1
|
Zhang N, Pan L, Liao Q, Tong R, Li Y. Potential molecular mechanism underlying the harmed haemopoiesis upon Benzo[a]pyrene exposure in Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109032. [PMID: 37640119 DOI: 10.1016/j.fsi.2023.109032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Benzo[a]pyrene (B[a]P), a ubiquitous contamination in the marine environments, has the potential to impact the immune response of bivalves by affecting the hemocyte parameters, especially total hemocyte count (THC). THC is mainly determined by haematopoietic mechanisms and apoptosis of hemocytes. Many studies have found that B[a]P can influence the proliferation and differentiation of hemocytes. However, the link between the toxic mechanisms of haematopoietic and environmental pollutants is not explicitly stated. This study is to investigate the toxic effects of B[a]P on haematopoietic mechanisms in C. farreri. Through the tissue expression distribution experiment and EDU assay, gill is identified as a potential haematopoietic tissue in C. farreri. Subsequently, the scallops were exposed to B[a]P (0.05, 0.5, 5 μg/L) for 1d, 3d, 6d, 10d and 15d. Then BPDE content, DNA damage, gene expression of haematopoietic factors and haematopoietic related pathways were determined in gill and hemocytes. The results showed that the expression of CDK2 was significantly decreased under B[a]P exposure through three pathways: RYR/IP3-calcium, BPDE-CHK1 and Notch pathway, resulting in cell cycle arrest. In addition, B[a]P also significantly reduced the number of proliferating hemocytes by affecting the Wnt pathway. Meanwhile, B[a]P can significantly increase the content of ROS, causing a downregulation of FOXO gene expression. The gene expression of Notch pathway and ERK pathway was also detected. The present study suggested that B[a]P disturbed differentiation by multiple pathways. Furthermore, the expression of SOX11 and CD9 were significantly decreased, which directly indicated that differentiation of hemocytes was disturbed. In addition, phagocytosis, phenoloxidase activity and THC were also significant decreased. In summary, the impairment of haematopoietic activity in C. farreri further causes immunotoxicity under B[a]P exposure. This study will improve our understanding of the immunotoxicity mechanism of bivalve under B[a]P exposure.
Collapse
Affiliation(s)
- Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Qilong Liao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
2
|
Pérez-Velasco R, Manzano-Sarabia M, Hurtado-Oliva MÁ. Effect of hypo- and hypersaline stress conditions on physiological, metabolic, and immune responses in the oyster Crassostrea corteziensis (Bivalvia: Ostreidae). FISH & SHELLFISH IMMUNOLOGY 2022; 120:252-260. [PMID: 34848305 DOI: 10.1016/j.fsi.2021.11.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Salinity in the oceans is changing due to climate change and global warming. Intense rainfalls and freshwater runoff decrease salinity along the coastal areas. In contrast, intense drought seasons and river damming have certainly increased salinity in lagoons and estuaries. Few studies have focused on aspects of the biology and culture of oyster Crassostrea corteziensis, but until now, physiological and immunological responses in this species have not been assessed under acute hypo- and hypersaline stress conditions. Oysters obtained from a local farm were acclimated for three weeks in laboratory conditions. To avoid closure of oyster valves during salinity induced-stress conditions, a notch was done on each organism shell not only to facilitate oyster tissue exposure to rearing water but also for sampling hemolymph. Oysters (N = 180) were abruptly exposed to three salinity treatments: (HO) hypo-, (C) control, and (HP) hypersaline stress conditions (10, 35, and 50 PSU, respectively). Four oysters per treatment were sampled at 1, 2, 3, 6, 12, 24, and 48 h after exposure. Hemolymph osmolality, water content and total protein concentration in tissues, metabolic and immune responses were assessed for each organism. Oyster survival was not different among treatments and was maintained above 96% at the end of the experimental trial. Hemolymph osmolality reached the value of rearing water at 6 and 48 h of exposure to HP and HO stress conditions, where oysters exposed to salinity increase showed less resilience than those to decrease. Higher glucose levels in plasma and lower ones of hemocyanin were assessed in the oysters exposed to HP compared to HO conditions, suggesting more stressful conditions or susceptibility of oysters during salinity increase. Total hemocyte (THC), hyalinocyte (HC), and granulocyte (GC) counts decreased in oysters exposed to HP condition, while total and differential hemocyte counts were similar among oysters exposed to HO and control conditions. Despite hemocyte phagocytosis was not different among treatments, viability decreased in those exposed to HP condition. Contrastingly, superoxide anion (SOA) production (oxidative capacity) increased in oysters exposed to both induced salinity-stress conditions, which suggest susceptibility increase in oysters, particularly during salinity increase. The results show that HP condition is particularly stressful for C. corteziensis. In turn, this condition could increase both their vulnerability to other environmental stressors, such as temperature and/or acidification or susceptibility to opportunistic pathogenic microorganisms that cause the most common oyster diseases.
Collapse
Affiliation(s)
- Ricardo Pérez-Velasco
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, 82000, Mazatlán, Sinaloa, Mexico
| | - Marlenne Manzano-Sarabia
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, 82000, Mazatlán, Sinaloa, Mexico
| | - Miguel Ángel Hurtado-Oliva
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, 82000, Mazatlán, Sinaloa, Mexico.
| |
Collapse
|
3
|
Ayhan MM, Katalay S, Günal AÇ. How pollution effects the immune systems of invertebrate organisms (Mytilus galloprovincialis Lamark, 1819). MARINE POLLUTION BULLETIN 2021; 172:112750. [PMID: 34388445 DOI: 10.1016/j.marpolbul.2021.112750] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Hemocytes are the main immunologic parameters for invertebrate organisms as a response to diseases and pollutions. This study was aimed to reveal the relations between pollution and the total and differential hemocytes numbers. The gulf of İzmir was selected as location for sampling due to its contaminated by different anthropogenic pollutants mainly industrial effects. The effects of the pollutants were investigated on the mussels that have been collected from eight stations in the Izmir Bay (1- Inciralti, 2- Göztepe 3-Konak-4- Pasaport 5-Alsancak, 6-Karşıyaka, 7-Bostanlı), which are known as the most polluted part of inner Bay of Izmir (Western Coast of Turkey) and 8-Foça, (an anthropogenically industrialized and shipping -impacted area). The pollution effects in the bay were determined on hemolymphs by biomarkers such as total hemocyte counts (THCs) and differential hemocyte counts (DHCs). Microscopic examinations have shown the statistical differences at THCs and DHCs. The highest total hemocyte number was determined in the station 7 (Bostanlı) and the lowest in the station 4 (Pasaport) (P < 0.05). The number of total hemocyte counts were not differed significantly in the Stations among 2 (Göztepe), 5 (Alsancak) and 6 (Karşıyaka), and between Stations 8 (Foça) and 1 (Inciraltı) (P > 0.05). In addition, there have been significant differences in subpopulation according to differential hemocyte numbers. The results indicate that the station 8 (reference site-Foça) has the highest agranulocyte number while station 7 (Bostanlı) and the station 1 (İnciraltı) have the lowest agranulocyte numbers (P < 0.05). As for the basophilic hemocyte numbers, this situation was reversed highest number in station 1 (Inciraltı) and 7 (Bostanlı) and lowest in the station 8 (Foça) (p < 0.05). The station 4 (Pasaport) has the highest eosinophilic hemocyte number while station 8 (Foça) has the lowest. We concluded that differential hemocytes counts are more sensitive as biomarker with the highest numbers of agranulocytes and lowest numbers of eosinophilic and basophilic hemocytes in reference site.
Collapse
Affiliation(s)
- Melike Merve Ayhan
- Manisa Celal Bayar University, Art and Science Faculty, Department of Biology, Şehit Prof. Dr. İlhan Varank Campus, Manisa, Turkey
| | - Selma Katalay
- Manisa Celal Bayar University, Art and Science Faculty, Department of Biology, Şehit Prof. Dr. İlhan Varank Campus, Manisa, Turkey.
| | - Aysel Çağlan Günal
- Gazi University, Gazi Education Faculty, Department of Biology Education, Ankara, Turkey
| |
Collapse
|
4
|
Fabrello J, Masiero L, Finos L, Marin MG, Matozzo V. Effects of a mixture of glyphosate, 17α-ethynylestradiol and amyl salicylate on cellular and biochemical parameters of the mussel Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2021; 165:105247. [PMID: 33429113 DOI: 10.1016/j.marenvres.2020.105247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
In this study the effects of a mixture of glyphosate (herbicide), 17a-ethinylestradiol (synthetic estrogen) and amyl salicylate (fragrance) to the mussel Mytilus galloprovincialis were evaluated. Mussels were exposed for 7 days to two realistic concentrations of the mixture (10 and 100 ng/L) and the effects on total haemocyte counts, haemocyte diameter and volume, haemocyte proliferation, haemolymph lactate dehydrogenase activity and haemocyte lysate lysozyme activity were measured. In addition, superoxide dismutase, catalase, acetylcholinesterase, glutathione-S-transferase and glutathione reductase activities were measured in gills and digestive gland. The survival-in-air test was also performed. Results demonstrated that the mixture affected both cellular and biochemical biomarkers, but not tolerance to aerial exposure of M. galloprovincialis. The negative effects recorded in this study suggested that more efforts should be done to assess the ecotoxicological risks posed by contaminant mixture to aquatic invertebrates.
Collapse
Affiliation(s)
- Jacopo Fabrello
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Luciano Masiero
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Livio Finos
- Department of Developmental Psychology and Socialisation, University of Padova, Via Venezia 8, 35131, Padova, Italy
| | - Maria Gabriella Marin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|
5
|
Sun J, Pan L, Cao Y, Li Z. Biomonitoring of polycyclic aromatic hydrocarbons (PAHs) from Manila clam Ruditapes philippinarum in Laizhou, Rushan and Jiaozhou, bays of China, and investigation of its relationship with human carcinogenic risk. MARINE POLLUTION BULLETIN 2020; 160:111556. [PMID: 32836194 DOI: 10.1016/j.marpolbul.2020.111556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
This study examined the marine environment and seafood safety using chemical monitoring and multiple biomarkers. Samples were collected from three bays on the Shandong Peninsula in China, Laizhou, Rushan and Jiaozhou, in March, May, August, and October of 2018 and 2019. The polycyclic aromatic hydrocarbon (PAH) concentrations in sediments and tissue samples from the clam Ruditapes philippinarum and multiple biomarkers were measured. All the sampling sites were found to be medium-PAH-contaminated areas (100-1000 ng/g d.w.). According to the correlation analysis, ethoxyresorufin-o-deethylase (EROD) and superoxide dismutase (SOD) activity in the clam's digestive gland were sensitive to PAHs (p < .05), but the incremental lifetime cancer risk (ILCR) was lower than the priority risk level (10-4) at most sampling sites. EROD, SOD and acetylcholinesterase activity exhibited significant correlations with the ILCR values (p < .01), suggesting that they may serve as good indicators for assessing safe seafood consumption levels for human beings.
Collapse
Affiliation(s)
- Jiawei Sun
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China.
| | - Yunhao Cao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Zeyuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| |
Collapse
|
6
|
Mansour C, Guibbolini M, Rouane Hacene O, Saidane Mosbahi D, Risso-de Faverney C. Oxidative Stress and Damage Biomarkers in Clam Ruditapes decussatus Exposed to a Polluted Site: The Reliable Biomonitoring Tools in Hot and Cold Seasons. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:478-494. [PMID: 32016484 DOI: 10.1007/s00244-020-00713-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
In the present study, a multi-biomarker approach was used to assess the biological effects of metal pollution in the southern lagoon of Tunis, on clam Ruditapes decussatus both in "hot" (in summer) and "cold" (in winter) seasons. Clams were collected in August 2015 and February 2016 from three sites of the lagoon and from Louza considered a reference site. The concentrations of five trace metals (cadmium, copper, iron, lead, and zinc) in the soft tissues of R. decussatus were evaluated at the sampling sites. A core of biomarkers indicative of (a) neurotoxicity (acetylcholinesterase, AChE); (b) biotransformation (glutathione S-transferase, GST); (c) oxidative stress (catalase, CAT; total glutathione peroxidase, T-GPx; total glutathione peroxidase, T-GPx; selenium-dependent glutathione peroxidase, Se-GPx; glutathione reductase, GR; superoxide dismutase, SOD) (d) lipid peroxidation (malondialdhyde, MDA level), and (e) apoptotic process (caspase 3-like, CSP3) was selected for measurements of environmental effects on the populations of clams collected from the different sampling sites. The results of metal bioaccumulation in soft tissues of Ruditapes decussatus revealed a high pollution in the South Lagoon of Tunis with spatial variation and relatively high levels at the navigation channel. Anthropogenic pollutants in the lagoon led to the activation of antioxidant defense and biotransformation enzymes to oxidative damage of the membrane and activation of apoptosis, and revealed neurotoxicity. Among this core of biomarkers, the antioxidants enzymes (CAT, SOD, GR, and GPx) were very sensitive, allowing the discrimination among sites and pointing to the navigation channel as the most impacted site in the southern lagoon of Tunis. Moreover, a significant effect of season was recorded on biomarkers responses (e.g., CAT, GR, SOD, AChE, and CSP3 activities and MDA levels) with higher levels in winter than in summer, probably influenced by the reproductive stage and food availability. Finally, the measurement of the selected core of biomarkers in the whole soft tissues of clams was considered as an integrated indicator of environmental stress. Moreover, R. decussatus proved to be a remarkable sentinel species capable to establish a reliable diagnosis of the health status of the marine environment in different areas of the southern lagoon of Tunis, both in "hot" and "cold" seasons.
Collapse
Affiliation(s)
- Chalbia Mansour
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Ibn Sina Street, 5000, Monastir, Tunisia.
| | - Marielle Guibbolini
- University Côte d'Azur, CNRS, ECOSEAS, UMR 7035, 28 Avenue Valrose BP 71, 06108, Nice Cedex 2, France
| | - Omar Rouane Hacene
- Laboratoire Réseau de Surveillance Environnementale (LRSE), Department of Biology, University of Oran, 1 Ahmed Ben Bella, BP 1524 El M'naouer, 31000, Oran, Algeria
| | - Dalila Saidane Mosbahi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Ibn Sina Street, 5000, Monastir, Tunisia
| | | |
Collapse
|
7
|
Becker DJ, Albery GF, Kessler MK, Lunn TJ, Falvo CA, Czirják GÁ, Martin LB, Plowright RK. Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defence. J Anim Ecol 2020; 89:972-995. [PMID: 31856309 DOI: 10.1111/1365-2656.13166] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 11/06/2019] [Indexed: 01/26/2023]
Abstract
The prevalence and intensity of parasites in wild hosts varies across space and is a key determinant of infection risk in humans, domestic animals and threatened wildlife. Because the immune system serves as the primary barrier to infection, replication and transmission following exposure, we here consider the environmental drivers of immunity. Spatial variation in parasite pressure, abiotic and biotic conditions, and anthropogenic factors can all shape immunity across spatial scales. Identifying the most important spatial drivers of immunity could help pre-empt infectious disease risks, especially in the context of how large-scale factors such as urbanization affect defence by changing environmental conditions. We provide a synthesis of how to apply macroecological approaches to the study of ecoimmunology (i.e. macroimmunology). We first review spatial factors that could generate spatial variation in defence, highlighting the need for large-scale studies that can differentiate competing environmental predictors of immunity and detailing contexts where this approach might be favoured over small-scale experimental studies. We next conduct a systematic review of the literature to assess the frequency of spatial studies and to classify them according to taxa, immune measures, spatial replication and extent, and statistical methods. We review 210 ecoimmunology studies sampling multiple host populations. We show that whereas spatial approaches are relatively common, spatial replication is generally low and unlikely to provide sufficient environmental variation or power to differentiate competing spatial hypotheses. We also highlight statistical biases in macroimmunology, in that few studies characterize and account for spatial dependence statistically, potentially affecting inferences for the relationships between environmental conditions and immune defence. We use these findings to describe tools from geostatistics and spatial modelling that can improve inference about the associations between environmental and immunological variation. In particular, we emphasize exploratory tools that can guide spatial sampling and highlight the need for greater use of mixed-effects models that account for spatial variability while also allowing researchers to account for both individual- and habitat-level covariates. We finally discuss future research priorities for macroimmunology, including focusing on latitudinal gradients, range expansions and urbanization as being especially amenable to large-scale spatial approaches. Methodologically, we highlight critical opportunities posed by assessing spatial variation in host tolerance, using metagenomics to quantify spatial variation in parasite pressure, coupling large-scale field studies with small-scale field experiments and longitudinal approaches, and applying statistical tools from macroecology and meta-analysis to identify generalizable spatial patterns. Such work will facilitate scaling ecoimmunology from individual- to habitat-level insights about the drivers of immune defence and help predict where environmental change may most alter infectious disease risk.
Collapse
Affiliation(s)
- Daniel J Becker
- Department of Biology, Indiana University, Bloomington, IN, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Tamika J Lunn
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Caylee A Falvo
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Lynn B Martin
- Department of Global and Planetary Health, University of South Florida, Tampa, FL, USA
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
8
|
Willems DJ, Reeves JM, Morrison PD, Trestrail C, Nugegoda D. Trace metal biomonitoring in the east Gippsland Lakes estuary using the barnacle Amphibalanus variegatus and mussel Mytilus edulis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3361-3383. [PMID: 31845271 DOI: 10.1007/s11356-019-07125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
The Gippsland Lakes estuary, a Ramsar listed wetland, in Victoria, Australia, is an area of potential concern for metal pollution due to influxes of human population and associated anthropogenic activities. A biomonitoring exercise was undertaken where the concentrations of 9 metals (Cr, Fe, Cu, Zn, As, Se, Ag, Cd and Hg) were analysed in the soft tissue of two common sessile invertebrates: the mussel Mytilus edulis and the barnacle Amphibalanus variegatus from 6 locations on two different occasions throughout the Gippsland Lakes estuary. A salinity gradient exists in the Lakes, from seawater at Lakes Entrance in the east, decreasing down to < 10 PSU in the west at Lake Wellington during times of rainfall, which is a major factor governing the growth and distribution of both species. Dissolved metal levels in general were low; however, Cu at most sites exceeded the 90% trigger values, while all Zn concentrations exceeded the lowest 80% trigger values of the ANZECC marine water quality guidelines for environmental health. Elevated levels of Cu and Zn were found particularly in barnacles at some sites with environmental contamination due to leaching from anti fouling paints and sacrificial zinc anodes. Elevated levels of Ag and Cd were found in mussels at the Hollands Landing site, which is immediately adjacent to a boat ramp, and Cd and Ag at this site are suspected to originate from inland anthropogenic sources. Concentrations of As in M. edulis across all 6 sites in both sampling periods had mean wet weight As concentrations exceeding the maximum level stated in the FSANZ guidelines. A. variegatus contained elevated levels of Hg especially at the North Arm site with a maximum of 13.6 μg Hg/g dry wt., while A. variegatus also showed temporal changes in Hg concentrations across sites. The maximum Hg concentration found in Mytilus edulis was 1.49 μg Hg/g dry wt. at the Hollands Landing site. Previous contaminant studies of biota in the Lakes have targeted sampling of singular predatory or migratory species, such as Black Bream (Acanthopagrus butcheri) and the Burrunan dolphin (Tursiops australis). This is the first biomonitoring study conducted on sessile organisms to assess metal contamination in the system.
Collapse
Affiliation(s)
- Daniel J Willems
- Ecotoxicology Research Group, RMIT University, School of Science, Melbourne, Victoria, Australia.
| | - Jessica M Reeves
- Impact Ecology Research Group, School of Health and Life Sciences, Federation University Australia, Churchill, Victoria, Australia
| | - Paul D Morrison
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Charlene Trestrail
- Ecotoxicology Research Group, RMIT University, School of Science, Melbourne, Victoria, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, RMIT University, School of Science, Melbourne, Victoria, Australia
- RMIT University, School of Science, GPO Box, Melbourne, Victoria, 2476, Australia
| |
Collapse
|
9
|
Benito D, Ahvo A, Nuutinen J, Bilbao D, Saenz J, Etxebarria N, Lekube X, Izagirre U, Lehtonen KK, Marigómez I, Zaldibar B, Soto M. Influence of season-depending ecological variables on biomarker baseline levels in mussels (Mytilus trossulus) from two Baltic Sea subregions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:1087-1103. [PMID: 31466149 DOI: 10.1016/j.scitotenv.2019.06.412] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
For reliable mussel monitoring programmes based on biomarkers, regionally relevant reference values and their natural variability need to be known. The Baltic Sea exhibits high inter-regional and seasonal variability in physical factors such as salinity, temperature and primary production. The aim of this pilot study is to depict the effects of season-related environmental factors in a selected battery of biomarkers in two environmentally different subregions of the Baltic Sea to help establishing reference data for biochemical, cellular and tissue-level biomarkers. In order to achieve that, mussels were collected from reference sites in Kiel (Germany) and Tvärminne (Finland) during three seasons: summer and autumn 2016, and spring 2017. Finally, in order to characterize the ecological situation, analysis of the chemical tissue burden was performed and chlorophyll‑a and particulate organic carbon concentration and temperature changes were analyzed at each sampling locality using satellite remote sensing images. An integrated biomarker response index was performed to summarize the biomarker responses of each locality and season. The biochemical endpoints showed seasonal variability regulated by temperature, food supply and reproductive cycle, while among the cellular endpoints only lipofuscin accumulation and lysosomal structural changes showed slight seasonal variation. Seasonal changes in tissue level biomarkers were observed only at the northern Baltic Sea site Tvärminne, dictated by the demanding energetic trade-off caused by reproduction. In conclusion, the characterization of the ecological variables and physico-chemical conditions at each site, is crucial to perform a reliable assessment of the effects of a hypothetical pollution scenario in the Baltic Sea. Moreover, reference levels of biomarkers and their responses to natural environmental conditions must be established.
Collapse
Affiliation(s)
- Denis Benito
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Aino Ahvo
- Finnish Environment Institute, Marine Research Centre, Agnes Sjöbergin katu 2, FI-00790 Helsinki, Finland
| | - Jari Nuutinen
- Finnish Environment Institute, Laboratory Centre, Ultramariinikuja 4, FI-00430 Helsinki, Finland
| | - Dennis Bilbao
- IBEA Res Grp, Analytical Chemistry Dept. (Science and Technology Fac.), Univ Basque Country (UPV/EHU), PO Box 644, E-48080 Bilbao, Basque Country, Spain
| | - Jon Saenz
- Department of Applied Physics II, University of the Basque Country (UPV/EHU), B. Sarriena s/n, Leioa 48940, Spain
| | - Nestor Etxebarria
- IBEA Res Grp, Analytical Chemistry Dept. (Science and Technology Fac.), Univ Basque Country (UPV/EHU), PO Box 644, E-48080 Bilbao, Basque Country, Spain
| | - Xabier Lekube
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Urtzi Izagirre
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Kari K Lehtonen
- Finnish Environment Institute, Marine Research Centre, Agnes Sjöbergin katu 2, FI-00790 Helsinki, Finland
| | - Ionan Marigómez
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Beñat Zaldibar
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Manu Soto
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain.
| |
Collapse
|
10
|
Van Nguyen T, Alfaro AC. Applications of flow cytometry in molluscan immunology: Current status and trends. FISH & SHELLFISH IMMUNOLOGY 2019; 94:239-248. [PMID: 31491532 DOI: 10.1016/j.fsi.2019.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/05/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Flow cytometry (FCM) is routinely used in fundamental and applied research, clinical practice, and clinical trials. In the last three decades, this technique has also become a routine tool used in immunological studies of molluscs to analyse physical and chemical characteristics of haemocytes. Here, we briefly review the current implementation of FCM in the field of molluscan immunology. These applications cover a diverse range of practices from straightforward total cell counts and cell viability to characterize cell subpopulations, and further extend to analyses of DNA content, phagocytosis, oxidative stress and apoptosis. The challenges and prospects of FCM applications in immunological studies of molluscs are also discussed.
Collapse
Affiliation(s)
- Thao Van Nguyen
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, New Zealand.
| |
Collapse
|
11
|
Höher N, Turja R, Brenner M, Nyholm JR, Östin A, Leffler P, Butrimavičienė L, Baršienė J, Halme M, Karjalainen M, Niemikoski H, Vanninen P, Broeg K, Lehtonen KK, Berglind R. Toxic effects of chemical warfare agent mixtures on the mussel Mytilus trossulus in the Baltic Sea: A laboratory exposure study. MARINE ENVIRONMENTAL RESEARCH 2019; 145:112-122. [PMID: 30850117 DOI: 10.1016/j.marenvres.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/24/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Baltic blue mussels (Mytilus trossulus) were implemented to assess potential toxicity, health impairments and bioaccumulation of dumped chemical warfare agents on marine benthic organisms. Mussels were collected from a pristine cultivation side and exposed under laboratory conditions to different mixtures of chemical warfare agents (CWAs) related phenyl arsenic compounds, Clark I and Adamsite as well as chloroacetophenone. Using a multi-biomarker approach, mussels were assessed thereafter for effects at different organisational levels ranging from geno-to cytotoxic effects, differences in enzyme kinetics and immunological responses. In an integrated approach, chemical analysis of water and tissue of the test organisms was performed in parallel. The results show clearly that exposed mussels bioaccumulate the oxidized forms of chemical warfare agents Clark I, Adamsite (DAox and DMox) and, to a certain extent, also chloroacetophenone into their tissues. Adverse effects in the test organisms at subcellular and functional level, including cytotoxic, immunotoxic and oxidative stress effects were visible. These acute effects occurred even at the lowest test concentration.
Collapse
Affiliation(s)
- Nicole Höher
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Raisa Turja
- Marine Research Centre, Finnish Environment Institute, Agnes Sjöbergin Katu 2, 00790, Helsinki, Finland
| | - Matthias Brenner
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany.
| | | | - Anders Östin
- Swedish Defence Research Agency, Cementvägen 20, 90182, Umeå, Sweden
| | - Per Leffler
- Swedish Defence Research Agency, Cementvägen 20, 90182, Umeå, Sweden
| | - Laura Butrimavičienė
- Institute of Ecology of Nature Research Centre, Akademijos Str. 2, 08412, Vilnius, Lithuania
| | - Janina Baršienė
- Institute of Ecology of Nature Research Centre, Akademijos Str. 2, 08412, Vilnius, Lithuania
| | - Mia Halme
- Finnish Institute for Verification of the Chemical Weapons Convention (VERIFIN), Department of Chemistry, Faculty of Science, University of Helsinki, Yliopistonkatu 4, 00014, Helsinki, Finland
| | - Maaret Karjalainen
- Finnish Institute for Verification of the Chemical Weapons Convention (VERIFIN), Department of Chemistry, Faculty of Science, University of Helsinki, Yliopistonkatu 4, 00014, Helsinki, Finland
| | - Hanna Niemikoski
- Finnish Institute for Verification of the Chemical Weapons Convention (VERIFIN), Department of Chemistry, Faculty of Science, University of Helsinki, Yliopistonkatu 4, 00014, Helsinki, Finland
| | - Paula Vanninen
- Finnish Institute for Verification of the Chemical Weapons Convention (VERIFIN), Department of Chemistry, Faculty of Science, University of Helsinki, Yliopistonkatu 4, 00014, Helsinki, Finland
| | - Katja Broeg
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Kari K Lehtonen
- Marine Research Centre, Finnish Environment Institute, Agnes Sjöbergin Katu 2, 00790, Helsinki, Finland
| | - Rune Berglind
- Swedish Defence Research Agency, Cementvägen 20, 90182, Umeå, Sweden
| |
Collapse
|
12
|
Quintas PY, Arias AH, Oliva AL, Domini CE, Alvarez MB, Garrido M, Marcovecchio JE. Organotin compounds in Brachidontes rodriguezii mussels from the Bahía Blanca Estuary, Argentina. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 145:518-527. [PMID: 28783602 DOI: 10.1016/j.ecoenv.2017.07.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 06/07/2023]
Abstract
Levels of tributyltin and its breakdown compounds, including the first record of monobutyltin (MBT) in history for Latin America, were determined in native mussels (Brachidontes rodriguezii) by means of CG-MS, after extraction/derivatization assisted by ultrasound. The samples were collected in 2013 in Bahía Blanca Estuary (Argentina) at 6 sites, which reflect different levels of maritime activities. Total butyltins (TBts = TBT+ DBT+ MBT) levels ranged from 19.64 to 180.57ng Sn g-1 dry weight. According to the Oslo-Paris commission, the results indicated that 73.9% of mussels could be under biological effects risks associated with TBT pollution. In accordance with the calculated bioaccumulation factors, approximately 56% of samples appeared to have accumulated TBT through the sediments. All sampling sites were shown to be impacted by organotin compounds (OTCs) showing variable levels through seasons, which could be related with the variation of the water temperature. Degradation index analyses suggested aged inputs of TBT possibly under a general degradation process at the area of study. In addition, the occurrence of DBT and MBT could not be uniquely attributed to the degradation pathway of the TBT; in fact, results outlined the possible contribution of some punctual and diffuse sources at the area such as proximity to plastic industries, industrial effluents, sewage outlets and domestic wastewaters.
Collapse
Affiliation(s)
- Pamela Y Quintas
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina.
| | - Andrés H Arias
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Ana L Oliva
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Claudia E Domini
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Mónica B Alvarez
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Mariano Garrido
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina.
| | - Jorge E Marcovecchio
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina; Universidad Tecnológica Nacional (UTN)-FRBB, Bahía Blanca, Argentina; Universidad de la Fraternidad de Agrupaciones Santo Tomás de Aquino (FASTA), Mar del Plata, Argentina
| |
Collapse
|
13
|
Tairova Z, Strand J, Bossi R, Larsen MM, Förlin L, Bignert A, Hedman J, Gercken J, Lang T, Fricke NF, Asmund G, Long M, Bonefeld-Jørgensen EC. Persistent organic pollutants and related biological responses measured in coastal fish using chemical and biological screening methods. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:862-880. [PMID: 28910589 DOI: 10.1080/15287394.2017.1372870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The aim of this study was to investigate the spatial distribution, levels of dioxin-like compounds (DLC), and biological responses in two fish species. The viviparous eelpout (Zoarces viviparus) was collected from various locations in the Baltic Sea and in fjords of Kattegat and Skagerrak, while shorthorn sculpin (Myoxocephalus scorpius) was obtained at the polychlorinated biphenyl (PCB) polluted site in North West Greenland. Significant differences were detected both in contaminant levels and relative contributions from either polychlorinated dibenzodioxins (PCDD) or polychlorinated dibenzofurans (PCDF or furans) and mono-ortho- and non-ortho (coplanar) polychlorinated biphenyls (dl-PCB). Fish from the eastern Baltic Sea generally displayed higher contributions from PCDD/F compared to dl-PCB, whereas dl-PCB were generally predominated in fish from Danish, Swedish, and German sites. Levels of dl-PCB in muscle tissues were above OSPAR environmental assessment criteria (EAC) for PCB118, indicating a potential risk of adverse biological effects in the ecosystem, whereas levels of the total WHO-TEQs were below threshold for sea food suggesting limited risks for humans. No significant relationships between levels of DLC (expressed as WHO-TEQ), and biological responses such as the induction of CYP1A enzymatic activity and fry reproductive disorders were observed in eelpout. No marked relationship between WHO-TEQ and combined biological aryl hydrocarbon receptor-mediated transactivity (expressed as AhR-TEQ) was noted. However, there was a positive correlation between polycyclic aromatic hydrocarbon (PAH) metabolites and induction of CYP1A activity, suggesting that PAH exhibited greater potential than DLC to produce biological effects in eelpout from the Baltic Sea.
Collapse
Affiliation(s)
- Zhanna Tairova
- a Department of Bioscience , Aarhus University , Roskilde , Denmark
- g Centre for Arctic Health and Molecular Epidemiology, Department of Public Health , Aarhus University , Aarhus , Denmark
| | - Jakob Strand
- a Department of Bioscience , Aarhus University , Roskilde , Denmark
| | - Rossana Bossi
- b Department of Environmental Science , Aarhus University , Roskilde , Denmark
| | - Martin M Larsen
- a Department of Bioscience , Aarhus University , Roskilde , Denmark
| | - Lars Förlin
- c Department of Biological and Environmental Sciences , University of Gothenburg , Göteborg , Sweden
| | - Anders Bignert
- d Swedish Museum of Natural History , Department of Contaminant Research , Stockholm , Sweden
| | - Jenny Hedman
- d Swedish Museum of Natural History , Department of Contaminant Research , Stockholm , Sweden
| | - Jens Gercken
- e Institute for Applied Ecology Ltd ., Neu Broderstorf , Germany
| | - Thomas Lang
- f Thünen Institute of Fisheries Ecology , Cuxhaven , Germany
| | | | - Gert Asmund
- a Department of Bioscience , Aarhus University , Roskilde , Denmark
| | - Manhai Long
- g Centre for Arctic Health and Molecular Epidemiology, Department of Public Health , Aarhus University , Aarhus , Denmark
| | - Eva C Bonefeld-Jørgensen
- g Centre for Arctic Health and Molecular Epidemiology, Department of Public Health , Aarhus University , Aarhus , Denmark
| |
Collapse
|
14
|
Beyer J, Green NW, Brooks S, Allan IJ, Ruus A, Gomes T, Bråte ILN, Schøyen M. Blue mussels (Mytilus edulis spp.) as sentinel organisms in coastal pollution monitoring: A review. MARINE ENVIRONMENTAL RESEARCH 2017; 130:338-365. [PMID: 28802590 DOI: 10.1016/j.marenvres.2017.07.024] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 05/16/2023]
Abstract
The blue mussel (Mytilus spp.) is widely used as a bioindicator for monitoring of coastal water pollution (mussel watch programs). Herein we provide a review of this study field with emphasis on: the suitability of Mytilus spp. as environmental sentinels; uptake and bioaccumulation patterns of key pollutant classes; the use of Mytilus spp. in mussel watch programs; recent trends in Norwegian mussel monitoring; environmental quality standards and background concentrations of key contaminants; pollutant effect biomarkers; confounding factors; particulate contaminants (microplastics, engineered nanomaterials); climate change; harmonization of monitoring procedures; and the use of deployed mussels (transplant caging) in pollution monitoring. Lastly, the overall state of the art of blue mussel pollution monitoring is discussed and some important issues for future research and development are highlighted.
Collapse
Affiliation(s)
- Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349, Oslo, Norway.
| | - Norman W Green
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Steven Brooks
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Ian J Allan
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Anders Ruus
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349, Oslo, Norway; University of Oslo, Department of Biosciences, NO-0316, Oslo, Norway
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Inger Lise N Bråte
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Merete Schøyen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349, Oslo, Norway
| |
Collapse
|
15
|
Zannella C, Mosca F, Mariani F, Franci G, Folliero V, Galdiero M, Tiscar PG, Galdiero M. Microbial Diseases of Bivalve Mollusks: Infections, Immunology and Antimicrobial Defense. Mar Drugs 2017. [PMID: 28629124 PMCID: PMC5484132 DOI: 10.3390/md15060182] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A variety of bivalve mollusks (phylum Mollusca, class Bivalvia) constitute a prominent commodity in fisheries and aquacultures, but are also crucial in order to preserve our ecosystem’s complexity and function. Bivalve mollusks, such as clams, mussels, oysters and scallops, are relevant bred species, and their global farming maintains a high incremental annual growth rate, representing a considerable proportion of the overall fishery activities. Bivalve mollusks are filter feeders; therefore by filtering a great quantity of water, they may bioaccumulate in their tissues a high number of microorganisms that can be considered infectious for humans and higher vertebrates. Moreover, since some pathogens are also able to infect bivalve mollusks, they are a threat for the entire mollusk farming industry. In consideration of the leading role in aquaculture and the growing financial importance of bivalve farming, much interest has been recently devoted to investigate the pathogenesis of infectious diseases of these mollusks in order to be prepared for public health emergencies and to avoid dreadful income losses. Several bacterial and viral pathogens will be described herein. Despite the minor complexity of the organization of the immune system of bivalves, compared to mammalian immune systems, a precise description of the different mechanisms that induce its activation and functioning is still missing. In the present review, a substantial consideration will be devoted in outlining the immune responses of bivalves and their repertoire of immune cells. Finally, we will focus on the description of antimicrobial peptides that have been identified and characterized in bivalve mollusks. Their structural and antimicrobial features are also of great interest for the biotechnology sector as antimicrobial templates to combat the increasing antibiotic-resistance of different pathogenic bacteria that plague the human population all over the world.
Collapse
Affiliation(s)
- Carla Zannella
- Department of Experimental Medicine-University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Napoli, Italy.
| | - Francesco Mosca
- Faculty of Veterinary Medicine, University of Teramo, Piano d'Accio, 64100 Teramo, Italy.
| | - Francesca Mariani
- Faculty of Veterinary Medicine, University of Teramo, Piano d'Accio, 64100 Teramo, Italy.
| | - Gianluigi Franci
- Department of Experimental Medicine-University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Napoli, Italy.
| | - Veronica Folliero
- Department of Experimental Medicine-University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Napoli, Italy.
| | - Marilena Galdiero
- Department of Experimental Medicine-University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Napoli, Italy.
| | - Pietro Giorgio Tiscar
- Faculty of Veterinary Medicine, University of Teramo, Piano d'Accio, 64100 Teramo, Italy.
| | - Massimiliano Galdiero
- Department of Experimental Medicine-University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Napoli, Italy.
| |
Collapse
|
16
|
Xie J, Zhao C, Han Q, Zhou H, Li Q, Diao X. Effects of pyrene exposure on immune response and oxidative stress in the pearl oyster, Pinctada martensii. FISH & SHELLFISH IMMUNOLOGY 2017; 63:237-244. [PMID: 28232194 DOI: 10.1016/j.fsi.2017.02.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 06/06/2023]
Abstract
Pyrene is a polycyclic aromatic hydrocarbon (PAH) commonly observed in aquatic ecosystems, which originates primarily from the incomplete combustion of fossil fuels and the use of petroleum compounds. Pyrene can cause the immune disturbance and oxidative stress, result in immunotoxicity, DNA damage, reduce reproduction significantly, and induce behavioral changes. Marine bivalves are commonly used as bioindicators for marine pollution, and hemolymph is a metabolite transfer medium for PAH pollutant. However, the vital immune indicator responses of pearl oyster Pinctada martensii hemolymph exposed to pyrene is still unclear. Thus, the immunotoxic responses of pyrene on the hemolymph of the Pinctada martensii were investigated in this study. After exposure to pyrene for 7 days, the total number of hemocytes (THC), cell membrane stability (CMS), phagocytic activity (PA) and total glutathione (GSHT) all decreased significantly. Pyrene also caused a significant increase in lipid peroxidation (LPO). Median effective concentrations (EC50) of pyrene on THC (4.5 μg L-1) and LPO (5.2 μg L-1) were lower than those for CMS (13.8 μg L-1), PA (12.1 μg L-1) and GSHT (7.2 μg L-1), which indicates that THC and LPO were more sensitive. Additionally, a clear dose-effect relationship indicated that pyrene stimulated a marked immune response, as well as oxidative stress in P. martensii, which demonstrates the subtle effects of pyrene exposure on marine invertebrates and the potential associated risk.
Collapse
Affiliation(s)
- Jia Xie
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17, Chunhui Rd, Laishan District, Yantai 264003, China
| | - Chunfeng Zhao
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qian Han
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Hailong Zhou
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Qingxiao Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Xiaoping Diao
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
17
|
Imhof HK, Laforsch C. Hazardous or not - Are adult and juvenile individuals of Potamopyrgus antipodarum affected by non-buoyant microplastic particles? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:383-391. [PMID: 27431695 DOI: 10.1016/j.envpol.2016.07.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 05/20/2023]
Abstract
Microplastic has been ubiquitously detected in freshwater ecosystems. A variety of freshwater organisms were shown to ingest microplastic particles, while a high potential for adverse effects are expected. However, studies addressing the effect of microplastic in freshwater species are still scarce compared to studies on marine organisms. In order to gain further insights into possible adverse effects of microplastic particles on freshwater invertebrates and to set the base for further experiments we exposed the mud snail (Potampoyrgus antipodarum) to a large range of common and environmentally relevant non-buoyant polymers (polyamide, polyethylene terephthalate, polycarbonate, polystyrene, polyvinylchloride). The impact of these polymers was tested by performing two exposure experiments with irregular shaped microplastic particles with a broad size distribution in a low (30%) and a high microplastic dose (70%) in the food. First, possible effects on adult P. antipodarum were assessed by morphological and life-history parameters. Second, the effect of the same mixture on the development of juvenile P. antipodarum until maturity was analyzed. Adult P. antipodarum showed no morphological changes after the exposure to the microplastic particles, even if supplied in a high dose. Moreover, although P. antipodarum is an established model organism and reacts especially sensitive to endocrine active substances no effects on embryogenesis were detected. Similarly, the juvenile development until maturity was not affected. Considering, that most studies showing effects on marine and freshwater invertebrates mostly exposed their experimental organisms to very small (≤20 μm) polystyrene microbeads, we anticipate that these effects may be highly dependent on the chemical composition of the polymer itself and the size and shape of the particles. Therefore, more studies are necessary to enable the identification of harmful synthetic polymers as some of them may be problematic and should be declared as hazardous whereas others may have relatively moderate or no effects.
Collapse
Affiliation(s)
- Hannes K Imhof
- Department of Animal Ecology I and BayCEER, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany; Department of Biology II, Ludwig-Maximilians-University Munich, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Christian Laforsch
- Department of Animal Ecology I and BayCEER, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany.
| |
Collapse
|
18
|
Fenstad AA, Jenssen BM, Gabrielsen KM, Öst M, Jaatinen K, Bustnes JO, Hanssen SA, Moe B, Herzke D, Krøkje Å. Persistent organic pollutant levels and the importance of source proximity in Baltic and Svalbard breeding common eiders. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1526-1533. [PMID: 26553455 DOI: 10.1002/etc.3303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/16/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
The distance to sources and the long-range transport potential of persistent organic pollutants (POPs) are important in understanding the impact of anthropogenic pollution on natural seabird populations. The present study documented blood concentrations of POPs in the Baltic Sea (Tvärminne, Finland) population of common eiders (Somateria mollissima) in 2009 and in 2011 and compared the concentrations with the presumably less exposed Arctic population in Svalbard (Kongsfjorden, Norway). The Baltic population had 26, 10, and 5 times greater concentrations of hexachlorocyclohexane, polychlorinated biphenyls, and p,p'-dichlorodiphenyldichloroethylene than the Svalbard population. Unexpectedly, concentrations of chlordanes were higher in Svalbard eiders, whereas concentrations of hexachlorobenzenes (HCBs) did not differ between the 2 populations. Although the similar HCB levels may partly be explained by the high transport potential of HCBs, unknown factors may have been more important than distance to sources and long-range transport potential for the chlordanes. One plausible explanation may be that the fasting-related redistribution of POPs from fat to blood was greater throughout the incubation in Arctic eiders, causing them to have higher blood levels of these POPs at the end of incubation. The blood concentrations of POPs in Baltic eiders were higher than documented in any other eider population and were comparable to levels in seabirds feeding at higher trophic positions in the food chain. Environ Toxicol Chem 2016;35:1526-1533. © 2015 SETAC.
Collapse
Affiliation(s)
- Anette A Fenstad
- Department of Biology, Norwegian University of Science and Technology (NTNU), Realfagbygget, Trondheim, Norway
| | - Bjørn M Jenssen
- Department of Biology, Norwegian University of Science and Technology (NTNU), Realfagbygget, Trondheim, Norway
| | - Kristin M Gabrielsen
- Department of Biology, Norwegian University of Science and Technology (NTNU), Realfagbygget, Trondheim, Norway
| | - Markus Öst
- Environmental and Marine Biology, Faculty of Science and Engineering, Åbo Akademi University, Finland
- Coastal Zone Research Team, Novia University of Applied Science (NOVIA), Ekenäs, Finland
| | - Kim Jaatinen
- Coastal Zone Research Team, Novia University of Applied Science (NOVIA), Ekenäs, Finland
| | - Jan O Bustnes
- Norwegian Institute for Nature Research (NINA), Framsenteret, Tromsø, Norway
| | - Sveinn A Hanssen
- Norwegian Institute for Nature Research (NINA), Framsenteret, Tromsø, Norway
| | - Børge Moe
- Norwegian Institute for Nature Research (NINA), Framsenteret, Tromsø, Norway
| | - Dorte Herzke
- Norwegian Institute for Air Research (NILU), Framsenteret, Tromsø, Norway
| | - Åse Krøkje
- Department of Biology, Norwegian University of Science and Technology (NTNU), Realfagbygget, Trondheim, Norway
| |
Collapse
|
19
|
Andersen JH, Murray C, Larsen MM, Green N, Høgåsen T, Dahlgren E, Garnaga-Budrė G, Gustavson K, Haarich M, Kallenbach EMF, Mannio J, Strand J, Korpinen S. Development and testing of a prototype tool for integrated assessment of chemical status in marine environments. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:115. [PMID: 26810208 DOI: 10.1007/s10661-016-5121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/14/2016] [Indexed: 06/05/2023]
Abstract
We report the development and application of a prototype tool for integrated assessment of chemical status in aquatic environments based on substance- and matrix-specific environmental assessment criteria (thresholds). The Chemical Status Assessment Tool (CHASE) integrates data on hazardous substances in water, sediments and biota as well as bio-effect indicators and is based on a substance- or bio-effect-specific calculation of a 'contamination ratio' being the ratio between an observed concentration and a threshold value. Values <1.0 indicate areas potentially 'unaffected', while values >1.0 indicate areas potentially 'affected'. These ratios are combined within matrices, i.e. for water, sediment and biota and for biological effects. The overall assessment used a 'one out, all out principle' with regard to each matrix. The CHASE tool was tested in the Baltic Sea and the North Sea in 376 assessment units. In the former, the chemical status was >1.0 in practically all areas indicating that all areas assessed were potentially affected. The North Sea included areas classified as unaffected or affected. The CHASE tool can in combination with temporal trend assessments of individual substances be advantageous for use in remedial action plans and, in particular, for the science-based evaluation of the status and for determining which specific substances are responsible for a status as potentially affected.
Collapse
Affiliation(s)
- Jesper H Andersen
- NIVA Denmark Water Research, Ørestads Boulevard 73, 2300, Copenhagen S, Denmark.
- Marine Research Centre, SYKE, Helsinki, Finland.
| | - Ciarán Murray
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| | - Martin M Larsen
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| | - Norman Green
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Tore Høgåsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Elin Dahlgren
- Swedish Environmental Protection Agency, Stockholm, Sweden
| | - Galina Garnaga-Budrė
- Marine Research Department, Environmental Protection Agency, Klaipėda, Lithuania
- Department of Biology and Ecology, Klaipėda University, Klaipėda, Lithuania
| | - Kim Gustavson
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| | | | | | - Jaakko Mannio
- Centre for Sustainable Consumption and Production, SYKE, Helsinki, Finland
| | - Jakob Strand
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| | | |
Collapse
|
20
|
Höher N, Turja R, Köhler A, Lehtonen KK, Broeg K. Immunological responses in the mussel Mytilus trossulus transplanted at the coastline of the northern Baltic Sea. MARINE ENVIRONMENTAL RESEARCH 2015; 112:113-121. [PMID: 26604022 DOI: 10.1016/j.marenvres.2015.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/26/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
The applicability of immune responses in transplanted Baltic blue mussels (Mytilus trossulus) as biomarkers of immunotoxic effects was studied at differently contaminated locations in the Gulf of Bothnia (northern Baltic Sea). Here, we present a detailed report on the immune responses measured as complementary part of transplantation study by Turja et al. (2014).Various immunological endpoints such as total and differential cell count, morphological alterations,phagocytic activity, and caspase 3/7 activity of mussel haemocytes as well as haemolytic activity of the haemolymph were used. Mussels collected at a reference site at a Finnish coastal site (Hanko, H) were transplanted at the Swedish coast near industrial and urban regions of the cities Sundsvall (S1, S2) and Gävle (G1, G2), respectively. Based on the measured immunological responses, multivariate statistical analysis (PCA biplot) showed a clear separation of the most polluted site S1, indicating immunotoxic impacts of the mixture of contaminants present at this location. Based on these observations and results from Turja et al. (2014), we suggest the implementation of immunotoxic biomarkers for the evaluation of ecosystem health. However, these should be accompanied by complementary endpoints of biological effects encompassing i.e., physiological, antioxidant and bioenergetic markers.
Collapse
|
21
|
Ladhar-Chaabouni R, Hamza-Chaffai A. The cell cultures and the use of haemocytes from marine molluscs for ecotoxicology assessment. Cytotechnology 2015; 68:1669-85. [PMID: 26611734 DOI: 10.1007/s10616-015-9932-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/14/2015] [Indexed: 12/20/2022] Open
Abstract
Among aquatic organisms suitable for biological monitoring, molluscs occupy a prominent place due to their wide geographic distribution, their abundance and accessibility in the field as well as in aquaculture. Molluscs reflect the degree of environmental contamination and are the most useful bioindicator tools. The study of modulation of immune system or immunomodulation in marine molluscs has become one of the privileged ways for evaluating the physiological effects of environmental factors. Physiological responses of molluscs to environmental stresses could be mediated by haemocytes. These cells are continually exposed to the external environment due to the open circulatory system of molluscs and are affected by pollutants. In fact, several studies showed the effects of different environmental contaminants on haemocyte functions (viability, phagocytosis, ROS production) as well as on proteins involved in cytoskeletal structure maintenance using the in vitro approaches. In ecotoxicology, in vitro approach is an alternative to animal testing due to the reduced use of experimental animals, low cost and rapid performance. Although several studies showed the importance of using in vitro cell models to determine the effects of different environmental contaminants on haemocyte parameters in marine molluscs, a few reviews highlight these effects. The main purpose of this paper is to summarize the recent data on the effect of some xenobiotics on haemocyte parameters in some mollusc species and then suggest future research prospects.
Collapse
Affiliation(s)
- Rim Ladhar-Chaabouni
- Marine Ecotoxicology, UR 09-03, IPEIS BP 805, University of Sfax, 3018, Sfax, Tunisia.
| | - Amel Hamza-Chaffai
- Marine Ecotoxicology, UR 09-03, IPEIS BP 805, University of Sfax, 3018, Sfax, Tunisia
| |
Collapse
|
22
|
Boumhras M, Ouafik S, Nury T, Gresti J, Athias A, Ragot K, Nasser B, Cherkaoui-Malki M, Lizard G. Determination of heavy metal content and lipid profiles in mussel extracts from two sites on the moroccan atlantic coast and evaluation of their biological activities on MIN6 pancreatic cells. ENVIRONMENTAL TOXICOLOGY 2014; 29:1245-1261. [PMID: 23450722 DOI: 10.1002/tox.21855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 06/01/2023]
Abstract
Mussels may concentrate pollutants, with possibly significant side effects on human health. Therefore, mussels (Mytilus galloprovincialis) from two sites of the Moroccan Atlantic coast (Jorf Lasfar [JL], an industrial site, and Oualidia [OL], a vegetable-growing area), were subjected to biochemical analyses to quantify the presence of heavy metals (Cd, Cr, and Pb) and to establish the lipid profile: fatty acid, cholesterol, oxysterol, phytosterol and phospholipid content. In addition, mussel lipid extracts known to accumulate numerous toxic components were tested on murine pancreatic β-cells (MIN6), and their biological activities were measured with various flow cytometric and biochemical methods to determine their impacts on cell death induction, organelle dysfunctions (mitochondria, lysosomes, and peroxisomes), oxidative stress and insulin secretion. The characteristics of JL and OL lipid extracts were compared with those of commercially available mussels from Spain (SP) used for human consumption. OL and JL contained heavy metals, high amounts of phospholipids, and high levels of oxysterols; the [(unsaturated fatty acids)/(saturated fatty acids)] ratio, which can be considered a sign of environmental stress leading to lipid peroxidation, was low. On MIN6 cells, JL and OL lipid extracts were able to trigger cell death. This event was associated with overproduction of H2 O2 , increased catalase activity, a decreased GSH level, lipid peroxidation and stimulation of insulin secretion. These effects were not observed with SP lipid extracts. These data suggest that some components from OL and JL lipid extracts might predispose to pancreatic dysfunctions. Epidemiological studies would be needed to assess the global risk on human health and the metabolic disease incidence in a context of regular seafood consumption from the OL and JL areas.
Collapse
Affiliation(s)
- M Boumhras
- Equipe 'Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique' (EA 7270) / Université de Bourgogne / INSERM, Dijon, France; Laboratoire de Biochimie et Neurosciences, Equipe de Toxicologie Appliquée, Université Hassan 1er, Faculté des Sciences et Techniques, Settat, Maroc
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Boscolo Papo M, Bertotto D, Quaglio F, Vascellari M, Pascoli F, Negrato E, Binato G, Radaelli G. Histopathology and stress biomarkers in the clam Venerupis philippinarum from the Venice Lagoon (Italy). FISH & SHELLFISH IMMUNOLOGY 2014; 39:42-50. [PMID: 24795081 DOI: 10.1016/j.fsi.2014.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/09/2014] [Accepted: 04/23/2014] [Indexed: 06/03/2023]
Abstract
The aim of this study was to evaluate the histomorphology and the stress response in the bivalve Venerupis philippinarum sampled in four differently polluted sites of the Venice Lagoon (Palude del Monte, Marghera, Ca' Roman and Val di Brenta). This species is often used as bioindicator of environmental pollution since it can bioaccumulate a large variety of pollutants because of its filter feeding. Chemical analyses for heavy metals (Cd, Cu, Hg and Pb) and polycyclic aromatic hydrocarbons (PAHs) were performed on whole soft tissues of V. philippinarum. The histological evaluation of clams revealed the presence of Perkinsus sp. infection in animals from all sites, although a very high prevalence of parasites was evidenced in clams from Ca' Roman. Perkinsus sp. were systemically distributed in the mantle, in the intestine and digestive gland, in gonads and gills. The trophozoites of Perkinsus sp. were found isolated or in cluster surrounded by a heavy hemocitical response. Haemocytes always exhibited an immunopositivity to cytochrome P4501A (CYP1A), heat shock protein 70 (HSP70), 4-hydroxy-2-nonenal (HNE) and nitrotyrosine (NT) antibodies. The digestive gland of animals from Palude del Monte showed the highest malondialdehyde (MDA) concentration, whereas clams from Ca' Roman exhibited the highest quantity of metallothioneins.
Collapse
Affiliation(s)
- Michele Boscolo Papo
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Agripolis, Viale dell'Università 16 - 35020 Legnaro (PD), Italy
| | - Daniela Bertotto
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Agripolis, Viale dell'Università 16 - 35020 Legnaro (PD), Italy
| | - Francesco Quaglio
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Agripolis, Viale dell'Università 16 - 35020 Legnaro (PD), Italy
| | - Marta Vascellari
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10 - 35020 Legnaro (PD), Italy
| | - Francesco Pascoli
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10 - 35020 Legnaro (PD), Italy
| | - Elena Negrato
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Agripolis, Viale dell'Università 16 - 35020 Legnaro (PD), Italy
| | - Giovanni Binato
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10 - 35020 Legnaro (PD), Italy
| | - Giuseppe Radaelli
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Agripolis, Viale dell'Università 16 - 35020 Legnaro (PD), Italy.
| |
Collapse
|
24
|
Bianchi VA, Castro JM, Rocchetta I, Bieczynski F, Luquet CM. Health status and bioremediation capacity of wild freshwater mussels (Diplodon chilensis) exposed to sewage water pollution in a glacial Patagonian lake. FISH & SHELLFISH IMMUNOLOGY 2014; 37:268-277. [PMID: 24589503 DOI: 10.1016/j.fsi.2014.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 06/03/2023]
Abstract
Deleterious effects on health and fitness are expected in mussels chronically exposed to sewage water pollution. Diplodon chilensis inhabiting SMA, an area affected by untreated and treated sewage water, shows increased hemocyte number and phagocytic activity, while bacteriolytic and phenoloxidase activities in plasma and reactive oxygen species production in hemocytes are lower compared to mussels from an unpolluted area (Yuco). There are not differences in cell viability, lysosomal membrane stability, lipid peroxidation and total oxygen scavenging capacity between SMA and Yuco mussels' hemocytes. Energetic reserves and digestive gland mass do not show differences between groups; although the condition factor is higher in SMA than in Yuco mussels. Gills of SMA mussels show an increase in mass and micronuclei frequency compared to those of Yuco. Mussels from both sites reduce bacterial loads in polluted water and sediments, improving their quality with similar feeding performance. These findings suggest that mussels exposed to sewage pollution modulate physiological responses by long-term exposure; although, gills are sensitive to these conditions and suffer chronic damage. Bioremediation potential found in D. chilensis widens the field of work for remediation of sewage bacterial pollution in water and sediments by filtering bivalves.
Collapse
Affiliation(s)
- Virginia A Bianchi
- Laboratorio de Ecotoxicología Acuática, INIBIOMA (CONICET-UNCo) - CEAN, ruta provincial 61, km 3, 8371 Junín de los Andes, Neuquén, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia, 1917 Buenos Aires, Argentina.
| | - Juan M Castro
- Laboratorio de Ecotoxicología Acuática, INIBIOMA (CONICET-UNCo) - CEAN, ruta provincial 61, km 3, 8371 Junín de los Andes, Neuquén, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia, 1917 Buenos Aires, Argentina
| | - Iara Rocchetta
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia, 1917 Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab. II, Ciudad Universitaria, 1428 Buenos Aires, Argentina; Department of Functional Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Flavia Bieczynski
- Laboratorio de Ecotoxicología Acuática, INIBIOMA (CONICET-UNCo) - CEAN, ruta provincial 61, km 3, 8371 Junín de los Andes, Neuquén, Argentina
| | - Carlos M Luquet
- Laboratorio de Ecotoxicología Acuática, INIBIOMA (CONICET-UNCo) - CEAN, ruta provincial 61, km 3, 8371 Junín de los Andes, Neuquén, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia, 1917 Buenos Aires, Argentina
| |
Collapse
|
25
|
Turja R, Höher N, Snoeijs P, Baršienė J, Butrimavičienė L, Kuznetsova T, Kholodkevich SV, Devier MH, Budzinski H, Lehtonen KK. A multibiomarker approach to the assessment of pollution impacts in two Baltic Sea coastal areas in Sweden using caged mussels (Mytilus trossulus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 473-474:398-409. [PMID: 24388819 DOI: 10.1016/j.scitotenv.2013.12.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 06/03/2023]
Abstract
Blue mussels (Mytilus trossulus) were transplanted in cages for three months in two Swedish coastal areas in the Bothnian Sea (northern Baltic Sea) to investigate the interactions between analysed environmental chemicals and biological responses. A wide array of biological parameters (biomarkers) including antioxidant and biotransformation activity, geno-, cyto- and neurotoxic effects, phagocytosis, bioenergetic status and heart rate were measured to detect the possible effects of contaminants. Integrated Biomarker Response index and Principal Component Analysis performed on the individual biological response data were able to discriminate between the two study areas as well as the contaminated sites from their respective local reference sites. The two contaminated sites outside the cities of Sundsvall (station S1) and Gävle (station G1) were characterised by different biomarker response patterns. Mussels at station S1 showed a low condition index, increased heart rate recovery time and phagocytosis activity coinciding with the highest tissue concentrations of some trace metals, polycyclic aromatic hydrocarbons and organotins. At station G1 the highest organochlorine pesticide concentration was recorded as well as elevations in glutathione S-transferase activity, thiamine content and low lysosomal membrane stability. Significant variability in the geno- and cytotoxic responses and bioenergetic status was also observed at the different caging stations. The results obtained suggest that different chemical mixtures present in the study areas cause variable biological response patterns in organisms.
Collapse
Affiliation(s)
- R Turja
- Finnish Environment Institute, Marine Research Centre, Hakuninmaantie 6, FI-00430 Helsinki, Finland.
| | - N Höher
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - P Snoeijs
- Stockholm University, Department of Systems Ecology, Frescati Backe, Svante Arrhenius V 21A, SE-106 91 Stockholm, Sweden
| | - J Baršienė
- Nature Research Centre, Institute of Ecology, Akademijos str. 2, LT-08412 Vilnius, Lithuania
| | - L Butrimavičienė
- Nature Research Centre, Institute of Ecology, Akademijos str. 2, LT-08412 Vilnius, Lithuania
| | - T Kuznetsova
- Scientific Research Center for Ecological Safety, Russian Academy of Sciences, 18, Korpusnaya Str., 197110 St. Petersburg, Russia
| | - S V Kholodkevich
- Scientific Research Center for Ecological Safety, Russian Academy of Sciences, 18, Korpusnaya Str., 197110 St. Petersburg, Russia; Department of Environmental Safety and Regional Sustainable Development of Saint-Petersburg State University, St. Petersburg, Russia
| | - M-H Devier
- University Bordeaux 1, Oceanic and Continental Environments and Paleoenvironments (EPOC, UMR 5805 CNRS), Laboratory of Physico- and Toxico-Chemistry of the Environment (LPTC), 351 cours de la Libération, F-33405 Talence, France
| | - H Budzinski
- University Bordeaux 1, Oceanic and Continental Environments and Paleoenvironments (EPOC, UMR 5805 CNRS), Laboratory of Physico- and Toxico-Chemistry of the Environment (LPTC), 351 cours de la Libération, F-33405 Talence, France
| | - K K Lehtonen
- Finnish Environment Institute, Marine Research Centre, Hakuninmaantie 6, FI-00430 Helsinki, Finland
| |
Collapse
|
26
|
Lehtonen KK, Sundelin B, Lang T, Strand J. Development of tools for integrated monitoring and assessment of hazardous substances and their biological effects in the Baltic Sea. AMBIO 2014; 43:69-81. [PMID: 24414806 PMCID: PMC3888660 DOI: 10.1007/s13280-013-0478-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The need to develop biological effects monitoring to facilitate a reliable assessment of hazardous substances has been emphasized in the Baltic Sea Action Plan of the Helsinki Commission. An integrated chemical-biological approach is vitally important for the understanding and proper assessment of anthropogenic pressures and their effects on the Baltic Sea. Such an approach is also necessary for prudent management aiming at safeguarding the sustainable use of ecosystem goods and Services. The BEAST project (Biological Effects of Anthropogenic Chemical Stress: Tools for the Assessment of Ecosystem Health) set out to address this topic within the BONUS Programme. BEAST generated a large amount of quality-assured data on several biological effects parameters (biomarkers) in various marine species in different sub-regions of the Baltic Sea. New indicators (biological response measurement methods) and management tools (integrated indices) with regard to the integrated monitoring approach were suggested.
Collapse
Affiliation(s)
- Kari K Lehtonen
- Marine Research Centre, Finnish Environment Institute, Hakuninmaantie 6, Helsinki, 00430, Finland,
| | | | | | | |
Collapse
|
27
|
Madureira TV, Santos C, Velhote S, Cruzeiro C, Rocha E, Rocha MJ. Contamination levels of polychlorinated biphenyls in wild versus cultivated samples of female and male mussels (Mytilus sp.) from the Northwest Coast of Iberian Peninsula--new application for QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:1528-1540. [PMID: 23942999 DOI: 10.1007/s11356-013-2017-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/16/2013] [Indexed: 06/02/2023]
Abstract
A newly analytical method based on QuEChERS extraction followed by gas chromatography with mass spectrometry (GC-MS) analysis was developed and validated for the quantification of 18 PCBs in wild (from Matosinhos Beach, Portugal) and cultivated (from Ria de Arousa, Spain) mussel samples, pooled by sex. Wild animals showed higher PCB levels than cultivated mussels, with males from both origins, presenting an upper contamination profile comparing with females. This fact seems to be correlated with few biometric parameters, but other interdependencies, not addressed herein, such as distinct lipid contents between sexes, as a consequence of the gametogenic stage, may also explain this data. Overall, data reiterate the importance of investigating the presence of PCBs in marine biological samples, which can act both as bioindicators of environmental contamination, either as food quality controls for human health.
Collapse
Affiliation(s)
- Tânia Vieira Madureira
- ICBAS-Institute of Biomedical Sciences Abel Salazar, U. Porto-University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Oporto, Portugal,
| | | | | | | | | | | |
Collapse
|
28
|
Mosca F, Lanni L, Cargini D, Narcisi V, Bianco I, Tiscar PG. Variability of the hemocyte parameters of cultivated mussel Mytilus galloprovincialis (Lmk 1819) in Sabaudia (Latina, Italy) coastal lagoon. MARINE ENVIRONMENTAL RESEARCH 2013; 92:215-223. [PMID: 24140014 DOI: 10.1016/j.marenvres.2013.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/23/2013] [Accepted: 09/27/2013] [Indexed: 06/02/2023]
Abstract
The Sabaudia's lake consists of a protected coastal lagoon, located in the central Italy, historically characterized by recurrent mortality events of marine fauna during warmer months. A field study was monthly conducted on mussels Mytilus galloprovincialis cultivated inside the lagoon, measuring hemocyte parameters as total circulating count (THC), viability (HV), spreading and oxidative response to in vitro phagocytosis stimulation. A depression of the immune response was observed during the spring season, as indicated by higher values of hemocyte circularity and lower luminescence levels related to respiratory burst, also associated to modulation of THC and HV. The water temperature and the oxygen concentration appeared as the major environmental factors having influence on the phagocytosis activity. Therefore, the hemocyte variations have been intended as early danger signal to evaluate the immunodepression induced by the environmental stressors which could reveal in advance the development of critical situations for mussel survival.
Collapse
Affiliation(s)
- Francesco Mosca
- Facoltà di Medicina Veterinaria, Piazza A. Moro 45, 64100 Teramo, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Höher N, Regoli F, Dissanayake A, Nagel M, Kriews M, Köhler A, Broeg K. Immunomodulating effects of environmentally realistic copper concentrations in Mytilus edulis adapted to naturally low salinities. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:185-195. [PMID: 23811023 DOI: 10.1016/j.aquatox.2013.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
The monitoring of organisms' health conditions by the assessment of their immunocompetence may serve as an important criterion for the achievement of the Good Environmental Status (GES) as defined in the Marine Strategy Framework Directive (EU). In this context, the complex role of natural environmental stressors, e.g. salinity, and interfering or superimposing effects of anthropogenic chemicals, should be carefully considered, especially in scenarios of low to moderate contamination. Organisms from the Baltic Sea have adapted to the ambient salinity regime, however energetically costly osmoregulating processes may have an impact on the capability to respond to additional stress such as contamination. The assessment of multiple stressors, encompassing natural and anthropogenic factors, influencing an organisms' health was the main aim of the present study. Immune responses of Mytilus edulis, collected and kept at natural salinities of 12‰ (LS) and 20‰ (MS), respectively, were compared after short-term exposure (1, 7 and 13 days) to low copper concentrations (5, 9 and 16 μg/L Cu). A significant interaction of salinity and copper exposure was observed in copper accumulation. LS mussels accumulated markedly more copper than MS mussels. No combined effects were detected in cellular responses. Bacterial clearance was mostly achieved by phagocytosis, as revealed by a strong positive correlation between bacterial counts and phagocytic activity, which was particularly pronounced in LS mussels. MS mussels, on the other hand, seemingly accomplished bacterial clearance by employing additional humoral factors (16 μg/L Cu). The greatest separating factor in the PCA biplot between LS and MS mussels was the proportion of granulocytes and hyalinocytes while functional parameters (phagocytic activity and bacterial clearance) were hardly affected by salinity, but rather by copper exposure. In conclusion, immune responses of the blue mussel may be suitable and sensitive biomarkers for the assessment of ecosystem health in brackish waters (10-20‰S).
Collapse
Affiliation(s)
- Nicole Höher
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.
| | | | | | | | | | | | | |
Collapse
|
30
|
Rioult D, Lebel JM, Le Foll F. Cell tracking and velocimetric parameters analysis as an approach to assess activity of mussel (Mytilus edulis) hemocytes in vitro. Cytotechnology 2013; 65:749-58. [PMID: 23579247 DOI: 10.1007/s10616-013-9558-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/22/2013] [Indexed: 10/27/2022] Open
Abstract
Hemocytes constitute the key element of innate immunity in bivalves, being responsible for secretion of antimicrobial peptides and release of zymogens from the prophenoloxidase system within the hemolymph compartment, reactive oxygen species production and phagocytosis. Hemocytes are found (and collected) as cells in suspension in circulating hemolymph. Hemocytes are adherent cells as well, infiltrating tissues and migrating to infected areas. In the present study, we applied an approach based on fluorescent staining and nuclei-tracking to determine migration velocity of hemocytes from the blue mussel, Mytilus edulis, in culture. Freshly collected hemocytes attached to substrate and start to move spontaneously in few minutes. Two main hemocyte morphologies can be observed: small star-shaped cells which were less motile and spread granular cells with faster migrations. Cell-tracking was combined to MTT mitochondria metabolic rate measurements in order to monitor global cell population activity over 4 days of culture. A transient peak of cell activity was recorded after 24-48 h of culture, corresponding to a speed up of cell migration. Videomicroscopy and cell tracking techniques provide new tools to characterize activity of mussel immunocytes in culture. Our analysis of hemocyte migration reveals that motility is very sensitive to cell environmental factors.
Collapse
Affiliation(s)
- Damien Rioult
- Laboratory of Ecotoxicology, EA 3222, FED 4116 SCALE, University of Le Havre, 76058, Le Havre Cedex, France,
| | | | | |
Collapse
|
31
|
Laroche J, Gauthier O, Quiniou L, Devaux A, Bony S, Evrard E, Cachot J, Chérel Y, Larcher T, Riso R, Pichereau V, Devier MH, Budzinski H. Variation patterns in individual fish responses to chemical stress among estuaries, seasons and genders: the case of the European flounder (Platichthys flesus) in the Bay of Biscay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:738-748. [PMID: 23138562 DOI: 10.1007/s11356-012-1276-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 10/22/2012] [Indexed: 06/01/2023]
Abstract
The objective was to describe and model variation patterns in individual fish responses to contaminants among estuaries, season and gender. Two hundred twenty-seven adult European flounders were collected in two seasons (winter and summer) in four estuaries along the Bay of Biscay (South West France), focusing on a pristine system (the Ster), vs. three estuaries displaying contrasted levels of contaminants (the Vilaine, Loire and Gironde). Twenty-three variables were measured by fish, considering the load of contaminants (liver metals, liver and muscle persistent organic pollutants, muscle polycyclic aromatic hydrocarbons); the gene expression (Cyt C oxydase, ATPase, BHMT, Cyt P450 1A1, ferritin); the blood genotoxicity (Comet test); and liver histology (foci of cellular alteration-tumour, steatosis, inflammation, abnormal glycogen storage). Canonical redundancy analysis (RDA) was used to model these variables using gender, season and estuary of origin as explanatory variables. The results underlined the homogeneity of fish responses within the pristine site (Ster) and more important seasonal variability within the three contaminated systems. The complete model RDA was significant and explained 35 % of total variance. Estuary and season respectively explained 30 and 5 % of the total independent variation components, whilst gender was not a significant factor. The first axis of the RDA explains nearly 27 % of the total variance and mostly represents a gradient of contamination. The links between the load of contaminants, the expression of several genes and the biomarkers were analysed considering different levels of chemical stress and a possible multi-stress, particularly in the Vilaine estuary.
Collapse
Affiliation(s)
- Jean Laroche
- Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer, Université Européenne de Bretagne, Université de Brest, UMR 6539 CNRS/UBO/IRD/Ifremer, 29280 Plouzané, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Birrer SC, Reusch TBH, Roth O. Salinity change impairs pipefish immune defence. FISH & SHELLFISH IMMUNOLOGY 2012; 33:1238-1248. [PMID: 22982326 DOI: 10.1016/j.fsi.2012.08.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/14/2012] [Accepted: 08/24/2012] [Indexed: 06/01/2023]
Abstract
Global change is associated with fast and severe alterations of environmental conditions. Superimposed onto existing salinity variations in a semi-enclosed brackish water body such as the Baltic Sea, a decrease in salinity is predicted due to increased precipitation and freshwater inflow. Moreover, we predict that heavy precipitation events will accentuate salinity fluctuations near shore. Here, we investigated how the immune function of the broad-nosed pipefish (Syngnathus typhle), an ecologically important teleost with sex-role reversal, is influenced by experimentally altered salinities (control: 18 PSU, lowered: 6 PSU, increased: 30 PSU) upon infection with bacteria of the genus Vibrio. Salinity changes resulted in increased activity and proliferation of immune cells. However, upon Vibrio infection, individuals at low salinity were unable to mount specific immune response components, both in terms of monocyte and lymphocyte cell proliferation and immune gene expression compared to pipefish kept at ambient salinities. We interpret this as resource allocation trade-off, implying that resources needed for osmoregulation under salinity stress are lacking for subsequent activation of the immune defence upon infection. Our data suggest that composition of small coastal fish communities may change due to elevated environmental stress levels and the incorporated consequences thereof.
Collapse
Affiliation(s)
- Simone C Birrer
- Helmholtz Zentrum für Ozeanforschung Kiel-GEOMAR, Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | | | | |
Collapse
|