1
|
Menicagli V, Ruffini Castiglione M, Cioni E, Spanò C, Balestri E, De Leo M, Bottega S, Sorce C, Lardicci C. Stress responses of the seagrass Cymodocea nodosa to environmentally relevant concentrations of pharmaceutical ibuprofen: Ecological implications. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135188. [PMID: 39024758 DOI: 10.1016/j.jhazmat.2024.135188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Pharmaceuticals like ibuprofen (IBU) entering marine environments are of great concern due to their increasing consumption and impact on wildlife. No information on IBU toxicity to seagrasses is yet available. Seagrasses form key habitats and are threatened worldwide by multiple stressors. Here, the responses of the seagrass Cymodocea nodosa to a short-term exposure (12 days) to environmentally realistic IBU concentrations (0.25-2.5-25 µg L-1), both at organism (plant growth) and sub-organism level (oxidative status, photosynthetic efficiency, and specialized metabolites production), were assessed in mesocosm. Chemical analyses to detect the presence of IBU and its metabolites in seawater and plants were also performed. IBU did not affect plant growth but caused physiological alterations which varied in severity depending on its concentration. Concentrations of 0.25 and 2.5 µg L-1 resulted in oxidative stress, but an increased antioxidant enzyme activity enabled plants to tolerate stress. A concentration of 25 µg L-1 caused greater oxidative stress, reduced antioxidant enzyme activity and specialized metabolites production, and impaired photosynthetic machinery functioning (particularly PSII). IBU was detected in seawater but not in plants suggesting no bioaccumulation. These findings indicate that C. nodosa could not withstand high IBU stress, and this could reduce its resilience to additional environmental stressors.
Collapse
Affiliation(s)
- Virginia Menicagli
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy
| | - Monica Ruffini Castiglione
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43-44, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Emily Cioni
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy
| | - Carmelina Spanò
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Elena Balestri
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43-44, 56126 Pisa, Italy.
| | - Marinella De Leo
- Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43-44, 56126 Pisa, Italy; Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy
| | - Stefania Bottega
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy
| | - Carlo Sorce
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Lardicci
- Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43-44, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy; Department of Earth Sciences, University of Pisa, via S. Maria 53, 56126 Pisa, Italy
| |
Collapse
|
2
|
Nemcova Y, Orlando-Bonaca M, Neustupa J. Halimeda tuna (Bryopsidales, Ulvophyceae) calcification on the depth transect in the northern Adriatic Sea; carbonate production on the microscale of individual segments. PeerJ 2023; 11:e15061. [PMID: 36945356 PMCID: PMC10024899 DOI: 10.7717/peerj.15061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
Halimeda tuna (J. Ellis & Solander) J.V. Lamouroux is the only Halimeda species found in the Mediterranean Sea, and it is an important habitat former. In the northern Adriatic, H. tuna is among the ten most abundant seaweeds in the upper-infralittoral belt in spring and autumn. The modular thalli consist of serially arranged calcified segments. Calcification is closely related to photosynthesis, which causes alkalinization of the inter-utricular space and triggers aragonite formation. Understanding of the complex patterns of segment shape plasticity in relation to CaCO3content at different depth levels is still incomplete. Geometric morphometrics was used to investigate H. tuna segment shape variation on the depth transect at Cape Madona Nature Monument in the northern Adriatic Sea. The position on the thallus and the CaCO3 content of each studied segment were recorded, allowing slight changes in mineral content to be detected at the microscale of the segments. Our results showed that shape, size, or asymmetry of H. tuna segments were not significantly affected by depth. On the other hand, plants that grew deeper were generally more calcified. The apical and subapical segments contributed to the increase in CaCO3 content at the deeper sites, whereas the basal segments did not. This indicates that reniform or oval segments positioned apically or subapically play a key role in calcification of H. tuna in Mediterranean ecosystems.
Collapse
Affiliation(s)
- Yvonne Nemcova
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Jiri Neustupa
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Qiao Y, Zhang Y, Xu S, Yue S, Zhang X, Liu M, Sun L, Jia X, Zhou Y. Multi-leveled insights into the response of the eelgrass Zostera marina L to Cu than Cd exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157057. [PMID: 35780896 DOI: 10.1016/j.scitotenv.2022.157057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/06/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Seagrass beds are recognized as critical and among the most vulnerable habitats on the planet; seagrass colonize the coastal waters where heavy metal pollution is a serious problem. In this study, the toxic effects of copper and cadmium in the eelgrass Zostera marina L. were observed at the individual, subcellular, physiologically biochemical, and molecular levels. Both Cu and Cd stress significantly inhibited the growth and the maximal quantum yield of photosystem II (Fv/Fm); and high temperature increased the degree of heavy metal damage, while low temperatures inhibited damage. The half-effect concentration (EC50) of eelgrass was 28.9 μM for Cu and 2246.8 μM for Cd, indicating Cu was much more toxic to eelgrass than Cd. The effect of Cu and Cd on photosynthesis was synergistic. After 14 days of enrichment, the concentration of Cu in leaves and roots of Z. marina was 48 and 37 times higher than that in leaf sheath, and 14 and 11 times higher than that in rhizome; and the order of Cd concentration in the organs was root > leaf > rhizome > sheath. Heavy metal uptake mainly occurred in the organelles, and Cd enrichment also occurred to a certain extent in the cytoplasm. Transcriptome results showed that a number of photosynthesis-related KEGG enrichment pathways and GO terms were significantly down-regulated under Cd stress, suggesting that the photosynthetic system of eelgrass was severely damaged at the transcriptome level, which was consistent with the significant inhibition of Fv/Fm and leaf yellowing. Under Cu stress, the genes related to glutathione metabolic pathway were significantly up-regulated, together with the increased autioxidant enzyme activity of GSH-PX. In addition, the results of recovery experiment indicated that the damage caused by short-term Cd and Cu stress under EC50 was reversible. These results provide heavy metal toxic effects at multiple levels and information relating to the heavy metal resistance strategies evolved by Z. marina to absorb and isolate heavy metals, and highlight the phytoremediation potential of this species especially for Cd.
Collapse
Affiliation(s)
- Yongliang Qiao
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Yu Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Shaochun Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Shidong Yue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Xiaomei Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Mingjie Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Lingling Sun
- Public Tech-Supporting Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaoping Jia
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yi Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China.
| |
Collapse
|
4
|
Orlando-Bonaca M, Trkov D, Klun K, Pitacco V. Diversity of Molluscan Assemblage in Relation to Biotic and Abiotic Variables in Brown Algal Forests. PLANTS 2022; 11:plants11162131. [PMID: 36015433 PMCID: PMC9415959 DOI: 10.3390/plants11162131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022]
Abstract
Canopy-forming macroalgae, mainly those belonging to the order Fucales, form the so-called brown algal forests, which are among the most productive assemblages in shallow coastal zones. Their vertical, branching canopies increase nearshore primary production, provide nursery areas for juvenile fish, and sustain understory assemblages of smaller algae and both sessile and vagile fauna. The majority of benthic invertebrates inhabiting these forests have larval stages that spend some time floating freely or swimming in the plankton. Therefore, canopy-forming macroalgae play an important role as species collectors related to larval supply and hydrodynamic processes. During the past several decades, brown algal forests have significantly reduced their extension and coverage in the Mediterranean basin, due to multiple interacting natural and anthropogenic pressures, with negative consequences also for the related fauna. The aim of this research was to examine how differences in macrophyte abundance and structure, as well as environmental variables, affect the associated molluscan communities in the shallow northern Adriatic Sea. Sampling sites with well-developed vegetation cover dominated by different canopy-forming species were selected in the shallow infralittoral belt of the northern Adriatic Sea in the spring–summer period of the years 2019 and 2020. Our results confirm the importance of algal forests for molluscan assemblage, with a total of 68 taxa of molluscs found associated with macrophytes. Gastropods showed the highest richness and abundance, followed by bivalves. Mollusc richness and diversity (in terms of biotic indices) were not related with the degree of development of canopy-forming species (in terms of total cover and total volume), nor with the ecological status of benthic macroalgae at different depths. On the contrary, the variability in molluscan taxa abundances was explained by some environmental variables, such as temperature, pH, light, and nitrates concentration.
Collapse
|
5
|
Evaluating Seagrass Meadow Dynamics by Integrating Field-Based and Remote Sensing Techniques. PLANTS 2022; 11:plants11091196. [PMID: 35567197 PMCID: PMC9104372 DOI: 10.3390/plants11091196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
Marine phanerogams are considered biological sentinels or indicators since any modification in seagrass meadow distribution and coverage signals negative changes in the marine environment. In recent decades, seagrass meadows have undergone global losses at accelerating rates, and almost one-third of their coverage has disappeared globally. This study focused on the dynamics of seagrass meadows in the northern Adriatic Sea, which is one of the most anthropogenically affected areas in the Mediterranean Sea. Seagrass distribution data and remote sensing products were utilized to identify the stable and dynamic parts of the seagrass ecosystem. Different seagrass species could not be distinguished with the Sentinel-2 (BOA) satellite image. However, results revealed a generally stable seagrass meadow (283.5 Ha) but, on the other hand, a stochastic behavior in seagrass meadow retraction (90.8 Ha) linked to local environmental processes associated with anthropogenic activities or climate change. If systemized, this proposed approach to monitoring seagrass meadow dynamics could be developed as a spatial decision support system for the entire Mediterranean basin. Such a tool could serve as a key element for decision makers in marine protected areas and would potentially support more effective conservation and management actions in these highly productive and important environments.
Collapse
|
6
|
Aljahdali MO, Alhassan AB. The efficiency of trace element uptake by seagrass Cymodocea serrulata in Rabigh lagoon, Red Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14948-14960. [PMID: 34623585 DOI: 10.1007/s11356-021-16808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The search for solutions to environmental pollution has been on the increase, with many questions recently as to which marine organisms can bioaccumulate trace elements in the marine ecosystem. Cadmium, Cr, Cu, Fe, Mn, Ni, Pb, and Zn concentrations in sediment, seawater, and seagrass compartments (root, rhizome, and leaf blade) were determined at Rabigh lagoon, Red Sea. This is to provide an insight into the potential of Cymodocea serrulata to bioaccumulate trace elements and as a good candidate to biomonitor these elements in a natural aquatic ecosystem. Results revealed significant variations in trace element concentrations across the three compartments of C. serrulata and the sites, with site S8 located in the most closed part of the lagoon recording the highest concentrations for all the trace elements. The translocation factor (TFrhizome/root = 1.00) of trace elements was higher in the root compartment. This implies that the root compartment is a better bioindicator of trace elements and has more potential to be utilized for biomonitoring. A significant positive correlation (p < 0.01) was established between the trace element concentrations in sediment, seawater, and the three compartments of C. serrulata except for Mn concentration in the compartments. The seagrass C. serrulata can be used for biomonitoring of trace elements in marine ecosystems as our results provide information on its capacity to bioaccumulate these elements. This is one of the key characteristics of a typical bioindicator of aquatic pollutants.
Collapse
Affiliation(s)
- Mohammed Othman Aljahdali
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 80203, Saudi Arabia.
| | - Abdullahi Bala Alhassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 80203, Saudi Arabia.
- Department of Biology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, 810001, Nigeria.
| |
Collapse
|
7
|
Malea P, Kokkinidi D, Kevrekidou A, Adamakis IDS. The Enzymatic and Non-Enzymatic Antioxidant System Response of the Seagrass Cymodocea nodosa to Bisphenol-A Toxicity. Int J Mol Sci 2022; 23:1348. [PMID: 35163270 PMCID: PMC8835922 DOI: 10.3390/ijms23031348] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/04/2022] Open
Abstract
The effects of environmentally relevant bisphenol A (BPA) concentrations (0.3, 1 and 3 μg L-1) were tested at 2, 4, 6 and 8 days, on intermediate leaves, of the seagrass Cymodocea nodosa. Hydrogen peroxide (H2O2) production, lipid peroxidation, protein, phenolic content and antioxidant enzyme activities were investigated. Increased H2O2 formation was detected even at the lowest BPA treatments from the beginning of the experiment and both the enzymatic and non-enzymatic antioxidant defense mechanisms were activated upon application of BPA. Elevated H2O2 levels that were detected as a response to increasing BPA concentrations and incubation time, led to the decrease of protein content on the 4th day even at the two lower BPA concentrations, and to the increase of the lipid peroxidation at the highest concentration. However, on the 6th day of BPA exposure, protein content did not differ from the control, indicating the ability of both the enzymatic and non-enzymatic mechanisms (such as superoxide dismutase (SOD) and phenolics) to counteract the BPA-derived oxidative stress. The early response of the protein content determined that the Low Effect Concentration (LOEC) of BPA is 0.3 μg L-1 and that the protein content meets the requirements to be considered as a possible early warning "biomarker" for C. nodosa against BPA toxicity.
Collapse
Affiliation(s)
- Paraskevi Malea
- School of Biology, Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Danae Kokkinidi
- School of Biology, Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Alkistis Kevrekidou
- School of Engineering, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | | |
Collapse
|
8
|
Kerninon F, Payri CE, Le Loc'h F, Alcoverro T, Maréchal JP, Chalifour J, Gréaux S, Mège S, Athanase J, Cordonnier S, Rouget ML, Lorre E, Uboldi T, Monnier O, Hellio C. Selection of parameters for seagrass management: Towards the development of integrated indicators for French Antilles. MARINE POLLUTION BULLETIN 2021; 170:112646. [PMID: 34225197 DOI: 10.1016/j.marpolbul.2021.112646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Seagrass beds are increasingly impacted by human activities in coastal areas, particularly in tropical regions. The objective of this research program was to study seagrass beds characteristics under various environmental conditions in the French Antilles (FA, Caribbean Sea). A total of 61 parameters, from plant physiology to seagrass ecosystem, were tested along a gradient of anthropogenic conditions, distributed across 11 sites and 3 islands of the FA. A selection of 7 parameters was identified as relevant for the monitoring of seagrass meadows in the framework of public policies. They combined "early warning indicators" (e.g. nutrients and some trace metals) and long-term responding parameters (e.g. shoot density) adapted to management time scales. The ecological status of seagrass meadows was evaluated using a PCA. This work is a first step towards monitoring and management of seagrass meadows in the FA.
Collapse
Affiliation(s)
- Fanny Kerninon
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France.
| | - Claude E Payri
- UMR Entropie (IRD, Université de la Réunion, Université de la Nouvelle-Calédonie, CNRS, Ifremer), Institut de Recherche pour le Développement (IRD), 101 Promenade Roger Laroque, Nouméa 98848, Nouvelle-Calédonie, France
| | | | - Teresa Alcoverro
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Carretera d'accés a la cala sant Francesc 14, 17300 Blanes, Spain; Nature Conservation Foundation, 3076/5, 4th Cross, Gokulam Park, Mysore, India
| | | | - Julien Chalifour
- Réserve Naturelle Nationale de Saint-Martin, Anse Marcel, 97150 Saint-Martin, France
| | - Sébastien Gréaux
- Agence Territoriale de l'Environnement de Saint-Barthélemy, Rue de la République, Gustavia 97133, Saint-Barthélemy, France
| | - Simone Mège
- Parc National de la Guadeloupe, rue Jean-Jaurès, 97122 Baie-Mahault, Guadeloupe, France
| | - Julien Athanase
- Réserve Naturelle Nationale de Petite-Terre, Association Tité, Capitaineries, 97127 La Désirade, France
| | - Sébastien Cordonnier
- Université des Antilles, UMR BOREA, B.P. 592, Pointe-à-Pitre 97159, Guadeloupe, France
| | - Marie-Laure Rouget
- UMS 3113, Univ Brest, IUEM, rue Dumont d'Urville, 29280 Plouzané, France
| | - Elise Lorre
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Thomas Uboldi
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Olivier Monnier
- Office français de la biodiversité, 5 Square Félix Nadar, 94300 Vincennes, France
| | - Claire Hellio
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| |
Collapse
|
9
|
Mylona Z, Panteris E, Moustakas M, Kevrekidis T, Malea P. Physiological, structural and ultrastructural impacts of silver nanoparticles on the seagrass Cymodocea nodosa. CHEMOSPHERE 2020; 248:126066. [PMID: 32050317 DOI: 10.1016/j.chemosphere.2020.126066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) are an emerging contaminant, currently considered to be a significant potential risk to the coastal environment. To further test potential risk, and to determine effect concentrations and sensitive response parameters, toxic effects of environmentally relevant AgNP concentrations on the seagrass Cymodocea nodosa were evaluated. Alterations of the cytoskeleton, endoplasmic reticulum, ultrastructure, photosystem II function, oxidative stress markers, cell viability, and leaf, rhizome and root elongation in C. nodosa exposed to AgNP concentrations (0.0002-0.2 mg L-1) under laboratory conditions for 8 days were examined. An increase in H2O2 level, indicating oxidative stress, occurred after the 4th day even at 0.0002 mg L-1. Increased antioxidant enzyme activity, potentially contributing to H2O2 level decline at the end of the experiment, and reduced protein content were also observed. Actin filaments started to diminish on the 6th day at 0.02 mg L-1; microtubule, endoplasmic reticulum, chloroplast and mitochondrion disturbance appeared after 8 days at 0.02 mg L-1, while toxic effects were generally more acute at 0.2 mg L-1. A dose-dependent leaf elongation inhibition was also observed; as for juvenile leaves, toxicity index increased from 2.8 to 40.7% with concentration. Hydrogen peroxide (H2O2) overproduction and actin filament disruption appeared to be the most sensitive response parameters, and thus could be utilized as early warning indicators of risk to seagrass meadows. A risk quotient of 1.33 was calculated, confirming previous findings, that AgNPs may pose a significant risk to the coastal environment.
Collapse
Affiliation(s)
- Zoi Mylona
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Theodoros Kevrekidis
- Laboratory of Environmental Research and Education, Democritus University of Thrace, Nea Hili, GR-68100, Alexandroupolis, Greece
| | - Paraskevi Malea
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| |
Collapse
|
10
|
A perspective on the potential of using marine organic fertilizers for the sustainable management of coastal ecosystem services. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42398-020-00097-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
AbstractAgricultural production is predicted to double during the next century. To ensure food security in response to global population growth is a challenge and will require strategies that mitigate associated environmental damage in ways consistent with United Nation’s Sustainable Development Goals. One possible approach is to utilize organic fertilizers from marine sources to improve soil structure by enhancing activities of soil organisms and restoring essential plant nutrients to the soil. Here we identify opportunities to develop organic fertilizers from two types of materials of marine origin: seagrass wrack and jellyfish biomass. Seagrass wrack often occurs as undesirable waste material on beaches. In many coastal areas around the world jellyfish bloom presents a nuisance because of negative impacts on marine ecosystem productivity. Several investigations have reported that organic fertilizers produced from seagrass and jellyfish could enhance coastal ecosystem services by reducing pollution, and by improving soil health and quality. Recent research indicates that seagrass litter improves soil water holding capacity and the nutritional value of crops; moreover, it can be used as multi-functional fertilizer, due to its content of valuable macro- and microelements. The application of jellyfish fertilizer increases soil contents of organic matter, nitrogen, phosphorus and potassium and enhances the growth and survival of seedlings significantly. In this overview we describe novel approaches regarding the utilization of seagrass and jellyfish as sources of fertilizer, and experimental studies on the influences of marine organic fertilizers on soil restoration, and implications for coastal management.
Collapse
|
11
|
Zakhama-Sraieb R, Zribi I, Mnasri I, Charfi-Cheikhrouha F. A comparative study of trace elements in Cymodocea nodosa from three semi-enclosed coastal areas in Tunisia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10000-10012. [PMID: 30746622 DOI: 10.1007/s11356-019-04428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
The present study quantifies the levels of five trace elements (TEs) Zn, Cu, Ni, Pb, and Cd in the leaves and rhizomes of Cymodocea nodosa as well as the surficial sediments from three semi-enclosed coastal areas in Tunisia, in the south Mediterranean Sea. Samples were taken from the Bizerte and Ghar El Melh lagoons and from marina Cap Monastir. The TE ranking was found to be Zn > Cu > Pb > Ni > Cd in sediments and Zn > Cu = Ni = Pb = Cd in C. nodosa leaves and rhizomes. Except for Ni, levels of Zn, Cu, Pb, and Cd significantly differed between the sites. Translocation factors (TFs) were > 1 for all trace elements proving the high capacity of C. nodosa to accumulate TEs in its above-ground tissues. Results show that marina Cap Monastir's meadow exhibits higher TFs than the Bizerte and Ghar El Melh lagoons. This can be due to the presence of the non-indigenous species Halophila stipulacea. The present study highlights the need for further investigation on the effect of interspecific interaction on TE uptake by seagrasses.
Collapse
Affiliation(s)
- Rym Zakhama-Sraieb
- Faculty of Sciences of Tunis, Faculty of Sciences of Tunis, Laboratory of Diversity, Management and Conservation of Biological Systems, LR18ES06, University of Tunis El Manar, 2092, Tunis, Tunisia.
- High Institute of Biotechnology of Sidi Thabet, University of Manouba, BiotechPôle, BP-66, 2020, Sidi Thabet, Ariana, Tunisia.
| | - Imen Zribi
- Faculty of Sciences of Tunis, Faculty of Sciences of Tunis, Laboratory of Diversity, Management and Conservation of Biological Systems, LR18ES06, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Intissar Mnasri
- Faculty of Sciences of Tunis, Faculty of Sciences of Tunis, Laboratory of Diversity, Management and Conservation of Biological Systems, LR18ES06, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Faouzia Charfi-Cheikhrouha
- Faculty of Sciences of Tunis, Faculty of Sciences of Tunis, Laboratory of Diversity, Management and Conservation of Biological Systems, LR18ES06, University of Tunis El Manar, 2092, Tunis, Tunisia
| |
Collapse
|
12
|
Papathanasiou V, Orfanidis S. Anthropogenic eutrophication affects the body size of Cymodocea nodosa in the North Aegean Sea: A long-term, scale-based approach. MARINE POLLUTION BULLETIN 2018; 134:38-48. [PMID: 29224888 DOI: 10.1016/j.marpolbul.2017.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 11/22/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
The variation of eleven Cymodocea nodosa metrics was studied along two anthropogenic gradients in the North Aegean Sea, in two separate periods (July 2004 and July 2013). The aim was to specify existing monitoring programs on different kind of human-induced or natural stress for a better decision-making support. Key water variables (N-NO2, N-NO3, N-NH4, P-PO4, Chl-a, attenuation coefficient-K, and suspended solids) along with the stress index MALUSI were also estimated in each sampling effort. All metrics (except one) showed significant differences (p<0.05) and highest variation at the meadows scale in both sampling periods. The body size, e.g., CymoSkew, total and maximum leaf length, and leaf area (cm2/shoot), rather than the abundance, e.g., shoot density (shoots/m2), leaf area index (m2/m2), metrics were related to anthropogenic eutrophication variables represented by N-NH4, N-NO3, N/P and MALUSI. The temporal analysis was restricted to two (2) meadows and water variables that were common between the two periods. PERMANOVA and PCA of common meadows and metrics within nine years showed significant but not consistent differences. While the most impacted studied site of Viamyl remained unchanged, a significant improvement of water quality was observed in the second most impacted meadow of Nea Karvali, which however was reduced to half of its previous area. On the one hand that was the result of combined management practices in nearby aquacultures and lower industrial activities due to the economic crisis. On the contrary, dredging and excess siltation from changes in land catchments and construction of permanent structures may decrease seagrass abundance.
Collapse
Affiliation(s)
- Vasileios Papathanasiou
- Fisheries Research Institute, Hellenic Agricultural Organization "DEMETER", 64007, Nea Peramos, Kavala, Greece.
| | - Sotiris Orfanidis
- Fisheries Research Institute, Hellenic Agricultural Organization "DEMETER", 64007, Nea Peramos, Kavala, Greece
| |
Collapse
|
13
|
Bonanno G, Raccuia SA. Seagrass Halophila stipulacea: Capacity of accumulation and biomonitoring of trace elements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:257-263. [PMID: 29574369 DOI: 10.1016/j.scitotenv.2018.03.196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/17/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to shed further light on the capacity of the seagrass Halophila stipulacea to accumulate and biomonitor the elements As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn, present in water and sediments. Results showed that the organs of H. stipulacea accumulate different levels of trace elements, whose concentrations decrease mainly in the order of roots>rhizomes>leaves. The seagrass H. stipulacea showed levels of trace elements similar to those found in other Mediterranean seagrasses, e.g. Posidonia oceanica and Cymodocea nodosa. This study showed that H. stipulacea could act as a promising bioindicator of several elements, present in sediments, including As, Cd, Cu, Mn, Ni and Zn.
Collapse
Affiliation(s)
- Giuseppe Bonanno
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Antonino Longo 19, 95125 Catania, Italy.
| | - Salvatore Antonino Raccuia
- National Research Council (CNR), Institute of the Mediterranean Agricultural and Forest Systems, Via Empedocle 58, 95128 Catania, Italy
| |
Collapse
|
14
|
Bonanno G, Raccuia SA. Comparative assessment of trace element accumulation and bioindication in seagrasses Posidonia oceanica, Cymodocea nodosa and Halophila stipulacea. MARINE POLLUTION BULLETIN 2018; 131:260-266. [PMID: 29886946 DOI: 10.1016/j.marpolbul.2018.04.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
Accumulation and bioindication of trace elements were compared in three seagrasses growing in the Mediterranean Sea: Posidonia oceanica, Cymodocea nodosa and Halophila stipulacea. The levels of the elements As, Cd, Cr, Cu, Hg, Mn, Ni, Pb and Zn were investigated in water, sediments, and roots, rhizomes and leaves of seagrasses. Results showed that seagrasses can accumulate comparable levels of trace elements, but P. oceanica and C. nodosa showed higher mean values of element accumulation. Moreover, P. oceanica and C. nodosa may accumulate high element concentrations in their leaves, whereas in H. stipulacea restricted with the bulk of trace elements in roots and rhizomes. Seagrasses reflected to a different degree the levels of several trace elements in sediments, especially P. oceanica and C. nodosa, whose use as bioindicators is recommended. The future step for an effective use of seagrasses as bioindicators of marine pollution is to set up biomonitoring networks on a large scale.
Collapse
Affiliation(s)
- Giuseppe Bonanno
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Antonino Longo 19, 95125 Catania, Italy.
| | - Salvatore Antonino Raccuia
- National Research Council (CNR), Institute of the Mediterranean Agricultural and Forest Systems, Via Empedocle 58, 95128 Catania, Italy
| |
Collapse
|
15
|
Pitacco V, Lipej L, Mavrič B, Mistri M, Munari C. Comparison of benthic indices for the evaluation of ecological status of three Slovenian transitional water bodies (northern Adriatic). MARINE POLLUTION BULLETIN 2018; 129:813-821. [PMID: 29100635 DOI: 10.1016/j.marpolbul.2017.10.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/15/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Benthic indicators are important tools for the classification of coastal and transitional water bodies. The aim of the work was to assess for the first time the Environmental Status (ES) of Slovenian transitional waters, comparing the following biotic indices: richness, Shannon-Weaver diversity, AMBI, M-AMBI, BENTIX and BITS indices. A total of 13 stations were sampled with a Van Veen grab, in three ecosystems in the northern Adriatic. Samples were sieved and sorted, invertebrates identified and counted. The anthropogenic impact was estimated with professional judgement. Richness and diversity showed a good response to anthropogenic pressure. Conversely, indices based on sensitivity/tolerance groups did not showed a clear distinction between more and less impacted ecosystems. In particular BENTIX underestimated the ES, while with BITS there was a overestimation. The best evaluation was obtained with M-AMBI, because even if based on a sensitivity/tolerance approach, it considered also the structural aspect of the community.
Collapse
Affiliation(s)
- Valentina Pitacco
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Lovrenc Lipej
- Marine Biology Station, National Institute of Biology, Fornače 61, 6630 Piran, Slovenia
| | - Borut Mavrič
- Marine Biology Station, National Institute of Biology, Fornače 61, 6630 Piran, Slovenia
| | - Michele Mistri
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy.
| | - Cristina Munari
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| |
Collapse
|
16
|
Bonanno G, Borg JA. Comparative analysis of trace element accumulation in seagrasses Posidonia oceanica and Cymodocea nodosa: Biomonitoring applications and legislative issues. MARINE POLLUTION BULLETIN 2018; 128:24-31. [PMID: 29571369 DOI: 10.1016/j.marpolbul.2018.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/19/2017] [Accepted: 01/06/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to compare the bioaccumulation patterns and translocation of trace elements (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) from the environment in the seagrasses Posidonia oceanica and Cymodocea nodosa. Results showed that P. oceanica has a higher capacity of accumulation. P. oceanica and C. nodosa accumulate mainly in roots and leaves, the main organs acting as potential bioindicators. No significant correlation was found between water and both seagrasses. In turn, P. oceanica and C. nodosa were correlated, to a different extent, with As, Cd, Cu, Ni and Zn in sediments. This study showed also that current European regulations do not provide an exhaustive set of legal concentration limits of trace elements in marine water and sediments. Seagrasses P. oceanica and C. nodosa can act as effective bioindicators of trace elements only if quality limits are set for the most toxic elements present in marine ecosystems.
Collapse
Affiliation(s)
- Giuseppe Bonanno
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Antonino Longo 19, 95125 Catania, Italy.
| | - Joseph A Borg
- Department of Biology, Faculty of Science, University of Malta, Malta
| |
Collapse
|