1
|
Zhang Y, Dang Y, Pei F, Yuan Y, Yuan J, Gu Z, Wang J. Sub-acute toxicity of the herbicide glufosinate-ammonium exposure in adult red swamp crayfish (Procambarus clarkii). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122605. [PMID: 37742863 DOI: 10.1016/j.envpol.2023.122605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Glufosinateammonium (GLA) is one of the most widely used agricultural herbicides. It is frequently detected in surface waters near farmland and may pose a risk to non-target aquatic species. This study aimed to explore the toxicity of subacute GLA exposure in crayfish. Adult red swamp crayfish were exposed to GLA (0, 1, 10, and 100 mg/L) for 21 days. Bioaccumulation, oxidative stress, nonspecific immunity, and the expression of genes encoding xenobiotic detoxification-related enzymes were examined. The results showed GLA accumulation and hepatopancreatic histopathological changes (dilation of hepatic tubules and vacuolation of hepatocytes) in the exposed crayfish. GLA exposure induced ROS production, inhibited glutathione expression, and catalase activity in the crayfish hepatopancreas, as well as inhibited immunoenzyme expression (acid phosphatase, alkaline phosphatase, and lysozyme) in the hemolymph. In addition, the total hemocyte number decreased, and the proportion of hemocyte subsets changed significantly. Superoxide dismutase first increased and then decreased with increasing GLA dosage. GLA promoted the expression of biotransformation enzymes (cypb5, gst) in the hepatopancreas. Our results suggest that subacute GLA exposure caused structural damage to the hepatopancreatic tissue and decreased antioxidant capacity and non-specific immunity in crayfish. These findings provide insight into the toxicity of herbicides on non-target organisms.
Collapse
Affiliation(s)
- Yang Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Fucheng Pei
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongchao Yuan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junfa Yuan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Zemao Gu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Dai C, Xiao L, Mo A, Yuan Y, Yuan J, Gu Z, Wang J. Effect of dietary Bacillus subtilis supplement on Cd toxicokinetics and Cd-induced immune and antioxidant impairment of Procambarus clarkii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43914-43926. [PMID: 36680717 DOI: 10.1007/s11356-023-25297-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd), a non-biodegradable contaminant in freshwater ecosystems, can pose a serious threat to aquatic animals at high levels. In this study, the Cd toxicokinetics and the immune and antioxidant defense were explored in Procambarus clarkii exposed to different levels of Cd (0, 0.1, 1.0 mg Cd/L) or treated with 1.0 mg Cd/L and dietary Bacillus subtilis supplementation (1 × 107 cfu/g). Results from the 21-day uptake and depuration experiment revealed that Cd exposure elicited a dose- and time-dependent uptake in all crayfish tissues, and the rank order of Cd concentration was gill > hepatopancreas > exoskeleton > muscle. The one-compartment model demonstrated that gills had the highest uptake rate (ku) value after Cd aqueous exposure and the ku and elimination rate (kd) values in gill, hepatopancreas, and exoskeleton of the group with 1.0 mg Cd/L were higher than those of the group at alow Cd concentration (0.1 mg Cd/L). However, B. subtilis could decrease Cd ku and increase Cd kd in hepatopancreas, resulting in the reduction of bioconcentration factors (BCF), steady-state concentrations (Css), and biological half-life (Tb1/2). A positive correlation was found between aqueous Cd concentration and the severity of hepatopancreas histopathological injury, while B. subtilis could ameliorate the pathological damage in the high Cd group. Similarly, aqueous exposure to Cd elevated malonaldehyde (MDA) content and suppressed the activities of lysozyme (LZM), acid phosphatase (ACP) in hepatopancreas and alkaline phosphatase (AKP) in hemolymph. The activities of superoxide dismutase (SOD) and catalase (CAT) in hepatopancreas were also inhibited. Nevertheless, they were all recovered with the dietary addition of B. subtilis. In conclusion, our results indicated that exposure to Cd significantly increased Cd accumulation and toxic damages in crayfish hepatopancreas, while dietary administration of B. subtilis to crayfish significantly decreased Cd accumulation and improved the immune and antioxidant defense, leading to the prevention in toxic effects of Cd.
Collapse
Affiliation(s)
- Caijiao Dai
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Xiao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aijie Mo
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongchao Yuan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junfa Yuan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Zemao Gu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Oliveira JM, Condessa SS, Destro ALF, Lima GDA, do Carmo Cupertino M, Cardoso SA, Freitas MB, de Oliveira LL. Morphophysiological alterations in fruit-eating bats after oral exposure to deltamethrin. Int J Exp Pathol 2022; 103:219-230. [PMID: 36059214 PMCID: PMC9482353 DOI: 10.1111/iep.12455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 06/21/2022] [Indexed: 11/27/2022] Open
Abstract
Deltamethrin (DTM) is a synthetic pyrethroid widely used in the cultivation and management of several crops due to its insecticidal action. Application to crops of pyrethroids such as DTM can result in the exposure of water and fruit consumed by fruit bats having a high pyrethroid content which may be harmful. Therefore the objective of this study was to evaluate the effects of short-term oral exposure of the fruit-eating bats (Artibeus lituratus) to two concentrations of DTM (0.02 and 0.04 mg/kg of papaya) on histopathology of the intestine, liver and kidney. The intestine of the animals exposed to both concentrations showed inflammatory infiltrate, degeneration, necrosis and goblet cell hyperplasia as the most frequent pathologies. Besides, the acid mucins showed an increase in the frequency of non-viable cells. The liver showed hepatocyte vacuolizatio and nuclear enlargement, as well as inflammatory infiltrate and steatosis. The kidneys of the exposed animals showed and inflammatory infiltrate, benign nephrosclerosis, vacuolization and necrosis. Also, DTM reduced nitric oxide synthesis, decreased glomerular diameter and increased glycogen percentage in the proximal tubules. Our results suggest that acute exposure to DTM at low concentrations has the potential to induce pronounced histopathological changes in vital organs, such as intestine, liver and kidney of fruit-eating bats.
Collapse
|
4
|
Guo H, Kuang Y, Ouyang K, Zhang C, Yang H, Chen S, Tang R, Zhang X, Li D, Li L. Ammonia in the presence of nano titanium dioxide (nano-TiO 2) induces greater oxidative damage in the gill and liver of female zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113458. [PMID: 35367888 DOI: 10.1016/j.ecoenv.2022.113458] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/24/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Water pollution caused by a highly hazardous chemical ammonia and a widespread application nanomaterials-nano titanium dioxide (n-TiO2) in nature water has attracted extensive concern of the world. However, the potential joint effects of the two factors are unknown. Aim to investigate the potential interactive effects of ammonia and n-TiO2 and the behind mechanisms, adult female zebrafish (Danio rerio) were co-exposed for 8 weeks by total ammonia nitrogen (TAN; 0, 3, 30 mg/L) and n-TiO2 (0, 0.1, 1 mg/L) in different combination conditions based on a full-factorial design. The analysis of absorption kinetics confirmed that n-TiO2 could absorb free ammonia (NH3) in aqueous solution and the loss rate of free NH3 increased with the rise of n-TiO2 concentration. Consistent with this, free NH3 concentrations in the gill and liver were higher in the presence of n-TiO2 compared to TAN exposure alone. The increases of MDA and PC concentrations in the gill and liver of fish indicated that TAN and n-TiO2 alone or in combination caused oxidative stress. Simultaneously, the activity and transcription of antioxidant enzymes (T-SOD, CuZn-SOD, Mn-SOD, CAT, GPx and GST) as well as antioxidant GSH contents were extensively inhibited by TAN and n-TiO2 via Nrf2-Keap1 signaling. The significant interactive effects of TAN and n-TiO2 were detected on levels of GSH, GST and gstr1 mRNA in the gill, and on levels of GSH, T-SOD, Mn-SOD, CAT levels as well as gpx1a and keap1 mRNAs in the liver, implying synergistic toxic risk of TAN and n-TiO2. The more severe histopathological alterations and higher IBR analysis in co-treatment groups further proved that the existence of n-TiO2 excavated ammonia-induced toxicity in the gill and liver, especially in liver. In conclusion, ammonia and n-TiO2 have a synergistic toxic risk of fish health because ammonia and n-TiO2 cause oxidative-antioxidative imbalance by inducing ROS overproduction.
Collapse
Affiliation(s)
- Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yu Kuang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kang Ouyang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ce Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Siqi Chen
- Hubei Aquaculture Technology Extension Center (Hubei Aquatic Breeds Introduction and Breeding Center), Wuhan 430060, PR China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Xi Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
5
|
Evaluation of Ammonia Nitrogen Exposure in Immune Defenses Present on Spleen and Head-Kidney of Wuchang Bream ( Megalobrama amblycephala). Int J Mol Sci 2022; 23:ijms23063129. [PMID: 35328551 PMCID: PMC8953400 DOI: 10.3390/ijms23063129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Ammonia is one of the most important environmental factors in aquatic ecosystems. However, there are limited studies on the effects of chronic or long-term ammonia stress and its potential molecular mechanism in fish. This study aimed to investigate the immune response and molecular mechanisms in the spleen and head-kidney of fish following chronic ammonia exposure. Megalobrama amblycephala (9.98 ± 0.48 g) were exposed to different concentrations of total ammonia nitrogen (0-30 mg/L) for 30 days. Ammonia exposure caused significant increases in cortisol levels and decreases in lysozyme and complement 3/4 concentrations in the serum, indicating inhibitory effects of ammonia stress on innate immune responses. Ammonia exposure also induced concentration-dependent increases in ammonia concentrations in tissue, pathological damage and indexes of spleen and head-kidney. Additionally, the contents of immunoglobulin M (IgM), interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) as well as mRNA levels of toll-like receptors (TLRs)/Myeloid differentiation factor 88 (MyD88)-independent signaling molecules in the spleen and head-kidney were significantly downregulated after ammonia exposure. Our findings suggested that chronic ammonia exposure caused the suppression of innate and adaptive immune responses through downregulating TLR/MyD88-independent signaling. Adverse influences of chronic ammonia stress were more severe in the spleen than in the head-kidney.
Collapse
|
6
|
Oliveira JMD, Lima GDDA, Destro ALF, Condessa S, Zuanon JAS, Freitas MB, Oliveira LLD. Short-term intake of deltamethrin-contaminated fruit, even at low concentrations, induces testicular damage in fruit-eating bats (Artibeus lituratus). CHEMOSPHERE 2021; 278:130423. [PMID: 33819891 DOI: 10.1016/j.chemosphere.2021.130423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/21/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Deltamethrin (DTM) is a pyrethroid insecticide widely used for agricultural purposes. Exposure to DTM has proven to be harmful to humans, but whether low, environmental concentrations of this pesticide also poses a threat to wild mammals is still unknown. In Neotropical areas, bats play important roles in contributing to forest regeneration. We investigated the effects of DTM exposure on the reproductive function of male Neotropical fruit-eating bats (Artibeus lituratus), known for contributing to reforestation through seed dispersal in Neotropical Forests. Bats were assigned to 3 groups: control (fed with papaya); DTM2 (fed with papaya treated with DTM at 0.02 mg/kg) and DTM4 (fed with papaya treated with DTM at 0.04 mg/kg) for seven days. Bats from DTM2 and DTM4 groups showed increased testicular levels of nitric oxide and superoxide dismutase and catalase activities. The germinal epithelium from DTM4 bats showed non-viable cells and cell desquamation, indicating microscopic lesions and Leydig cells atrophy. Our results demonstrate the onset of cell degeneration that may affect the reproductive function in DTM exposed bats.
Collapse
Affiliation(s)
- Jerusa Maria de Oliveira
- Departament of General Biology, Federal University of Viçosa, Avenida Peter Henry Rolfs, S/n - Campus Universitário, Viçosa - MG, 36570-900, MG, Brazil
| | - Graziela Domingues de Almeida Lima
- Departament of General Biology, Federal University of Viçosa, Avenida Peter Henry Rolfs, S/n - Campus Universitário, Viçosa - MG, 36570-900, MG, Brazil
| | - Ana Luiza Fonseca Destro
- Departament of Animal Biology - Federal University of Viçosa, Avenida Peter Henry Rolfs, S/n - Campus Universitário, Viçosa - MG, 36570-900, MG, Brazil
| | - Suellen Condessa
- Departament of Animal Biology - Federal University of Viçosa, Avenida Peter Henry Rolfs, S/n - Campus Universitário, Viçosa - MG, 36570-900, MG, Brazil
| | - Jener Alexandre Sampaio Zuanon
- Departament of Animal Biology - Federal University of Viçosa, Avenida Peter Henry Rolfs, S/n - Campus Universitário, Viçosa - MG, 36570-900, MG, Brazil
| | - Mariella Bontempo Freitas
- Departament of Animal Biology - Federal University of Viçosa, Avenida Peter Henry Rolfs, S/n - Campus Universitário, Viçosa - MG, 36570-900, MG, Brazil
| | - Leandro Licursi de Oliveira
- Departament of General Biology, Federal University of Viçosa, Avenida Peter Henry Rolfs, S/n - Campus Universitário, Viçosa - MG, 36570-900, MG, Brazil.
| |
Collapse
|
7
|
Guo H, Lin W, Wu X, Wang L, Zhang D, Li L, Li D, Tang R, Yang L, Qiu Y. Survival strategies of Wuchang bream (Megalobrama amblycephala) juveniles for chronic ammonia exposure: Antioxidant defense and the synthesis of urea and glutamine. Comp Biochem Physiol C Toxicol Pharmacol 2020; 230:108707. [PMID: 31953219 DOI: 10.1016/j.cbpc.2020.108707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/20/2019] [Accepted: 01/11/2020] [Indexed: 12/19/2022]
Abstract
This study aimed to explore how Wuchang bream (Megalobrama amblycephala) survive and defend against the toxicity of ambient total ammonia nitrogen (0, 5, 10, 20 and 30 mg/L TA-N) during 30-day exposure. As a result, hepatic malondialdehyde and protein carbonylation as well as histopathological alterations increased with increasing TA-N level, which suggested that chronic ammonia exposure caused oxidative stress and damage in the liver of fish. Meanwhile, the activities of hepatic total superoxide dismutase (T-SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glucose 6-phosphate dehydrogenase (G6PD) as well as the mRNA expression of Cu/Zn sod, cat, gpx and g6pd were elevated significantly along with significant reduction of glutathione (GSH) and nicotinamide adenine dinucleotide phosphate (NADPH) (P < 0.05). These results indicated that hepatic antioxidant responses were activated to alleviate oxidative damages induced by ammonia, in which lower-concentration ammonia only initiate SOD-CAT-GR-G6PDH defense and higher ammonia activated the SOD-CAT-GPx-GSH-GR-G6PDH antioxidant response. In addition, significant increases of serum urea and hepatic ammonia, urea, glutamine, arginase as well as glutamine synthetase were detected with the increase of TA-N (P < 0.05), while serum ammonia levels kept stable (P > 0.05). The present findings further revealed that ammonia could be detoxified directly into glutamine and urea in Wuchang bream to cope with ammonia exposure. In conclusion, under chronic ammonia exposure, enhanced hepatic antioxidant responses as well as increased urea and glutamine synthesis worked in combination to allow Megalobrama amblycephala to defend against environmental ammonia toxicity.
Collapse
Affiliation(s)
- Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xueyang Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lingkai Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dandan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, PR China.
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, PR China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, PR China
| | - Liping Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuming Qiu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
8
|
Stark JS, Corbett PA, Dunshea G, Johnstone G, King C, Mondon JA, Power ML, Samuel A, Snape I, Riddle M. The environmental impact of sewage and wastewater outfalls in Antarctica: An example from Davis station, East Antarctica. WATER RESEARCH 2016; 105:602-614. [PMID: 27693972 DOI: 10.1016/j.watres.2016.09.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/01/2016] [Accepted: 09/17/2016] [Indexed: 05/12/2023]
Abstract
We present a comprehensive scientific assessment of the environmental impacts of an Antarctic wastewater ocean outfall, at Davis station in East Antarctica. We assessed the effectiveness of current wastewater treatment and disposal requirements under the Protocol on Environmental Protection to the Antarctic Treaty. Macerated wastewater has been discharged from an outfall at Davis since the failure of the secondary treatment plant in 2005. Water, sediment and wildlife were tested for presence of human enteric bacteria and antibiotic resistance mechanisms. Epibiotic and sediment macrofaunal communities were tested for differences between sites near the outfall and controls. Local fish were examined for evidence of histopathological abnormalities. Sediments, fish and gastropods were tested for uptake of sewage as measured by stable isotopes of N and C. Escherichia coli carrying antibiotic resistance determinants were found in water, sediments and wildlife (the filter feeding bivalve Laternula eliptica). Fish (Trematomus bernacchii) within close proximity to the outfall had significantly more severe and greater occurrences of histopathological abnormalities than at controls, consistent with exposure to sewage. There was significant enrichment of 15N in T. bernacchii and the predatory gastropod Neobuccinum eatoni around the outfall, providing evidence of uptake of sewage. There were significant differences between epibiotic and sediment macrofaunal communities at control and outfall sites (<1.5 km), when sites were separated into groups of similar habitat types. Benthic community composition was also strongly related to habitat and environmental drivers such as sea ice. The combined evidence indicated that the discharge of wastewater from the Davis outfall is causing environmental impacts. These findings suggest that conditions in Antarctic coastal locations, such as Davis, are unlikely to be conducive to initial dilution and rapid dispersal of wastewater as required under the Protocol on Environmental Protection to the Antarctic Treaty. Current minimum requirements for wastewater treatment and disposal in Antarctica are insufficient to ameliorate these risks and are likely to lead to accumulation of contaminants and introduction of non-native microbes and associated genetic elements. This new understanding suggests that modernised approaches to the treatment and disposal of wastewater are required in Antarctica. The most effective solution is advanced levels of wastewater treatment, which are now possible, feasible and a high priority for installation. As a direct outcome of the study, a new advanced treatment system is being installed at Davis, effectively avoiding environmental risks.
Collapse
Affiliation(s)
- Jonathan S Stark
- Antarctic Conservation and Management Theme, Australian Antarctic Division, Channel Hwy, Kingston, 7050, TAS, Australia.
| | - Patricia A Corbett
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Warrnambool Campus, P.O. Box 423, Warrnambool, VIC 3280, Australia
| | - Glenn Dunshea
- Ecological Marine Services Pty. Ltd., 2/3 Thomsen St, Millbank, QLD 4670, Australia
| | - Glenn Johnstone
- Antarctic Conservation and Management Theme, Australian Antarctic Division, Channel Hwy, Kingston, 7050, TAS, Australia
| | - Catherine King
- Antarctic Conservation and Management Theme, Australian Antarctic Division, Channel Hwy, Kingston, 7050, TAS, Australia
| | - Julie A Mondon
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Warrnambool Campus, P.O. Box 423, Warrnambool, VIC 3280, Australia
| | - Michelle L Power
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Angelingifta Samuel
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, 116 Daley Road, Acton, ACT 2601, Australia
| | - Ian Snape
- Antarctic Conservation and Management Theme, Australian Antarctic Division, Channel Hwy, Kingston, 7050, TAS, Australia
| | - Martin Riddle
- Antarctic Conservation and Management Theme, Australian Antarctic Division, Channel Hwy, Kingston, 7050, TAS, Australia
| |
Collapse
|