was mainly expressed in oocytes of phases I-IV or around oocytes of phases IV-V in the ovaries and around spermatid lobules at stages IV-V in the testes. Three regulatory sites of SRY-box transcription factor 9 (Sox9), a transcription factor involved in steroidogenesis and gonadal differentiation, were predicted in the promoter of Hsd3b7. After intraperitoneal injection with the recombination flounder Sox9a, the expression of Hsd3b7 was significantly up-regulated (P < 0.01). During the flounder gonadal differentiation, 17β-estradiol (E2, 5 μg/g feed) and 17α-methyltestosterone (T, 5 μg/g feed) were used to obtain the phenotypic female or male flounder, and the results showed that in the E2 group, Hsd3b7 expression was highest at 2 cm TL, the primordial gonad stage, which was significantly higher than that at 12 cm TL (P < 0.05). In the T group, Hsd3b7 expression level was also highest at 2 cm TL and significantly higher than at 10 and 12 cm TL (P < 0.05). Moreover, Hsd3b7 was detected to be localized mainly around oogonia and spermatogonia during the differentiated gonads with ISH. These findings first introduce the expression characteristics of Hsd3b7 and the effect of Sox9a on its expression, which contribute to our understanding of the function of Hsd3b7 in fish gonads.
Collapse
Affiliation(s)
- Congcong Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wenxiang Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chang Shu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shaoshuai Liang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Yuxia Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Lijuan Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Yan Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.
| |
Collapse
|
4
|
Identification of the Role of TGR5 in the Regulation of Leydig Cell Homeostasis. Int J Mol Sci 2022; 23:ijms232315398. [PMID: 36499726 PMCID: PMC9738292 DOI: 10.3390/ijms232315398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Understanding the regulation of the testicular endocrine function leading to testosterone production is a major objective as the alteration of endocrine function is associated with the development of many diseases such as infertility. In the last decades, it has been demonstrated that several endogenous molecules regulate the steroidogenic pathway. Among them, bile acids have recently emerged as local regulators of testicular physiology and particularly endocrine function. Bile acids act through the nuclear receptor FXRα (Farnesoid-X-receptor alpha; NR1H4) and the G-protein-coupled bile acid receptor (GPBAR-1; TGR5). While FXRα has been demonstrated to regulate testosterone synthesis within Leydig cells, no data are available regarding TGR5. Here, we investigated the potential role of TGR5 within Leydig cells using cell culture approaches combined with pharmacological exposure to the TGR5 agonist INT-777. The data show that activation of TGR5 results in a decrease in testosterone levels. TGR5 acts through the PKA pathway to regulate steroidogenesis. In addition, our data show that TGR5 activation leads to an increase in cholesterol ester levels. This suggests that altered lipid homeostasis may be a mechanism explaining the TGR5-induced decrease in testosterone levels. In conclusion, the present work highlights the impact of the TGR5 signaling pathway on testosterone production and reinforces the links between bile acid signaling pathways and the testicular endocrine function. The testicular bile acid pathways need to be further explored to increase our knowledge of pathologies associated with impaired testicular endocrine function, such as fertility disorders.
Collapse
|
5
|
Li S, Qu X, Zhang L, Wang N, Chen M, Zhao X, Wang J, Lv H, Qi Y, Zhang L, Liu J, Shi Y. Serum Total Bile Acids in Relation to Gastrointestinal Cancer Risk: A Retrospective Study. Front Oncol 2022; 12:859716. [PMID: 35756666 PMCID: PMC9213662 DOI: 10.3389/fonc.2022.859716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background Bile acids (BAs) have been proposed to promote gastrointestinal cells carcinogenesis. However, studies on serum total bile acid (TBA) levels and gastrointestinal cancers (GICs) risk are rare. Methods We conducted a retrospective case-control study from 2015 to 2019 at the First Affiliated Hospital of Air Force Military Medical University, in which 4,256 GICs cases and 1,333 controls were recruited. Patients' demographic, clinical and laboratory data were collected. The odds ratios (ORs) with 95% confidence intervals (CIs) were estimated using binary logistic regression models. Results Positive associations were observed between serum TBA levels and risks of esophageal cancer (EC), gastric cancer (GC) and colorectal cancer (CRC). Overall, ORs of EC, GC and CRC risk rose with the TBA levels increasing. After adjustment for potential confounders, the OR of TBA-positive for EC risk was 4.89 (95% CI: 3.20-7.49), followed by GC (OR: 3.92, 95% CI: 2.53-6.08), and CRC (OR: 3.32, 95% CI: 2.04-5.11). Patients aged 60 years or older have a higher risk of GICs, especially for EC patients. Males are associated with a higher risk of GC, while females are associated with a higher risk of CRC. Preoperative serum TBA positive and negative was significantly different in the presence or absence of hematogenous metastasis among EC patients (P=0.014), and lymph node metastasis among GC patients (P=0.018). Conclusions This retrospective study showed positive associations between serum TBA level and GICs risk, and a higher serum TBA level constitutes a risk factor for GICs.
Collapse
Affiliation(s)
- Songbo Li
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xiaodong Qu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Luyao Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Na Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Min Chen
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xingyu Zhao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jie Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China.,School of Clinical Medicine, Xi'an Medical University, Xi'an, China
| | - Huanhuan Lv
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China.,School of Clinical Medicine, Xi'an Medical University, Xi'an, China
| | - Ying Qi
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China.,School of Clinical Medicine, Xi'an Medical University, Xi'an, China
| | - Lifeng Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Junye Liu
- Department of Radiation Protective Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
6
|
Thirouard L, Holota H, Monrose M, Garcia M, de Haze A, Damon‐Soubeyrand C, Renaud Y, Saru J, Perino A, Schoonjans K, Beaudoin C, Volle DH. Identification of a Crosstalk among TGR5, GLIS2, and TP53 Signaling Pathways in the Control of Undifferentiated Germ Cell Homeostasis and Chemoresistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200626. [PMID: 35435331 PMCID: PMC9189661 DOI: 10.1002/advs.202200626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Spermatogonial stem cells regenerate and maintain spermatogenesis throughout life, making testis a good model for studying stem cell biology. The effects of chemotherapy on fertility have been well-documented previously. This study investigates how busulfan, an alkylating agent that is often used for chemotherapeutic purposes, affects male fertility. Specifically, the role of the TGR5 pathway is investigated on spermatogonia homeostasis using in vivo, in vitro, and pharmacological methods. In vivo studies are performed using wild-type and Tgr5-deficient mouse models. The results clearly show that Tgr5 deficiency can facilitate restoration of the spermatogonia homeostasis and allow faster resurgence of germ cell lineage after exposure to busulfan. TGR5 modulates the expression of key genes of undifferentiated spermatogonia such as Gfra1 and Fgfr2. At the molecular level, the present data highlight molecular mechanisms underlying the interactions among the TGR5, GLIS2, and TP53 pathways in spermatogonia associated with germ cell apoptosis following busulfan exposure. This study makes a significant contribution to the literature because it shows that TGR5 plays key role on undifferentiated germ cell homeostasis and that modulating the TGR5 signaling pathway could be used as a potential therapeutic tool for fertility disorders.
Collapse
Affiliation(s)
- Laura Thirouard
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteTeam‐VolleClermont‐FerrandF‐63037France
| | - Hélène Holota
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteTeam‐VolleClermont‐FerrandF‐63037France
| | - Mélusine Monrose
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteTeam‐VolleClermont‐FerrandF‐63037France
| | - Manon Garcia
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteTeam‐VolleClermont‐FerrandF‐63037France
| | - Angélique de Haze
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteTeam‐VolleClermont‐FerrandF‐63037France
| | | | - Yoan Renaud
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteBio‐informatic facilityClermont‐FerrandF‐63037France
| | - Jean‐Paul Saru
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteTeam‐VolleClermont‐FerrandF‐63037France
| | - Alessia Perino
- Laboratory of Metabolic SignalingInstitute of BioengineeringSchool of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneCH‐1015Switzerland
| | - Kristina Schoonjans
- Laboratory of Metabolic SignalingInstitute of BioengineeringSchool of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneCH‐1015Switzerland
| | - Claude Beaudoin
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteTeam‐VolleClermont‐FerrandF‐63037France
| | - David H. Volle
- INSERM U1103Université Clermont AuvergneCNRS UMR‐6293GReD InstituteTeam‐VolleClermont‐FerrandF‐63037France
| |
Collapse
|
7
|
Martinot E, Thirouard L, Holota H, Monrose M, Garcia M, Beaudoin C, Volle DH. Intestinal microbiota defines the GUT-TESTIS axis. Gut 2022; 71:844-845. [PMID: 33985968 DOI: 10.1136/gutjnl-2021-324690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/21/2022]
Affiliation(s)
- Emmanuelle Martinot
- Institut Génétique Reproduction et Développement (iGReD), Inserm U1103, Université Clermont Auvergne, CNRS UMR 6293, Clermont-Ferrand, France
| | - Laura Thirouard
- Institut Génétique Reproduction et Développement (iGReD), Inserm U1103, Université Clermont Auvergne, CNRS UMR 6293, Clermont-Ferrand, France
| | - Hélène Holota
- Institut Génétique Reproduction et Développement (iGReD), Inserm U1103, Université Clermont Auvergne, CNRS UMR 6293, Clermont-Ferrand, France
| | - Mélusine Monrose
- Institut Génétique Reproduction et Développement (iGReD), Inserm U1103, Université Clermont Auvergne, CNRS UMR 6293, Clermont-Ferrand, France
| | - Manon Garcia
- Institut Génétique Reproduction et Développement (iGReD), Inserm U1103, Université Clermont Auvergne, CNRS UMR 6293, Clermont-Ferrand, France
| | - Claude Beaudoin
- Institut Génétique Reproduction et Développement (iGReD), Inserm U1103, Université Clermont Auvergne, CNRS UMR 6293, Clermont-Ferrand, France
| | - David H Volle
- Institut Génétique Reproduction et Développement (iGReD), Inserm U1103, Université Clermont Auvergne, CNRS UMR 6293, Clermont-Ferrand, France
| |
Collapse
|
8
|
Erukainure OL, Mansoor S, Chukwuma CI, Oyebode OA, Koorbanally NA, Islam MS. GC-MS metabolomics reveals dysregulated lipid metabolic pathways and metabolites in diabetic testicular toxicity: Therapeutic potentials of raffia palm (Raphia hookeri G. Mann & H. Wendl) wine. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114390. [PMID: 34224812 DOI: 10.1016/j.jep.2021.114390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/16/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Raffia palm (Raphia hookeri G. Mann & H. Wendl) wine (RPW) is a natural beverage obtained from the R. hookeri consumed for refreshment and medicinal purposes. For medicinal purposes, it is used singly or as macerating agent for other medicinal plants for the treatment of several diseases. AIM This study investigates the effect of Raffia palm wine on dysregulated lipid metabolic pathways in testicular tissues of type 2 diabetic (T2D) rats. METHODS Raffia palm wine (150 and 300 mg/kg bodyweight) was administered to two T2D groups respectively, another T2D group was not administered treatment and served as negative control, while metformin served as the standard drug. After 6 weeks of treatment, the rats were sacrificed, and the testes collected. After weighing, the organs were homogenized in 20% methanol/ethanol and centrifuged at 20,000 g to extract the lipid metabolites. RESULTS GC-MS analysis of the supernatants revealed an alteration of the metabolites on induction of T2D, with concomitant generation of 10 metabolites. Raffia palm wine inhibited the T2D-generated metabolites while replenishing cholesterol and squalene levels, with concomitant generation of 7 and 8 metabolites for low and high dose treatment respectively. Pathway enrichment analysis of the metabolites revealed a decreased level of steroid biosynthesis and increased level of fatty acid biosynthesis. Raffia palm wine inactivated glycerolipid, fatty acid, and arachidonic acid metabolisms, fatty acid biosynthesis and fatty acid elongation in mitochondria pathways, and activated pathways for plasmalogen synthesis, mitochondrial beta-oxidation of long chain saturated fatty acids. CONCLUSION The replenishment and generation of these metabolites and additional ones as well as activation of pathways involved in energy generation, phospholipids, antioxidant activity, steroidogenesis and spermatogenesis suggest a therapeutic effect of Raffia palm wine against hyperglycemic-induced testicular dysfunction.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa; Department of Pharmacology, University of the Free State, Bloemfontein, 9300, South Africa.
| | - Shazia Mansoor
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa
| | - Chika I Chukwuma
- Centre for the Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, 9300, South Africa
| | - Olajumoke A Oyebode
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa; Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa.
| |
Collapse
|
9
|
Liu T, Wang B, Cao H. Effects of high-fat diet-induced gut microbiota dysbiosis: far beyond the gut. Gut 2020; 69:2259. [PMID: 32111631 DOI: 10.1136/gutjnl-2020-320717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Tianyu Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
10
|
Hasani Fard AH, Mohseni Kouchesfehani H, Jalali H. Investigation of cholestasis-related changes in characteristics of spermatogonial stem cells in testis tissue of male Wistar rats. Andrologia 2020; 52:e13660. [PMID: 32478921 DOI: 10.1111/and.13660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 11/27/2022] Open
Abstract
Paternal metabolic status is an important factor in the health status of offspring. Cholestasis, as a metabolic disorder, significantly disrupts spermatogenesis. Spermatogonial stem cells (SSCs) are considered the dividing germ cells, which maintain spermatogenesis throughout the lifespan. Here, we investigated the in vivo and in vitro effect(s) of cholestasis on SSCs. Cholestasis was induced in rats by bile duct ligation. Four weeks after the cholestasis induction, testicular tissues were analysed using histopathological examinations. The expression of SSC markers, including Plzf and Thy-1, was determined using the immunofluorescent technique. Also, SSCs were isolated from animals, and their proliferation was examined in vitro. The histological examinations revealed that cholestasis caused irregularities in the structure of seminal tubes. Immunostaining showed that the total number of Thy-1- and Plzf-expressing cells was declined in the cholestasis group compared with the control group. In vitro culture of SSCs indicated that the number of SSC colonies and those expressing Plzf were significantly reduced in the culture medium of the cholestasis group. Our results indicated that cholestasis affects the functionality of SSCs and reduces the number and proliferation of them. This finding may be of interest to the effect of metabolic diseases such as cholestasis on spermatogenesis.
Collapse
Affiliation(s)
| | | | - Hanieh Jalali
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
11
|
Chen H, Liu G, Qiao N, Kang Z, Hu L, Liao J, Yang F, Pang C, Liu B, Zeng Q, Li Y, Li Y. Toxic effects of arsenic trioxide on spermatogonia are associated with oxidative stress, mitochondrial dysfunction, autophagy and metabolomic alterations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110063. [PMID: 31846860 DOI: 10.1016/j.ecoenv.2019.110063] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/19/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Arsenic is a toxic metalloid that can cause male reproductive malfunctions and is widely distributed in the environment. The aim of this study was to investigate the cytotoxicity of arsenic trioxide (ATO) induced GC-1 spermatogonial (spg) cells. Our results found that ATO increased the levels of catalase (CAT) and malonaldehyde (MDA) and reactive oxygen species (ROS), while decreasing glutathione (GSH) and the total antioxidant capacity (T-AOC). Therefore, ATO triggered oxidative stress in GC-1 spg cells. In addition, ATO also caused severe mitochondrial dysfunction that included an increase in residual oxygen consumption (ROX), and decreased the routine respiration, maximal and ATP-linked respiration (ATP-L-R), as well as spare respiratory capacity (SRC), and respiratory control rate (RCR); ATO also damaged the mitochondrial structure, including mitochondrial cristae disordered and dissolved, mitochondrial vacuolar degeneration. Moreover, degradation of p62, LC3 conversion, increasing the number of acidic vesicle organelles (AVOs) and autophagosomes and autolysosomes are demonstrated that the cytotoxicity of ATO may be associated with autophagy. Meanwhile, the metabolomics analysis results showed that 20 metabolites (10 increased and 10 decreased) were significantly altered with the ATO exposure, suggesting that maybe there are the perturbations in amino acid metabolism, lipid metabolism, glycan biosynthesis and metabolism, metabolism of cofactors and vitamins. We concluded that ATO was toxic to GC-1 spg cells via inducing oxidative stress, mitochondrial dysfunction and autophagy as well as the disruption of normal metabolism. This study will aid our understanding of the mechanisms behind ATO-induced spermatogenic toxicity.
Collapse
Affiliation(s)
- Hanming Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Gaoyang Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Na Qiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenlong Kang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Fan Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Congying Pang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Bingxian Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Garcia M, Thirouard L, Monrose M, Holota H, De Haze A, Caira F, Beaudoin C, Volle DH. Farnesoid X receptor alpha (FXRα) is a critical actor of the development and pathologies of the male reproductive system. Cell Mol Life Sci 2019; 76:4849-4859. [PMID: 31407019 PMCID: PMC11105758 DOI: 10.1007/s00018-019-03247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/01/2022]
Abstract
The farnesoid-X-receptorα (FXRα; NR1H4) is one of the main bile acid (BA) receptors. During the last decades, through the use of pharmalogical approaches and transgenic mouse models, it has been demonstrated that the nuclear receptor FXRα controls numerous physiological functions such as glucose or energy metabolisms. It is also involved in the etiology or the development of several pathologies. Here, we will review the unexpected roles of FXRα on the male reproductive tract. FXRα has been demonstrated to play functions in the regulation of testicular and prostate homeostasis. Even though additional studies are needed to confirm these findings in humans, the reviewed reports open new field of research to better define the effects of bile acid-FXRα signaling pathways on fertility disorders and cancers.
Collapse
Affiliation(s)
- Manon Garcia
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Laura Thirouard
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Mélusine Monrose
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Hélène Holota
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Angélique De Haze
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Françoise Caira
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Claude Beaudoin
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France.
| | - David H Volle
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France.
| |
Collapse
|
13
|
Holota H, Thirouard L, Garcia M, Monrose M, de Haze A, Saru JP, Caira F, Beaudoin C, Volle DH. Fxralpha gene is a target gene of hCG signaling pathway and represses hCG induced steroidogenesis. J Steroid Biochem Mol Biol 2019; 194:105460. [PMID: 31470110 DOI: 10.1016/j.jsbmb.2019.105460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/19/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Abstract
The bile acid receptor Farnesoid-X-Receptor alpha (FXRα), a member of the nuclear receptor superfamily, is well known for its roles in the enterohepatic tract. In addition, FXRα regulates testicular physiology through the control of both endocrine and exocrine functions. The endocrine function of the Leydig cells is mainly controlled by the hypothalamo-pituitary axis viaLH/chorionic gonadotropin (CG). If FXRα was demonstrated to control the expression of the Lhcgr gene, encoding the LH receptor; the impact of the LH/CG signaling on the Fxrα expression has not been defined so far. Here, we demonstrate that hCG increases the Fxrα gene expression through the protein kinase-A signaling pathway. Fxrα is then involved in a negative feedback of steroid synthesis. These data improve our knowledge of the local control of the testicular steroidogenesis with the identification of the link between the hypothalamo-pituitary axis and the FXRα signaling pathway.
Collapse
Affiliation(s)
- Hélène Holota
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Laura Thirouard
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Manon Garcia
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Mélusine Monrose
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Angélique de Haze
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Jean-Paul Saru
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Françoise Caira
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Claude Beaudoin
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France.
| | - David H Volle
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France.
| |
Collapse
|
14
|
Di Ciaula A, Wang DQH, Portincasa P. Cholesterol cholelithiasis: part of a systemic metabolic disease, prone to primary prevention. Expert Rev Gastroenterol Hepatol 2019; 13:157-171. [PMID: 30791781 DOI: 10.1080/17474124.2019.1549988] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholesterol gallstone disease have relationships with various conditions linked with insulin resistance, but also with heart disease, atherosclerosis, and cancer. These associations derive from mechanisms active at a local (i.e. gallbladder, bile) and a systemic level and are involved in inflammation, hormones, nuclear receptors, signaling molecules, epigenetic modulation of gene expression, and gut microbiota. Despite advanced knowledge of these pathways, the available therapeutic options for symptomatic gallstone patients remain limited. Therapy includes oral litholysis by the bile acid ursodeoxycholic acid (UDCA) in a small subgroup of patients at high risk of postdissolution recurrence, or laparoscopic cholecystectomy, which is the therapeutic radical gold standard treatment. Cholecystectomy, however, may not be a neutral event, and potentially generates health problems, including the metabolic syndrome. Areas covered: Several studies on risk factors and pathogenesis of cholesterol gallstone disease, acting at a systemic level have been reviewed through a PubMed search. Authors have focused on primary prevention and novel potential therapeutic strategies. Expert commentary: The ultimate goal appears to target the manageable systemic mechanisms responsible for gallstone occurrence, pointing to primary prevention measures. Changes must target lifestyles, as well as experimenting innovative pharmacological tools in subgroups of patients at high risk of developing gallstones.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- a Division of Internal Medicine , Hospital of Bisceglie , Bisceglie , Italy
| | - David Q-H Wang
- b Department of Medicine, Division of Gastroenterology and Liver Diseases , Marion Bessin Liver Research Center, Albert Einstein College of Medicine , Bronx , NY , USA
| | - Piero Portincasa
- c Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri" , University of Bari Medical School , Bari , Italy
| |
Collapse
|
15
|
Malivindi R, Santoro M, De Rose D, Panza S, Gervasi S, Rago V, Aquila S. Activated-farnesoid X receptor (FXR) expressed in human sperm alters its fertilising ability. Reproduction 2018; 156:249-259. [DOI: 10.1530/rep-18-0203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022]
Abstract
The farnesoid X receptor alpha (FXR) is a bile acid sensor activated by binding to endogenous bile acids including chenodeoxycholic acid (CDCA). Although, FXR is expressed in male reproductive tissue, the relevance of the receptor on reproduction is scarcely known. Here, we demonstrated the FXR presence and its action on several human sperm features. Western blot and immunofluorescence assays evidenced the FXR expression in human spermatozoa and the localisation in the middle piece. CDCA increasing concentrations and GW4064, synthetic ligand of FXR, were used to study the FXR influence on sperm motility, survival, capacitation, acrosome reaction and on glucose as well as lipid metabolism. Interestingly, our data showed that increasing concentrations of CDCA negatively affected sperm parameters, while the receptor blockage by (Z)-Guggulsterone and by the anti-FXR Ab reversed the effects. Intriguingly, elevated CDCA levels increased triglyceride content, while lipase and G6PDH activities were reduced with respect to untreated samples, thus impeding the metabolic reprogramming typical of the capacitated sperm. In conclusion, in this study, we demonstrated for the first time a novel target for FXR and that the activated receptor alters the acquisition of sperm fertilising ability. We showed that sperm itself express the FXR and it is responsive to specific ligands of the receptor; therefore, bile acids influence this cell both in male and in female genital tracts. It might be hypothesized that bile acid levels could be involved in infertility with idiopathic origin as these compounds are not systematically measured in men undergoing medically assisted procreation.
Collapse
|
16
|
Sèdes L, Thirouard L, Maqdasy S, Garcia M, Caira F, Lobaccaro JMA, Beaudoin C, Volle DH. Cholesterol: A Gatekeeper of Male Fertility? Front Endocrinol (Lausanne) 2018; 9:369. [PMID: 30072948 PMCID: PMC6060264 DOI: 10.3389/fendo.2018.00369] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
Cholesterol is essential for mammalian cell functions and integrity. It is an important structural component maintaining the permeability and fluidity of the cell membrane. The balance between synthesis and catabolism of cholesterol should be tightly regulated to ensure normal cellular processes. Male reproductive function has been demonstrated to be dependent on cholesterol homeostasis. Here we review data highlighting the impacts of cholesterol homeostasis on male fertility and the molecular mechanisms implicated through the signaling pathways of some nuclear receptors.
Collapse
|
17
|
Di Ciaula A, Wang DQH, Molina-Molina E, Lunardi Baccetto R, Calamita G, Palmieri VO, Portincasa P. Bile Acids and Cancer: Direct and Environmental-Dependent Effects. Ann Hepatol 2017; 16:s87-s105. [PMID: 29080344 DOI: 10.5604/01.3001.0010.5501] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023]
Abstract
Bile acids (BAs) regulate the absorption of fat-soluble vitamins, cholesterol and lipids but have also a key role as singalling molecules and in the modulation of epithelial cell proliferation, gene expression and metabolism. These homeostatic pathways, when disrupted, are able to promote local inflammation, systemic metabolic disorders and, ultimately, cancer. The effect of hydrophobic BAs, in particular, can be linked with cancer in several digestive (mainly oesophagus, stomach, liver, pancreas, biliary tract, colon) and extra-digestive organs (i.e. prostate, breast) through a complex series of mechanisms including direct oxidative stress with DNA damage, apoptosis, epigenetic factors regulating gene expression, reduced/increased expression of nuclear receptors (mainly farnesoid X receptor, FXR) and altered composition of gut microbiota, also acting as a common interface between environmental factors (including diet, lifestyle, exposure to toxics) and the molecular events promoting cancerogenesis. Primary prevention strategies (i.e. changes in dietary habits and lifestyle, reduced exposure to environmental toxics) mainly able to modulate gut microbiota and the epigenome, and the therapeutic use of hydrophilic BAs to counterbalance the negative effects of the more hydrophobic BAs might be, in the near future, part of useful tools for cancer prevention and management.
Collapse
Affiliation(s)
| | - David Q-H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Emilio Molina-Molina
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| | - Raquel Lunardi Baccetto
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari. Italy
| | - Vincenzo O Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari. Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|