1
|
Brascher TC, de Bortoli L, Toledo-Silva G, Zacchi FL, Razzera G. In silico structural features of the CgNR5A: CgDAX complex and its role in regulating gene expression of CYP target genes in Crassostrea gigas. CHEMOSPHERE 2024; 361:142443. [PMID: 38815811 DOI: 10.1016/j.chemosphere.2024.142443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Contamination of aquatic environments has been steadily increasing due to human activities. The Pacific oyster Crassostrea gigas has been used as a key species in studies assessing the impacts of contaminants on human health and the aquatic biome. In this context, cytochrome P450 (CYPs) play a crucial role in xenobiotic metabolism. In vertebrates many of these CYPs are regulated by nuclear receptors (NRs) and little is known about the NRs role in C. gigas. Particularly, the CgNR5A represents a homologue of SF1 and LRH-1 found in vertebrates. Members of this group can regulate genes of CYPs involved in lipid/steroid metabolism, with their activity regulated by other NR, called as DAX-1, generating a NR complex on DNA response elements (REs). As C. gigas does not exhibit steroid biosynthesis pathways, CgNR5A may play other physiological roles. To clarify this issue, we conducted an in silico investigation of the interaction between CgNR5A and DNA to identify potential C. gigas CYP target genes. Using molecular docking and dynamics simulations of the CgNR5A on DNA molecules, we identified a monomeric interaction with extended REs. This RE was found in the promoter region of 30 CYP genes and also the NR CgDAX. When the upstream regulatory region was analyzed, CYP2C39, CYP3A11, CYP4C21, CYP7A1, CYP17A1, and CYP27C1 were mapped as the main genes regulated by CgNR5A. These identified CYPs belong to families known for their involvement in xenobiotic and lipid/steroid metabolism. Furthermore, we reconstructed a trimeric complex, previously proposed for vertebrates, with CgNR5A:CgDAX and subjected it to molecular dynamics simulations analysis. Heterotrimeric complex remained stable during the simulations, suggesting that CgDAX may modulate CgNR5A transcriptional activity. This study provides insights into the potential physiological processes involving these NRs in the regulation of CYPs associated with xenobiotic and steroid/lipid metabolism.
Collapse
Affiliation(s)
- Theo Cardozo Brascher
- Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Leonardo de Bortoli
- Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Genômica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Guilherme Toledo-Silva
- Laboratório de Genômica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Flávia Lucena Zacchi
- Laboratório de Moluscos Marinhos, Universidade Federal de Santa Catarina, Florianópolis, SC, 88061-600, Brazil
| | - Guilherme Razzera
- Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
2
|
Song X, Dou X, Chang J, Zeng X, Xu Q, Xu C. The role and mechanism of gut-lung axis mediated bidirectional communication in the occurrence and development of chronic obstructive pulmonary disease. Gut Microbes 2024; 16:2414805. [PMID: 39446051 PMCID: PMC11509012 DOI: 10.1080/19490976.2024.2414805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
The current studies have shown that the occurrence and development of chronic obstructive pulmonary disease (COPD) are closely related to the changes in gut health and its microenvironment, and even some gut diseases have significant clinical correlation with COPD. The dysbiosis of gut microbiota observed in COPD patients also suggests a potential bidirectional interaction between the gut and lung. Communication between the gut and lung may occur through circulating inflammatory cells, gut microbial metabolites, and circulating inflammatory mediators, but the mechanism of bidirectional communication between the gut and lung in COPD is still under study. Therefore, more research is still needed in this area. In this review, we summarize recent clinical studies and animal models on the role of the gut-lung axis in the occurrence and development of COPD and its mechanisms, so as to provide ideas for further research in this field. In addition, we also summarized the negative effects of COPD medication on gut microbiota and the gut microbiota risk factors for COPD and proposed the potential prevention and treatment strategies.
Collapse
Affiliation(s)
- Xiaofan Song
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Jiajing Chang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Xiaonan Zeng
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Qinhong Xu
- Department of Geriatric Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Hallmann A, Leszczyńska D, Czumaj A, Świeżak J, Caban M, Michnowska A, Smolarz K. Oxytetracycline-induced inflammatory process without oxidative stress in blue mussels Mytilus trossulus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80462-80477. [PMID: 37301807 PMCID: PMC10345040 DOI: 10.1007/s11356-023-28057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Potentially harmful compounds including pharmaceuticals are commonly found in marine waters and sediments. Amongst those, antibiotics and their metabolites are detected worldwide in various abiotic (at concentrations as high as µg/L) and biotic matrices at ng/gram of tissue, posing a risk to non-target species exposed to them such as blue mussels. Amongst those, oxytetracycline (OTC) belongs to the most detected antibiotics in the marine environment. In this work, we concentrated on studying the potential induction of oxidative stress, activation of cellular detoxification processes (including Phase I and Phase II xenobiotic biotransformation enzymes) and multixenobiotic resistance pumps (Phase III) as well as changes in the aromatisation efficiency in Mytilus trossulus exposed to 100 μg/L OTC. Our results show that 100 µg/L OTC concentration did not provoke cellular oxidative stress and did not affect the expression of genes involved in detoxification processes in our model. Moreover, no effect of OTC on aromatisation efficiency was found. Instead, phenoloxidase activity measured in haemolymph was significantly higher in OTC exposed mussels than in those from the control (30.95 ± 3.33 U/L and 17.95 ± 2.75 U/L, respectively). OTC exposed mussels were also characterised by a tissue-dependant activation of major vault protein (MVP) gene expression (1.5 times higher in gills and 2.4 times higher in the digestive system) and a decreased expression of the nuclear factor kappa B-a (NF-κB) gene (3.4 times lower in the digestive system) when compared to those from the control. Additionally, an elevated number of regressive changes and inflammatory responses in tissues such as gills, digestive system and mantle (gonads) was observed underlining the worsening of bivalves' general health. Therefore, instead of a free-radical effect of OTC, we for the first time describe the occurrence of typical changes resulting from antibiotic therapy in non-target organisms like M. trossulus exposed to antibiotics such as OTC.
Collapse
Affiliation(s)
- Anna Hallmann
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Dagmara Leszczyńska
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Justyna Świeżak
- Department of Marine Ecosystem Functioning, University of Gdańsk, Gdynia, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Alicja Michnowska
- Department of Marine Ecosystem Functioning, University of Gdańsk, Gdynia, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystem Functioning, University of Gdańsk, Gdynia, Poland.
| |
Collapse
|
4
|
Jiang S, Miao J, Wang L, Yao L, Pan L. Transcriptomic response to GnRH down regulation by RNA interference in clam Ruditapes philippinarum, suggest possible role in reproductive function. Comp Biochem Physiol A Mol Integr Physiol 2023; 277:111367. [PMID: 36608928 DOI: 10.1016/j.cbpa.2022.111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) plays a key role in the control of the reproductive axis in vertebrates, however, little is known about its function in reproductive endocrine regulation in molluscs. In the present study, RNA-seq was used to construct transcriptomes of Ruditapes philippinarum testis and ovaries of control and GnRH suppressed individuals using RNA interference. GnRH suppression caused 112 and 169 enriched KEGG pathways in testis and ovary, with 92 pathways in common in both comparisons. The most enriched KEGG pathways occurred in the "Oxidative phosphorylation", "Dorso-ventral axis formation", "Thyroid hormone synthesis" and "Oxytocin signaling pathway" etc. A total of 1838 genes in testis and 358 genes in ovaries were detected differentially expressed in GnRH suppressed clams. Among the differentially expressed genes, a suit of genes related to regulation of steroid hormones synthesis and gonadal development, were found in both ovary and testis with RNAi of GnRH. These results suggest that GnRH may play an important role in reproductive function in bivalves. This study provides a preliminary basis for studying the function and regulatory mechanism of GnRH in bivalves.
Collapse
Affiliation(s)
- Shanshan Jiang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Lu Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Linlin Yao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
5
|
Lucia G, Giuliani ME, d'Errico G, Booms E, Benedetti M, Di Carlo M, Fattorini D, Gorbi S, Regoli F. Toxicological effects of cigarette butts for marine organisms. ENVIRONMENT INTERNATIONAL 2023; 171:107733. [PMID: 36628858 DOI: 10.1016/j.envint.2023.107733] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/08/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Cigarette butts (CBs), one of the most common litter items found on beaches, represent a still unexplored environmental hazard. This study aimed at a multidisciplinary characterization of their toxicological risks on marine organisms integrating chemical analyses of released compounds with a wide panel of biological responses, such as ecotoxicological bioassays on species of different trophic positions, molecular responses in an ex vivo model (Precision-Cut Tissue Slices, PCTS of mussels digestive glands), bioavailability and cellular biomarkers in mussels exposed to CBs in laboratory experiments. Trace metals, aliphatic and polycyclic aromatic hydrocarbons, nicotine and cotinine were released in artificial seawater after 24 h which determined a significant inhibition of bacterial bioluminescence, oyster embryo development and growth in different algal species. Modulation of peroxisomal proliferation and antioxidant gene expression was observed in mussels PCTS, while the in vivo exposure determined accumulation of chemicals and significant alterations of immune system, antioxidant and neurotoxic responses, peroxisomal proliferation and genotoxic damage. Using a quantitative Weight of Evidence model, the risks of CBs to the marine environment were summarized, highlighting the importance of integrating chemical analyses, batteries of ecotoxicological bioassays, molecular and cellular biomarkers to assess the impact of these hazardous materials on marine environment.
Collapse
Affiliation(s)
- Giulia Lucia
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, Italy
| | - Maria Elisa Giuliani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, Italy
| | - Giuseppe d'Errico
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, Italy
| | - Emily Booms
- Ghent University, Krijgslaan, 281/S8 9000 Ghent, Belgium
| | - Maura Benedetti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, Italy
| | - Marta Di Carlo
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, Italy
| | - Daniele Fattorini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, Italy
| | - Stefania Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, Italy; National Future Biodiversity Center (NFBC), Palermo, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, Italy; National Future Biodiversity Center (NFBC), Palermo, Italy.
| |
Collapse
|
6
|
Wang S, Sun Z, Ren C, Li F, Xu Y, Wu H, Ji C. Time- and dose-dependent detoxification and reproductive endocrine disruption induced by tetrabromobisphenol A (TBBPA) in mussel Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105839. [PMID: 36481715 DOI: 10.1016/j.marenvres.2022.105839] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
As a typical brominated flame retardant (BFR), tetrabromobisphenol A (TBBPA) has been frequently detected in both biotic and abiotic matrices in marine environment. Our previous study found that genes related to metabolism phase I/II/III as well as steroid metabolism in Mytilus galloprovincialis were significantly altered by TBBPA treatment. However, the time- and dose-dependent response profiles of these genes to TBBPA exposure were rarely reported. In this study, the time- and dose-dependent effects of TBBPA on detoxification and reproductive endocrine disruption in M. galloprovincialis were explored by evaluating the responses of related gene expressions, enzymatic activities and gametogenesis to different concentrations of TBBPA (0.6, 3, 15, 75 and 375 μg/L) for different durations (14, 21 and 28 days). The results showed that the TBBPA accumulation increased linearly with the increases of exposure time and dose. Cytochrome P450 family 3 (CYP3A1-like) cooperated with CYP4Y1 for phase I biotransformation of TBBPA in mussels. The dose-response curves of phase II/III genes (glutathione-S-transferase (GST), P-glycoprotein (ABCB), and multidrug resistance protein (ABCC)) showed similar response profiles to TBBPA exposure. The common induction of phase I/II/III (CYPs, GST, ABCB and ABCC) suggested TBBPA detoxification regulation in mussels probably occurred in a step-wise manner. Concurrently, direct sulfation mediated by sulfotransferases (SULTs) on TBBPA was also the vital metabolic mechanism for TBBPA detoxification, which was supported by the coincidence between up-regulation of SULT1B1 and TBBPA accumulation. The significant promotion of steroid sulfatase (STS) might result from TBBPA-sulfate catalyzed by SULT1B1 due to its chemical similarity to estrone-sulfate. Furthermore, the promotion of gametogenesis was consistent with the induction of STS, suggesting that STS might interrupt steroids hydrolysis process and was responsible for reproductive endocrine disruption in M. galloprovincialis. This study provides a better understanding of the detoxification and endocrine-disrupting mechanisms of TBBPA.
Collapse
Affiliation(s)
- Shuang Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; College of Life Sciences, Yantai University, Yantai, 264005, PR China
| | - Zuodeng Sun
- Shandong Fisheries Development and Resource Conservation Center, Ji'nan, 250013, PR China
| | - Chuanbo Ren
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China
| | - Yingjiang Xu
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China.
| |
Collapse
|
7
|
Yuan KK, Duan GF, Liu QY, Li HY, Yang WD. Inhibition of Diarrheal Shellfish Toxins Accumulation in the Mussel Perna viridis by Curcumin and Underlying Mechanisms. Toxins (Basel) 2021; 13:toxins13080578. [PMID: 34437449 PMCID: PMC8402306 DOI: 10.3390/toxins13080578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 01/04/2023] Open
Abstract
Diarrheal shellfish toxins (DSTs) are among the most widely distributed phytotoxins, and are associated with diarrheal shellfish poisoning (DSP) events in human beings all over the world. Therefore, it is urgent and necessary to identify an effective method for toxin removal in bivalves. In this paper, we found that curcumin (CUR), a phytopolylphenol pigment, can inhibit the accumulation of DSTs (okadaic acid-eq) in the digestive gland of Perna viridis after Prorocentrum lima exposure. qPCR results demonstrated that CUR inhibited the induction of DSTs on the aryl hydrocarbon receptor (AhR), hormone receptor 96 (HR96) and CYP3A4 mRNA, indicating that the CUR-induced reduction in DSTs may be correlated with the inhibition of transcriptional induction of AhR, HR96 and CYP3A4. The histological examination showed that P. lima cells caused severe damage to the digestive gland of P. viridis, and the addition of curcumin effectively alleviated the damage induced by P. lima. In conclusion, our findings provide a potential method for the effective removal of toxins from DST-contaminated shellfish.
Collapse
|
8
|
Thongbuakaew T, Suwansa-Ard S, Chaiyamoon A, Cummins SF, Sobhon P. Sex steroids and steroidogenesis-related genes in the sea cucumber, Holothuria scabra and their potential role in gonad maturation. Sci Rep 2021; 11:2194. [PMID: 33500499 PMCID: PMC7838161 DOI: 10.1038/s41598-021-81917-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/13/2021] [Indexed: 11/17/2022] Open
Abstract
The sea cucumber Holothuria scabra is an economically valuable marine species which is distributed throughout the Asia-Pacific region. With the natural population declining due to over fishing, aquaculture of this species is deemed necessary. Hence, it is essential to understand the mechanisms regulating the reproduction in order to increase their populations. Sex steroids, including estrogens, androgens and progestogens, play an important role in reproduction in most vertebrates and several invertebrates. It has been proposed that sea cucumbers have the same sex steroids as vertebrates but the steroidogenic pathway in the sea cucumbers is still unclear. In this study, we demonstrated by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) that sex steroids (estradiol, progesterone, and testosterone) were present in H. scabra neural and gonadal tissues. In silico searches of available sea cucumber transcriptome data identified 26 steroidogenesis-related genes. Comparative analysis of encoded proteins for the steroidogenic acute regulatory protein (HscStAR), CYP P450 10, 17 and 3A (HscCYP10, HscCYP17, HscCYP3A) and hydroxysteroid dehydrogenases (Hsc3β-HSD, Hsc17β-HSD) with other species was performed to confirm their evolutionary conservation. Gene expression analyses revealed widespread tissue expression. Real-time PCR analysis revealed that HscStAR, HscCYP10, Hsc3β-HSD, and Hsc17β-HSD gene expressions were similar to those in ovaries and testes, which increased during the gonad maturation. HscCYP17 mRNA was increased during ovarian development and its expression declined at late stages in females but continued high level in males. The expression of the HscCYP3A was high at the early stages of ovarian development, but not at other later stages in ovaries, however it remained low in testes. Moreover, a role for steroids in reproduction was confirmed following the effect of sex steroids on vitellogenin (Vtg) expression in ovary explant culture, showing upregulation of Vtg level. Collectively, this study has confirmed the existence of steroids in an echinoderm, as well as characterizing key genes associated with the steroidogenic pathway. We propose that sex steroids might also be associated with the reproduction of H. scabra, and the identification of biosynthetic genes enables future functional studies to be performed.
Collapse
Affiliation(s)
| | - Saowaros Suwansa-Ard
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Arada Chaiyamoon
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Scott F Cummins
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
9
|
Xu R, Pan L, Yang Y, Zhou Y, Li D. Temporal transcriptome analysis in female scallop Chlamys farreri: First molecular insights into the disturbing mechanism on lipid metabolism of reproductive-stage dependence under benzo[a]pyrene exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:142032. [PMID: 33027874 DOI: 10.1016/j.scitotenv.2020.142032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the most widespread persistent organic pollutants (POPs) in marine environment. Benzo[a]pyrene (B[a]P), the most toxic carcinogen of PAHs, is widely studied as a representative that interferes with lipid metabolism. However, the underlying molecular mechanisms of lipid metabolism by B[a]P interference towards bivalve, one of the marine-pollution bio-indicators have not been elucidated yet, especially during gonadal development which is closely associated with lipids. In this study, female scallops Chlamys farreri were cultured with natural and 4 μg/L B[a]P exposed seawater, respectively, and a multi-stage (proliferative, growth, mature, and spawn stage) ovarian transcriptome profiling was performed to decipher the reproductive stage-dependence disturbing mechanisms on lipid metabolism caused by B[a]P in bivalves. The results revealed the potential molecular mechanism of B[a]P-induced triglycerides (TGs) accumulation, which probably resulted from the collaboration of promoting synthesis and inhibiting metabolization of TGs, notably, this mechanism also occurred at spawn stage. Correspondingly, B[a]P and TGs contents measured in ovary offered direct biochemical evidences for the interference effects and stage-dependent accumulation patterns of B[a]P. Moreover, the gene expressions of fatty acids synthesis related enzymes were down-regulated cooperatively, illustrating the molecular compensatory mechanism that reduced susceptibility from oxidative damage. And these results further emphasized the important role of prostaglandins (PGs) in immune response mediated by arachidonic acid metabolism. In addition, this study explored the underlying molecular mechanism affected by B[a]P on sterol metabolism, which possibly posed a threat to normal reproductive functions in bivalves. Taken together, our findings filled the gap of the stage-dependent interference molecular mechanisms on lipid metabolism behind bivalves, and provided a new perspective for investigating the adaptive mechanisms of bivalves under POPs stress.
Collapse
Affiliation(s)
- Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Yingying Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
10
|
Ferreira CP, Lima D, Souza P, Piazza TB, Zacchi FL, Mattos JJ, Jorge MB, Almeida EA, Bianchini A, Taniguchi S, Sasaki ST, Montone RC, Bícego MC, Bainy ACD, Lüchmann KH. Short-term spatiotemporal biomarker changes in oysters transplanted to an anthropized estuary in Southern Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136042. [PMID: 31905594 DOI: 10.1016/j.scitotenv.2019.136042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Estuarine ecosystems are increasingly being affected by pollution caused by anthropogenic activities. In this study, Crassostrea gasar oysters were transplanted and maintained for seven days at three sites (S1, S2, and S3) in the Laguna Estuarine System (LES)-situated in southern Brazil-that has been exposed to multiple anthropic stresses. On the basis of the concentrations of metal and organic pollutants in oysters, we identified marked spatial variations in pollutant levels, with S3 showing the highest concentration of Ag, Fe, Ni, Zn, and total polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and linear alkylbenzenes (LABs), followed by S2 and S1. Along with the concentrations of pollutants, a set of biomarkers was analyzed. Oysters maintained at S3 showed enhanced protective defenses in gills, as observed by the increased levels of superoxide dismutase (SOD-like) and heat shock protein 90 (HSP90-like) transcripts and catalase (CAT) activity, concomitant with reduced lipid peroxidation (MDA) levels. Decreased antioxidant activities together with increased MDA levels are indicative of the digestive gland being more susceptible to pollutant-induced oxidative damage. Oysters transplanted into LES showed lower levels of cytochrome P450 transcripts (CYP356A1-like and CYP2AU1), and decreased glutathione S-transferase (GST) enzyme activity, suggesting lower biotransformation capacity. By integrating information regarding the concentration of metal and organic pollutants with that of molecular as well as biochemical biomarkers, our study provides novel insights into pollutant exposure and the potential biological impacts of such exposure on estuarine organisms in southern Brazil.
Collapse
Affiliation(s)
- Clarissa P Ferreira
- Fishery Engineering and Biological Sciences Department, Santa Catarina State University, Laguna 88790-000, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Patrick Souza
- Fishery Engineering and Biological Sciences Department, Santa Catarina State University, Laguna 88790-000, Brazil
| | - Thiago B Piazza
- Fishery Engineering and Biological Sciences Department, Santa Catarina State University, Laguna 88790-000, Brazil
| | - Flávia L Zacchi
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Jacó J Mattos
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Marianna B Jorge
- Oceanography and Limnology Department, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Eduardo A Almeida
- Department of Natural Sciences, Regional University of Blumenau, Blumenau 89012-170, Brazil
| | - Adalto Bianchini
- Institute of Marine Science - ICMar, University of Rio Grande do Sul, Rio Grande 96203-900, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil
| | - Silvio T Sasaki
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil; Institute of Humanities, Arts and Sciences, Formation Center in Environmental Science, Federal University of Southern Bahia, Porto Seguro 45810-000, Brazil
| | - Rosalinda C Montone
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil
| | - Márcia C Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Karim H Lüchmann
- Department of Scientific and Technological Education, Santa Catarina State University, Florianópolis 88035-001, Brazil.
| |
Collapse
|
11
|
Zhang J, He Y, Yan X, Qu C, Li J, Zhao S, Wang X, Guo B, Liu H, Qi P. Two novel CYP3A isoforms in marine mussel Mytilus coruscus: Identification and response to cadmium and benzo[a]pyrene. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105239. [PMID: 31280135 DOI: 10.1016/j.aquatox.2019.105239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
CYP3A enzymes play a crucial role in metabolic clearance of a variety of xenobiotics. However, their genetic information and function remain unclear in molluscs. In the present study, two novel CYP3A genes i.e. McCYP3A-1 and McCYP3A-2 were identified and characterized from the thick shell mussel Mytilus coruscus, and their tissue distribution as well as the response to cadmium (Cd) and benzo[a]pyrene (B[α]P) exposure were addressed using real time quantitative RT-PCR (qRT-PCR) and erythromycin N-demethylase (ERND) assay. McCYP3A-1 and McCYP3A-2 possess typically domains of CYP family such as helix-C, helix-I, helix-K, PERF and the heme binding domain as well as the characteristic domains of CYP3s including six SRS motifs. McCYP3A-1 and McCYP3A-2 transcripts were constitutively expressed in all examined tissues with high expression level in digestive glands, hepatopancreas and gonads. Upon B[α]P exposure, McCYP3A-1 and McCYP3A-2 mRNA expression in digestive glands showed a pattern of up-regulation followed by down-regulation, while under Cd exposure, showed a time-dependent induction profile. In addition, ERND activity, generally used as an indicator of CYP3, increased in a time-dependent manner after exposure to Cd and B[α]P. These results collectively indicated that McCYP3A-1 and McCYP3A-2 are CYP3A family member and may play a potential role in metabolic clearance of xenobiotics. Meanwhile, the current results may provide some baseline data to support McCYP3A-1 and McCYP3A-2 as candidate biomarkers for monitoring of PAHs and heavy metal pollution.
Collapse
Affiliation(s)
- Jianshe Zhang
- NationalEngineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Yuehua He
- NationalEngineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Xiaojun Yan
- NationalEngineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Chengkai Qu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jiji Li
- NationalEngineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Sheng Zhao
- NationalEngineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Xiaoyan Wang
- NationalEngineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Baoying Guo
- NationalEngineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Huihui Liu
- NationalEngineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Pengzhi Qi
- NationalEngineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China.
| |
Collapse
|
12
|
Wei XM, Lu MY, Duan GF, Li HY, Liu JS, Yang WD. Responses of CYP450 in the mussel Perna viridis after short-term exposure to the DSP toxins-producing dinoflagellate Prorocentrum lima. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:178-185. [PMID: 30927639 DOI: 10.1016/j.ecoenv.2019.03.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Diarrhetic shellfish poisoning (DSP) toxins are key shellfish toxins that cause diarrhea, vomiting and even tumor. Interestingly, bivalves such as Perna viridis have been reported to exhibit some resistances to alleviate toxic effects of DSP toxins in a species-specific manner. Nevertheless, the molecular mechanisms underlying the resistance phenomenon to DSP toxins, particularly the mechanistic role of CYP450 is scant despite its crucial role in detoxification. Here, we exposed P. viridis to Prorocentrum lima and examined the expression pattern of the CYP450 and our comprehensive analyses revealed that P. lima exposure resulted in unique expression pattern of key CYP450 genes in bivalves. Exposure to P. lima (2 × 105 cells/L) dramatically orchestrated the relative expression of CYP450 genes. CYP2D14-like mRNA was significantly down-regulated at 6 h in gill, but up-regulated at 2 h in digestive gland compared with control counterparts (p < 0.05), while CYP3A4 mRNA was increased at 12 h in gill. After exposure to P. lima at 2 × 106 cells/L, the expression of CYP3A4 mRNA was significantly increased in digestive gland at 2 h and 12 h, while CYP2D14-like was up-regulated at 6 h. Besides, CYP3L3 and CYP2C8 also exhibited differential expression. These data suggested that CYP3A4, CYP2D14-like, and even CYP3L3 and CYP2C8 might be involved in DSP toxins metabolism. Besides, provision of ketoconazole resulted in significant decrement of CYP3A4 in digestive gland at 2 h and 12 h, while the OA content significantly decreased at 2 h and 6 h compared to control group without ketoconazole. These findings indicated that ketoconazole could depress CYP3A4 activity in bivalves thereby altering the metabolic activities of DSP toxins in bivalves, and also provided novel insights into the mechanistic role of CYP3A4 on DSP toxins metabolism in bivalves.
Collapse
Affiliation(s)
- Xiao-Meng Wei
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Mi-Yu Lu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guo-Fang Duan
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jie-Sheng Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Aquilino M, Sánchez-Argüello P, Novo M, Martínez-Guitarte JL. Effects on tadpole snail gene expression after exposure to vinclozolin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:568-577. [PMID: 30576892 DOI: 10.1016/j.ecoenv.2018.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/06/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
The fungicide vinclozolin (Vz) is an endocrine disruptor with known anti-androgenic activity in vertebrates. However, there is a lack of information about the Vz mode of action in invertebrates, although some studies have shown that this compound can produce alterations in different species. Transcriptional activity was analyzed in the freshwater snail Physella acuta in order to elucidate putative cellular processes altered by this chemical during a response. In order to identify potential molecular biomarkers, a de novo transcriptome was generated for this species that constitutes a valuable source for future studies. This data, together with some already available data, permitted the identification of several genes related to detoxification mechanisms (Cyp2u1, Cyp3a7, Cyp4f22, GSTo1, GSTt2, and MRP1), stress response (Hsp20.4, Hsp17, Hsp16.6, and Cu,Zn-SOD), the hormonal system (Estrogen Receptor and Hsp90), apoptosis (Casp3), and copper homeostasis (ATOX1). Using quantitative Real-Time polymerase chain reaction, mRNA levels of these genes were examined in snails exposed to 20 or 200 µg/L Vz for 24 h. The results showed an overall weak response, with downregulation of Hsp20.4 and no statistically significant change for the other genes. These findings suggest that P. acuta can manage the concentrations of Vz found in the environment with no relevant activation of the pathways analyzed, although additional studies are needed for longer exposure times and including other metabolic pathways. The new genes described open the range of processes that can be studied at the molecular level in toxicity tests.
Collapse
Affiliation(s)
- Mónica Aquilino
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain.
| | - Paloma Sánchez-Argüello
- Laboratory for Ecotoxicology, Department of the Environment, INIA, Crta A Coruña km 7, 28040 Madrid, Spain
| | - Marta Novo
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain; Biodiversity, Ecology and Evolution, Biological Sciences, Complutense University of Madrid, José Antonio Nóvais sn, Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|
14
|
Falfushynska H, Sokolov EP, Haider F, Oppermann C, Kragl U, Ruth W, Stock M, Glufke S, Winkel EJ, Sokolova IM. Effects of a common pharmaceutical, atorvastatin, on energy metabolism and detoxification mechanisms of a marine bivalve Mytilus edulis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 208:47-61. [PMID: 30610964 DOI: 10.1016/j.aquatox.2018.12.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 05/20/2023]
Abstract
Biologically active compounds from pharmaceuticals cause concern due to their common occurrence in water and sediments of urbanized coasts and potential threat to marine organisms. Atorvastatin (ATO), a globally prescribed drug, is environmentally stable and bioavailable to marine organisms; however, the physiological and toxic effects of this drug on ecologically important coastal species are yet to be elucidated. We studied the effect of ATO (˜1.2 μg L-1) on bioenergetics (including whole-organism and mitochondrial respiration, as well as tissue energy reserves and mRNA expression of genes involved in mitochondrial biogenesis and fatty acid metabolism in the gills and the digestive gland) of a keystone bivalve Mytulis edulis (the blue mussel) from the Baltic Sea. Xenobiotic detoxification systems including activity and mRNA expression of P-glycoprotein, and Phase I and II biotransformation enzymes (cytochrome P450 monooxygenase CYP1A and glutathione transferase, GST) were also assessed in the gill and digestive gland of the mussels. Exposure to ATO caused rapid uptake and biotransformation of the drug by the mussels. Standard metabolic rate of ATO-exposed mussels increased by 56% indicating higher maintenance costs, yet no changes were detected in the respiratory capacity of isolated mitochondria. ATO exposure led to ˜60% decrease in the lysosomal membrane stability of hemocytes and ˜3-fold decrease in the whole-organism P-glycoprotein-driven and diffusional efflux of xenobiotics indicating altered membrane properties. The digestive gland was a major target of ATO toxicity in the mussels. Exposure of mussels to ATO led to depletion of lipid, carbohydrate and protein pools, and suppressed transcription of key enzymes involved in mitochondrial biogenesis (peroxisome proliferator-activated receptor gamma coactivator 1-alpha PGC-1α) and fatty acid metabolism (acetyl-CoA carboxylase and CYP4Y1) in the digestive gland. No bioenergetic disturbances were observed in the gills of ATO-exposed mussels, and elevated GST activity indicated enhanced ATO detoxification in this tissue. These data demonstrate that ATO can act as a metabolic disruptor and chemosensitizer in keystone marine bivalves and warrant further investigations of statins as emerging pollutants of concern in coastal marine ecosystems.
Collapse
Affiliation(s)
- Halina Falfushynska
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany; Department of Human Health, Physical Rehabilitation and Vital Activity, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Sea Research, Leibniz ScienceCampus Phosphorus Research Rostock, Warnemünde, Germany
| | - Fouzia Haider
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Christina Oppermann
- Department of Industrial Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Udo Kragl
- Department of Industrial Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Wolfgang Ruth
- Department of Industrial Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Marius Stock
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Sabrina Glufke
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Eileen J Winkel
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
15
|
Thitiphuree T, Nagasawa K, Osada M. Molecular identification of steroidogenesis-related genes in scallops and their potential roles in gametogenesis. J Steroid Biochem Mol Biol 2019; 186:22-33. [PMID: 30195968 DOI: 10.1016/j.jsbmb.2018.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/09/2023]
Abstract
Sex steroids are crucial for controlling gametogenesis and germ cell maturation in vertebrates. It has been proposed that Yesso scallop (Mizuhopecten yessoensis) has the same sex steroids as those animals, but the scallop biosynthetic pathway is unclear. In this study, we characterized several steroidogenesis-related genes in M. yessoensis and proposed a putative biosynthetic pathway for sex steroids that is similar to that of vertebrates. Specifically, we identified several steroidogenesis-related gene sequences that encode steroid metabolizing enzymes: StAR-related lipid transfer (START) protein, 17α-hydroxylase, 17,20-lyase (cyp17a), 17β-hydroxysteroid dehydrogenase (hsd17b), and 3β-hydroxysteroid dehydrogenase (hsd3b). We sampled adult scallops throughout their reproductive phase to compare their degree of maturation with their intensity of mRNA expression. Semi-quantitative RT-PCR analysis revealed a ubiquitous expression of transcripts for steroid metabolizing enzymes (i.e., star, cyp17a, hsd17b, and hsd3b) in peripheral and gonadal tissues. Real-time PCR analysis revealed a high level of expression of star3 and cyp17a genes in gonadal tissues at the early stage of cell differentiation in scallops. Interestingly, mRNA expression of hsd3b and hsd17b genes showed a synchronous pattern related to degree of gonad maturity. These results indicate that both hsd3b and hsd17b genes are likely involved in steroidogenesis in scallops. We therefore believe that these steroid-metabolizing enzymes allow scallops to endogenously produce sex steroids to regulate reproductive events.
Collapse
Affiliation(s)
- Tongchai Thitiphuree
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Kazue Nagasawa
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Makoto Osada
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan.
| |
Collapse
|
16
|
Sakalli S, Giang PT, Burkina V, Zamaratskaia G, Rasmussen MK, Bakal T, Tilami SK, Sampels S, Kolarova J, Grabic R, Turek J, Randak T, Zlabek V. The effects of sewage treatment plant effluents on hepatic and intestinal biomarkers in common carp (Cyprinus carpio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1160-1169. [PMID: 29710571 DOI: 10.1016/j.scitotenv.2018.04.188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/09/2018] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
Sewage treatment plants (STPs) are one of the major source of pharmaceuticals and personal care products in the aquatic environment. Generally, the effects of individual chemicals on fish are studied under laboratory conditions, which leads to results that are potentially not realistic regarding the effects of these chemicals under environmental conditions. Therefore, in this study, common carps were held in exposed pond that receive water from STP effluents for 360 days under natural conditions. Elimination of xenobiotics starts in the fish intestine, in which the microbial community strongly influences its function. Moreover, the fish intestine functions as crucial organ for absorbing lipids and fatty acids (FA), with consequent transport to the liver where their metabolism occurs. The liver is the primary organ performing xenobiotic metabolism in fish, and therefore, the presence of pollutants may interact with the metabolism of FA. The catalytic activity of CYP1A and CYP3A-like enzymes, their gene expression, FA composition and intestinal microbiome consortia were measured. The catalytic activity of enzymes and their gene and protein expression, were induced in hepatic and intestinal tissues of fish from the exposed pond. Also, fish from the exposed pond had different compositions of FA than those from the control pond: concentration of 18:1 n-9 and 18:2 n-6 were significantly elevated and the longer chain n-3 FA 20:5 n-3, 22:5 n-3 and 22:6 n-3 were significantly lowered. There were clear differences among microbiome consortia in fish intestines across control and exposed groups. Microbiome taxa measured in exposed fish were also associated with those found in STP activated sludge. This study reveals that treated STP water, which is assumed to be clean, affected measured biomarkers in common carp.
Collapse
Affiliation(s)
- Sidika Sakalli
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Pham Thai Giang
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Viktoriia Burkina
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Galia Zamaratskaia
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic; Swedish University of Agricultural Sciences, Department of Molecular Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | | | - Tomas Bakal
- Institute of Microbiology AS CR, Videnska 1083, 142 00 Prague 4, Czech Republic
| | - Sarvenaz Khalili Tilami
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Sabine Sampels
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic; Swedish University of Agricultural Sciences, Department of Molecular Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Jitka Kolarova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Jan Turek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Tomas Randak
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Vladimir Zlabek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| |
Collapse
|
17
|
Blaise C, Gagné F, Burgeot T. Three simple biomarkers useful in conducting water quality assessments with bivalve mollusks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27662-27669. [PMID: 27230145 DOI: 10.1007/s11356-016-6908-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
While biomarkers are undeniably key tools in aquatic ecotoxicology to measure adverse effects linked to contamination events, their application is often inhibited by monetary constraints negating the possibility of having access to dedicated equipment, special wares, and/or expensive reagents. To offset this bottleneck, we propose three simple physiological biomarkers, quantifiable in bivalves, that are free of cost considerations and that can provide basic knowledge on animal health and water quality. Indeed, condition index (CI), growth index (GI), and SOS response (air-time survival) comprise measurements straightforward enough to perform by any laboratory or science body on the planet. Long-term monitoring or screening studies can be carried out with these biomarkers and they are able to provide robust information notably after exposure of bivalves to either singular or multiple agents of contamination. By highlighting examples of data generated in aquatic studies conducted in Eastern Canada under both laboratory and field situations with different species of marine and freshwater mollusks, we establish the suitability of these biomarkers for assessing environmental contamination. Their relationships with other biomarkers are also shown which further corroborate their value as reliable indicators of ecosystem health.
Collapse
Affiliation(s)
- Christian Blaise
- Aquatic Contaminant Division, Environment and Climate Change Canada, Montréal, Québec, Canada.
| | - François Gagné
- Aquatic Contaminant Division, Environment and Climate Change Canada, Montréal, Québec, Canada
| | - Thierry Burgeot
- Unité de Biogéochimie et écotoxicologie, Ifremer, Nantes, France
| |
Collapse
|
18
|
Han J, Won EJ, Kang HM, Lee MC, Jeong CB, Kim HS, Hwang DS, Lee JS. Marine copepod cytochrome P450 genes and their applications for molecular ecotoxicological studies in response to oil pollution. MARINE POLLUTION BULLETIN 2017; 124:953-961. [PMID: 27686823 DOI: 10.1016/j.marpolbul.2016.09.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Recently, accidental spills of heavy oil have caused adverse effects in marine organisms. Oil pollution can induce damages on development and reproduction, linking with detrimental effects on diverse molecular levels of genes and proteins in plankton and fish. However, most information was mainly focused on marine vertebrates and consequently, limited information was available in marine invertebrates. Furthermore, there is still a lack of knowledge bridging in vivo endpoints with the functional regulation of cytochrome P450 (CYP) genes in response to oil spill pollution in marine invertebrates. In this paper, adverse effects of oil spill pollution in marine invertebrates are summarized with the importance of CYP genes as a potential biomarker, applying for environmental monitoring to detect oil spill using marine copepods.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eun-Ji Won
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea; Marine Chemistry and Geochemistry Research Center, Korea Institute of Ocean Science and Technology, Ansan 15627, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea; Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
19
|
Yi AX, Han J, Lee JS, Leung KMY. Toxicity of triphenyltin chloride to the rotifer Brachionus koreanus across different levels of biological organization. ENVIRONMENTAL TOXICOLOGY 2016; 31:13-23. [PMID: 25045140 DOI: 10.1002/tox.22018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 06/07/2014] [Accepted: 06/15/2014] [Indexed: 06/03/2023]
Abstract
Although triphenyltin (TPT) compounds are ubiquitous pollutants in urbanised coastal environments in Asian regions, their toxicities to marine organisms are still poorly known. This study was designed to investigate the toxicity of triphenyltin chloride (TPTCl) on the rotifer Brachionus koreanus across different levels of biological organisation. Firstly, we concurrently performed a 24 h static-acute toxicity test and a 6-day semi-static multigenerational life-cycle test using the rotifer. Our results demonstrated that the 24-h median lethal concentration of TPTCl for the rotifer was 29.6 μg/L and the 6-day median effect concentration, based on the population growth inhibition, was 3.31 μg/L. Secondly, we examined the expression of 12 heat shock protein (hsp) genes, four glutathione S-transferase (GST) genes, one retinoid X receptor (RXR) gene and 13 cytochrome P450 (CYP) genes in the rotifers after exposure to 20 µg/L TPTCl for 24 h. Among these studied genes, hsp90α2, GST-O and CYP3045C1 were the most significantly up-regulated genes with a relative expression level up to 32.9, 4.4 and 62.6 folds, respectively. The expression of these three genes in the rotifers showed an increasing trend in the first few hours of TPTCl exposure, peaked at 3 h (hsp90α2 and GST-O) and 12 h (CYP3045C1) respectively, and then gradually returned to a lower level at 24 h. Such up-regulations of hsp and GST genes probably offer cellular protection against the TPT-mediated oxidative stress while the accelerated induction of CYP genes possibly facilitates the detoxification of this toxicant in the rotifer.
Collapse
Affiliation(s)
- Andy Xianliang Yi
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jeonghoon Han
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, 133-791, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
20
|
dos Reis IMM, Mattos JJ, Garcez RC, Zacchi FL, Miguelão T, Flores-Nunes F, Toledo-Silva G, Sasaki ST, Taniguchi S, Bícego MC, Cargnin-Ferreira E, Bainy ACD. Histological responses and localization of the cytochrome P450 (CYP2AU1) in Crassostrea brasiliana exposed to phenanthrene. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 169:79-89. [PMID: 26519834 DOI: 10.1016/j.aquatox.2015.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 06/05/2023]
Abstract
Phenanthrene (PHE) is an abundant polycyclic aromatic hydrocarbon (PAH), widely distributed in aquatic environment. The aim of this study was to evaluate the histological and molecular effects in the native oyster Crassostrea brasiliana(Lamarck, 1819) exposed to 100 and 1000 μg L(-1) PHE for 1, 5 and 10 days. Histological and chemical analyses were performed to evaluate, respectively, alterations in oyster tissues and bioaccumulation. In situ hybridization (ISH) was used to assess tissue distribution of CYP2AU1, a gene formerly identified as activated by PHE exposure in this species.Quantitative polymerase chain reaction (qPCR) in mantle was carried out to validate ISH data. Oysters bioaccumulated PHE increasingly along the exposure period in both exposure concentrations. Histologic changes, like tubular atrophy in digestive diverticula (digestive gland) and increased number of mucous cells in the mantle were observed in animals exposed to PHE for 10 days. ISH showed the presence of CYP2AU1transcripts in gills, digestive diverticula, mantle, intestine and gonads, but significant differences in transcript detection by ISH between treatments occurred only in gills, mantle and intestine. A positive and significant correlation between tubular atrophy and CYP2AU1hybridization signal was observed in digestive diverticula, suggesting that this gene product might be involved in energetic metabolism in C. brasiliana. Increased mucous cells and CYP2AU1transcript levels were observed in the mantle, where the inner and middle lobes showed higher intensity of hybridization signal. Mantle should be considered as a target organ for CYP2AU1 transcript evaluation and histological alterations in biomonitoring studies. CYP2AU1 signal in female gonads was observed in all follicular cells from different gonadic stages, while in male only the spermatic follicle cells of the wall in the pre-spawning stage showed this signal. ISH was an effective technique to evaluate the effects of PHE exposure and to locate CYP2AU1 transcripts in different tissues of oyster C. brasiliana.
Collapse
Affiliation(s)
- Isis M M dos Reis
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Jacó J Mattos
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil; Aquaculture Pathology Research Center-NEPAQ, Federal University of Santa Catarina, UFSC, Florianópolis, Brazil
| | - Ricardo C Garcez
- Laboratory of Stem Cells and Tissue Regeneration, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Flávia L Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Talita Miguelão
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Fabrício Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Guilherme Toledo-Silva
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Sílvio T Sasaki
- Laboratory of Marine Organic Chemistry-LABQOM, Oceanographic Institute, University of São Paulo, USP, São Paulo, São Paulo, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry-LABQOM, Oceanographic Institute, University of São Paulo, USP, São Paulo, São Paulo, Brazil
| | - Márcia C Bícego
- Laboratory of Marine Organic Chemistry-LABQOM, Oceanographic Institute, University of São Paulo, USP, São Paulo, São Paulo, Brazil
| | - Eduardo Cargnin-Ferreira
- Laboratory of Histological Markers, Federal Institute of Education Science and Technology of Santa Catarina, IFSC, Garopaba, Santa Catarina, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
21
|
Lüchmann KH, Clark MS, Bainy ACD, Gilbert JA, Craft JA, Chipman JK, Thorne MAS, Mattos JJ, Siebert MN, Schroeder DC. Key metabolic pathways involved in xenobiotic biotransformation and stress responses revealed by transcriptomics of the mangrove oyster Crassostrea brasiliana. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 166:10-20. [PMID: 26186662 DOI: 10.1016/j.aquatox.2015.06.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
The Brazilian oyster Crassostrea brasiliana was challenged to three common environmental contaminants: phenanthrene, diesel fuel water-accommodated fraction (WAF) and domestic sewage. Total RNA was extracted from the gill and digestive gland, and cDNA libraries were sequenced using the 454 FLX platform. The assembled transcriptome resulted in ̃20,000 contigs, which were annotated to produce the first de novo transcriptome for C. brasiliana. Sequences were screened to identify genes potentially involved in the biotransformation of xenobiotics and associated antioxidant defence mechanisms. These gene families included those of the cytochrome P450 (CYP450), 70kDa heat shock, antioxidants, such as glutathione S-transferase, superoxide dismutase, catalase and also multi-drug resistance proteins. Analysis showed that the massive expansion of the CYP450 and HSP70 family due to gene duplication identified in the Crassostrea gigas genome also occurred in C. brasiliana, suggesting these processes form the base of the Crassostrea lineage. Preliminary expression analyses revealed several candidates biomarker genes that were up-regulated during each of the three treatments, suggesting the potential for environmental monitoring.
Collapse
Affiliation(s)
- Karim H Lüchmann
- Fishery Engineering Department, Santa Catarina State University, Laguna, Brazil.
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK.
| | - Afonso C D Bainy
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Jack A Gilbert
- Biosciences Division (BIO), Argonne National Laboratory, Argonne, USA; Department of Ecology and Evolution, University of Chicago, Chicago, USA; Marine Biological Laboratory, Woods Hole, USA; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - John A Craft
- Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK.
| | - J Kevin Chipman
- School of Biological Sciences, The University of Birmingham, Birmingham, UK.
| | - Michael A S Thorne
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK.
| | - Jacó J Mattos
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Marília N Siebert
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Declan C Schroeder
- Marine Biological Association of the United Kingdom (MBA), Plymouth, UK.
| |
Collapse
|
22
|
Seemann F, Knigge T, Duflot A, Marie S, Olivier S, Minier C, Monsinjon T. Sensitive periods for 17β-estradiol exposure during immune system development in sea bass head kidney. J Appl Toxicol 2015; 36:815-26. [DOI: 10.1002/jat.3215] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Frauke Seemann
- State Key Laboratory in Marine Pollution; City University Hong Kong; Kowloon Hong Kong
| | - Thomas Knigge
- UMR-I 02 INERIS-URCA-ULH, Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), SFR SCALE 4116; Université du Havre; Le Havre France
| | - Aurélie Duflot
- UMR-I 02 INERIS-URCA-ULH, Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), SFR SCALE 4116; Université du Havre; Le Havre France
| | - Sabine Marie
- UMR-I 02 INERIS-URCA-ULH, Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), SFR SCALE 4116; Université du Havre; Le Havre France
| | - Stéphanie Olivier
- UMR-I 02 INERIS-URCA-ULH, Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), SFR SCALE 4116; Université du Havre; Le Havre France
| | - Christophe Minier
- UMR-I 02 INERIS-URCA-ULH, Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), SFR SCALE 4116; Université du Havre; Le Havre France
- Office National de l'Eau et des Milieux Aquatiques (ONEMA); Grabels France
| | - Tiphaine Monsinjon
- UMR-I 02 INERIS-URCA-ULH, Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), SFR SCALE 4116; Université du Havre; Le Havre France
| |
Collapse
|
23
|
Rodrigues-Silva C, Flores-Nunes F, Vernal JI, Cargnin-Ferreira E, Bainy ACD. Expression and immunohistochemical localization of the cytochrome P450 isoform 356A1 (CYP356A1) in oyster Crassostrea gigas. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:267-275. [PMID: 25569847 DOI: 10.1016/j.aquatox.2014.12.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/22/2014] [Accepted: 12/24/2014] [Indexed: 06/04/2023]
Abstract
Cytochrome P450 family (CYP) is a group of proteins virtually found in all living organisms. The main role of most CYPs is to metabolize endo and xenobiotics. Most of the studies on CYP have been carried out in mammals and other vertebrates, however recently a growing interest has been devoted to the identification of CYP isoforms in invertebrates. A gene belonging to the CYP sub-family, CYP356A1, was identified in sanitary sewage-exposed Pacific oysters, Crassostrea gigas. Through heterologous expression, we produced CYP356A1 purified protein and raised a mouse polyclonal antibody. Dot blot tests showed that oysters exposed in situ for 14 days to untreated urban effluent discharges had significantly higher levels of CYP356A1 in digestive gland. Using immunohistochemical techniques we observed that the lining epithelial cells of mantle, stomach and intestine showed a strong CYP356A1 staining, but the mucus and secretory cells were negative. Digestive diverticulum parenchyma and gills lining cells showed strong CYP356A1 reaction, while the filamentary rod (connective tissue) was negative. Free cells, as hemocytes and brown cells also showed CYP356A1 immunoreactions indicating the presence of biotransformation activity in these cells. Male germ cells at early stages expressed CYP356A1 but not sperm mature cells, suggesting that this protein could be involved in the male gonadal development. This study shows the use of a specific antibody to a mollusk CYP isoform and that this protein is inducible in oysters environmentally exposed to urban sewage effluents.
Collapse
Affiliation(s)
- Christielly Rodrigues-Silva
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Fabrício Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Javier I Vernal
- Center of Structural and Molecular Biology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Eduardo Cargnin-Ferreira
- Laboratory of Histological Markers, Instituto Federal de Educação Ciência e Tecnologia, Garopaba, SC, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
24
|
Zhang Y, Wang Q, Ji Y, Zhang Q, Wu H, Xie J, Zhao J. Identification and mRNA expression of two 17β-hydroxysteroid dehydrogenase genes in the marine mussel Mytilus galloprovincialis following exposure to endocrine disrupting chemicals. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:1243-1255. [PMID: 24835553 DOI: 10.1016/j.etap.2014.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 06/03/2023]
Abstract
17β-Hydroxysteroid dehydrogenases (17β-HSDs) are multifunctional enzymes involved in the metabolism of steroids, fatty acids, retinoids and bile acid. In this study, two novel types of 17β-HSDs (named as MgHsd17b10 and MgHsd17b12) were cloned from Mytilus galloprovincialis by using rapid amplification of cDNA ends (RACE) approaches. Sequence analysis showed that MgHsd17b10 and MgHsd17b12 encoded a polypeptide of 259 and 325 amino acids, respectively. Phylogenetic analysis revealed that MgHsd17b10 and MgHsd17b12 were evolutionarily clustered with other invertebrate 17β-HSD type 10 and 17β-HSD type 12 homologues. The MgHsd17b10 and MgHsd17b12 transcripts could be detected in all examined tissues with higher expression levels in digestive glands and gonad. After exposed to endocrine disrupting chemicals (Bisphenol A or 2,2',4,4'-tetrabromodiphenyl ether), the expression of MgHsd17b10 and MgHsd17b12 transcripts was both down-regulated in digestive glands. These findings suggest that MgHsd17b10 and MgHsd17b12 perhaps play an important role in the endocrine regulation of M. galloprovincialis.
Collapse
Affiliation(s)
- Yingying Zhang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qing Wang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Yinglu Ji
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Qian Zhang
- China Agriculture University (Yantai), Yantai 264670, PR China
| | - Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| | - Jia Xie
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
25
|
Tian S, Pan L, Zhang H. Identification of a CYP3A-like gene and CYPs mRNA expression modulation following exposure to benzo[a]pyrene in the bivalve mollusk Chlamys farreri. MARINE ENVIRONMENTAL RESEARCH 2014; 94:7-15. [PMID: 24296241 DOI: 10.1016/j.marenvres.2013.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/29/2013] [Accepted: 11/01/2013] [Indexed: 06/02/2023]
Abstract
In this study, we isolated a CYP3A-like gene from ovary of the scallop (Chlamys farreri). High levels of CYP3A-like gene expression occur in the digestive gland and gonad, which suggested their role in the metabolism of steroids and xenobiotics. Scallops were exposed to a polycyclic aromatic hydrocarbons (PAHs), benzo[a]pyrene (B[a]P) for 10 days. The CYP4 and CYP3A-like gene can be up-regulated by B[a]P in a dose-dependent manner after 10 days exposure. But no induction of the CYP3A-like was observed in 10 μg/L B[a]P group. The CYP1A-like expression can only be induced by 0.025 μg/L B[a]P. 0.5 and 10 μg/L B[a]P caused significant DNA damage and 10 μg/L B[a]P can also lead to oxidative damage. These results demonstrate that the mollusk CYPs can be modulated by environmental pollutant, and the blocked induction of CYP3A-like and CYP1A-like expression probably results from the high genotoxicity and oxidative damage partly.
Collapse
Affiliation(s)
- Shuangmei Tian
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao 266003, PR China.
| | - Hui Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao 266003, PR China
| |
Collapse
|
26
|
Giuliani ME, Benedetti M, Arukwe A, Regoli F. Transcriptional and catalytic responses of antioxidant and biotransformation pathways in mussels, Mytilus galloprovincialis, exposed to chemical mixtures. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 134-135:120-127. [PMID: 23612242 DOI: 10.1016/j.aquatox.2013.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/08/2013] [Accepted: 03/13/2013] [Indexed: 06/02/2023]
Abstract
Antioxidant and biotransformation pathways are widely studied in marine organisms exposed to environmental stressors. However, mechanisms of responses and links between different intracellular levels are not always easy to elucidate and conflicting results are frequently observed between molecular and enzymatic data. In this study, transcriptional and catalytic responses of antioxidant and biotransformation parameters were analyzed after a 4-week exposure of a marine invertebrate, Mytilus galloprovincialis, to chemical mixtures from low polluted and highly polluted sediments. A significant, dose-dependent bioaccumulation was observed for polycyclic aromatic hydrocarbons, especially low molecular weight compounds. Among antioxidant defences, catalase and glutathione peroxidases did not exhibit variations in enzymatic activity, while the corresponding gene transcriptions were up- and down-regulated, respectively; unchanged mRNA levels of superoxide dismutase confirmed the non-synchronous pathways of variations for such antioxidants. Biotransformation responses also revealed inconsistent trends between transcriptional and catalytic variations of glutathione S-transferases, and a significant increase in mRNA levels for cytochrome P450 3A1. The overall results indicated that transcriptional responses might be sensitive but do not necessarily correspond to functional changes, being more useful as "exposure" rather than "effect" biomarkers. Data on gene transcription and catalytic activities should be carefully interpreted when assessing the impact of chemical pollutants and additional studies are needed on modulation of post-transcriptional mechanisms by environmental stressors.
Collapse
Affiliation(s)
- Maria Elisa Giuliani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60130 Ancona, Italy
| | | | | | | |
Collapse
|
27
|
Seemann F, Knigge T, Rocher B, Minier C, Monsinjon T. 17β-Estradiol induces changes in cytokine levels in head kidney and blood of juvenile sea bass (Dicentrarchus labrax, L., 1758). MARINE ENVIRONMENTAL RESEARCH 2013; 87-88:44-51. [PMID: 23602341 DOI: 10.1016/j.marenvres.2013.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 05/02/2023]
Abstract
The cytokine network is involved in the immune system communication. As estrogens influence the cytokine expression in mammals, this study investigated the impact of exogenous estrogenic pollutants on selected cytokines in Dicentrarchus labrax. The gene expression of Interleukin 6, Tumour Necrosis Factor α, Transforming Growth Factor β1 and Interleukin 1β was assessed and accomplished with protein measurements in the blood for the last two. Impacts through 17β-estradiol mainly occurred at the beginning of organ regionalisation, thus falling together with a developmentally induced increase of Interleukin 1β and Tumour Necrosis Factor α gene expression in 102 dph fish. 17β-estradiol depressed this modification after 35 days of exposure and the cytokine gene expression tended to be generally down-regulated independently of the 17β-estradiol concentrations after 56 days of exposure. This impact was confirmed at the protein level, showing that 17β-estradiol affects the fine control of the cytokine network in sea bass.
Collapse
Affiliation(s)
- Frauke Seemann
- Laboratoire d'Écotoxicologie - Milieux Aquatiques (LEMA), SFR SCALE 4116, Université du Havre, 25 Rue Philippe Lebon, 76058 Le Havre Cedex, France.
| | | | | | | | | |
Collapse
|
28
|
Zanette J, Jenny MJ, Goldstone JV, Parente T, Woodin BR, Bainy ACD, Stegeman JJ. Identification and expression of multiple CYP1-like and CYP3-like genes in the bivalve mollusk Mytilus edulis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 128-129:101-12. [PMID: 23277104 PMCID: PMC3846546 DOI: 10.1016/j.aquatox.2012.11.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/16/2012] [Accepted: 11/22/2012] [Indexed: 05/06/2023]
Abstract
Various sequencing projects over the last several years have aided the discovery of previously uncharacterized invertebrate sequences, including new cytochrome P450 genes (CYPs). Here we present data on the identification and characterization of two CYP1-like and three CYP3-like genes from the bivalve mollusk Mytilus edulis, and assess their potential as biomarkers based on their responses to several known vertebrate aryl hydrocarbon receptor (AHR) agonists. Quantitative real-time PCR was used to measure CYP transcript levels in digestive gland, labial palps, adductor muscle, gill, foot, and different regions of the mantle. Levels of both CYP1-like genes were highest in digestive gland, whereas labial palps had the highest expression levels of the three CYP3-like genes followed by digestive gland and outer margin of the mantle. Mussels were exposed by injection to the AHR agonists, β-naphthoflavone (BNF; 25 μg g(-1)), 3,3',4,4',5-polychlorinated biphenyl (PCB126; 2 μg g(-1)), or 6-formylindolo[3,2-b]carbazole (FICZ; 0.1 μg g(-1)), or to Aroclor 1254 (a mixture of PCBs; 50 μg g(-1)) for 24 h, followed by CYP expression analysis. There was no statistically significant change in expression of either of the CYP1-like genes after exposure to the various AHR agonists. The CYP3-like-1 gene was significantly up-regulated by BNF in gill tissues and the CYP3-like-2 gene was up-regulated in digestive gland by PCB126 and in gill tissue by BNF. These results suggest that distinct mechanisms of CYP gene activation could be present in M. edulis, although the importance of the CYP1-like and CYP3-like genes for xenobiotic and endogenous lipids biotransformation requires additional investigation.
Collapse
Affiliation(s)
- Juliano Zanette
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543
- Biochemistry Department, Federal University of Santa Catarina, Florianopolis SC, Brazil
| | - Matthew J. Jenny
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543
- Department of Biological Sciences, University of Alabama, Tuscaloosa AL 35487
| | - Jared V. Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543
| | - Thiago Parente
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543
- Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruce R. Woodin
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543
| | - Afonso C. D. Bainy
- Biochemistry Department, Federal University of Santa Catarina, Florianopolis SC, Brazil
| | - John J. Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543
- Correspondence to: John J. Stegeman, Biology Department, MS 32, Woods Hole Oceanographic Institution, Woods Hole MA USA 02543,
| |
Collapse
|
29
|
Bachelot M, Li Z, Munaron D, Le Gall P, Casellas C, Fenet H, Gomez E. Organic UV filter concentrations in marine mussels from French coastal regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 420:273-279. [PMID: 22330425 DOI: 10.1016/j.scitotenv.2011.12.051] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 12/14/2011] [Accepted: 12/22/2011] [Indexed: 05/31/2023]
Abstract
The accumulation of EHMC, OCT and OD-PABA, three common UV filter compounds, was investigated in marine mussels. Wild Mytilus edulis and Mytilus galloprovincialis were sampled in ten sites along the French Atlantic and Mediterranean coasts from June to November. In mussel tissues, 100% of the samples had quantifiable EHMC concentrations ranging from 3 to 256ngg(-1) dry weight, while 55% of the samples had detectable OCT concentrations ranging from under 2 to 7 112ngg(-1) dry weight. These concentrations significantly increased with the rising air temperature in summer, the recreational pressure and the geomorphological structure of the sampling sites (its lack of openness to the wide). This is the first study to report bioaccumulation of UV filters in marine mussels, thus highlighting the need for further monitoring and assessment.
Collapse
|