1
|
Ross PM, Pine C, Scanes E, Byrne M, O’Connor WA, Gibbs M, Parker LM. Meta-analyses reveal climate change impacts on an ecologically and economically significant oyster in Australia. iScience 2024; 27:110673. [PMID: 39758984 PMCID: PMC11699282 DOI: 10.1016/j.isci.2024.110673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/24/2024] [Accepted: 08/01/2024] [Indexed: 01/07/2025] Open
Abstract
Global oceans are warming and acidifying because of increasing greenhouse gas emissions that are anticipated to have cascading impacts on marine ecosystems and organisms, especially those essential for biodiversity and food security. Despite this concern, there remains some skepticism about the reproducibility and reliability of research done to predict future climate change impacts on marine organisms. Here, we present meta-analyses of over two decades of research on the climate change impacts on an ecologically and economically valuable Sydney rock oyster, Saccostrea glomerata. We confirm with high confidence that ocean acidification (OA) has a significant impact on the size and mortality of offspring of S. glomerata, ocean warming (OW) impacts size, and transgenerational exposure of adults to OA has positive benefits for offspring. These meta-analyses reveal gaps in understanding of OW and transgenerational plasticity on an ecologically and economically significant oyster species to ensure sustainability of this iconic oyster in Australia.
Collapse
Affiliation(s)
- Pauline M. Ross
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW 2006, Australia
| | - Christopher Pine
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW 2006, Australia
| | - Elliot Scanes
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW 2006, Australia
- Climate Change Cluster, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW 2006, Australia
| | - Wayne A. O’Connor
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia
| | - Mitchell Gibbs
- School of Geosciences, The University of Sydney, Camperdown, Sydney, NSW 2006, Australia
| | - Laura M. Parker
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia
- School of Biological, Earth and Environmental Sciences, The University of New South Wales, Kensington, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Parker LM, Scanes E, O'Connor WA, Dove M, Elizur A, Pörtner HO, Ross PM. Resilience against the impacts of climate change in an ecologically and economically significant native oyster. MARINE POLLUTION BULLETIN 2024; 198:115788. [PMID: 38056289 DOI: 10.1016/j.marpolbul.2023.115788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023]
Abstract
Climate change is acidifying and warming our oceans, at an unprecedented rate posing a challenge for marine invertebrates vital across the globe for ecological services and food security. Here we show it is possible for resilience to climate change in an ecologically and economically significant oyster without detrimental effects to the energy budget. We exposed 24 pair-mated genetically distinct families of the Sydney rock oyster, Saccostrea glomerata to ocean acidification and warming for 4w and measured their resilience. Resilience was identified as the capacity to defend their acid-base balance without a loss of energy available for Scope for Growth (SFG). Of the 24 families, 13 were better able to defend their acid-base balance while eight had no loss of energy availability with a positive SFG. This study has found oyster families with reslience against climate change without a loss of SFG, is an essential mitigation strategy, in a critical mollusc.
Collapse
Affiliation(s)
- Laura M Parker
- School of Biological, Earth and Environmental Sciences, The University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Elliot Scanes
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia; Climate Change Cluster, University of Technology, Ultimo, Sydney, New South Wales 2007, Australia
| | - Wayne A O'Connor
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, New South Wales 2316, Australia
| | - Michael Dove
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, New South Wales 2316, Australia
| | - Abigail Elizur
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Hans-Otto Pörtner
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven 27570, Germany
| | - Pauline M Ross
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
3
|
Jiang W, Fang J, Rastrick SPS, Samuelsen OB, Liang B, Mao Y, Strand Ø, Fang J, Jiang Z. CO 2-Induced Ocean Acidification Alters the Burrowing Behavior of Manila Clam Ruditapes philippinarum by Reversing GABA A Receptor Function. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37276348 DOI: 10.1021/acs.est.3c00707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biological burrowing behavior is an important driver shaping ecosystems that is being threatened by CO2-induced ocean acidification; however, the effects of ocean acidification on burrowing behavior and its neurological mechanism remain unclear. This study showed that elevated pCO2 significantly affected the burrowing behaviors of the Manila clam Ruditapes philippinarum, such as increased foot contraction, burrowing time, and intrabottom movement and decreased burrowing depth. Delving deeper into the mechanism, exposure to elevated pCO2 significantly decreased extracellular pH and increased [HCO3-]. Moreover, an indicator GABAA receptor, a neuroinhibitor for movement, was found to be closely associated with behavioral changes. In situ hybridization confirmed that the GABAA receptor was widely distributed in ganglia and foot muscles, and elevated pCO2 significantly increased the mRNA level and GABA concentration. However, the increase in GABAA receptor and its ligand did not suppress the foot movement, but rather sent "excitatory" signals for foot contraction. The destabilization of acid-base homeostasis was demonstrated to induce an increase in the reversal potential for GABAA receptor and an alteration in GABAA receptor function under elevated pCO2. This study revealed that elevated pCO2 affects the burrowing behavior of Manila clams by altering GABAA receptor function from inhibitory to excitatory.
Collapse
Affiliation(s)
- Weiwei Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jinghui Fang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | | | - Ole B Samuelsen
- Institute of Marine Research, Nordnes, Bergen NO-5817 1870, Norway
| | - Bo Liang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yuze Mao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | - Øivind Strand
- Institute of Marine Research, Nordnes, Bergen NO-5817 1870, Norway
| | - Jianguang Fang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | - Zengjie Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, China
| |
Collapse
|
4
|
Leung JYS, Zhang S, Connell SD. Is Ocean Acidification Really a Threat to Marine Calcifiers? A Systematic Review and Meta-Analysis of 980+ Studies Spanning Two Decades. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107407. [PMID: 35934837 DOI: 10.1002/smll.202107407] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Ocean acidification is considered detrimental to marine calcifiers, but mounting contradictory evidence suggests a need to revisit this concept. This systematic review and meta-analysis aim to critically re-evaluate the prevailing paradigm of negative effects of ocean acidification on calcifiers. Based on 5153 observations from 985 studies, many calcifiers (e.g., echinoderms, crustaceans, and cephalopods) are found to be tolerant to near-future ocean acidification (pH ≈ 7.8 by the year 2100), but coccolithophores, calcifying algae, and corals appear to be sensitive. Calcifiers are generally more sensitive at the larval stage than adult stage. Over 70% of the observations in growth and calcification are non-negative, implying the acclimation capacity of many calcifiers to ocean acidification. This capacity can be mediated by phenotypic plasticity (e.g., physiological, mineralogical, structural, and molecular adjustments), transgenerational plasticity, increased food availability, or species interactions. The results suggest that the impacts of ocean acidification on calcifiers are less deleterious than initially thought as their adaptability has been underestimated. Therefore, in the forthcoming era of ocean acidification research, it is advocated that studying how marine organisms persist is as important as studying how they perish, and that future hypotheses and experimental designs are not constrained within the paradigm of negative effects.
Collapse
Affiliation(s)
- Jonathan Y S Leung
- Faculty of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Sam Zhang
- Faculty of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Sean D Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
5
|
Scanes E, Parker LM, Seymour JR, Siboni N, King WL, Wegner KM, Dove MC, O'Connor WA, Ross PM. Microbiome response differs among selected lines of Sydney rock oysters to ocean warming and acidification. FEMS Microbiol Ecol 2021; 97:6311813. [PMID: 34190992 DOI: 10.1093/femsec/fiab099] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Oyster microbiomes are integral to healthy function and can be altered by climate change conditions. Genetic variation among oysters is known to influence the response of oysters to climate change and may ameliorate any adverse effects on oyster microbiome; however, this remains unstudied. Nine full-sibling selected breeding lines of the Sydney rock oyster (Saccostrea glomerata) were exposed to predicted warming (ambient = 24°C, elevated = 28°C) and ocean acidification (ambient pCO2 = 400, elevated pCO2 = 1000 µatm) for 4 weeks. The haemolymph bacterial microbiome was characterized using 16S rRNA (V3-V4) gene sequencing and varied among oyster lines in the control (ambient pCO2, 24°C) treatment. Microbiomes were also altered by climate change dependent on oyster lines. Bacterial α-diversity increased in response to elevated pCO2 in two selected lines, while bacterial β-diversity was significantly altered by combinations of elevated pCO2 and temperature in four selected lines. Climate change treatments caused shifts in the abundance of multiple amplicon sequence variants driving change in the microbiome of some selected lines. We show that oyster genetic background may influence the Sydney rock oyster haemolymph microbiome under climate change and that future assisted evolution breeding programs to enhance resilience should consider the oyster microbiome.
Collapse
Affiliation(s)
- Elliot Scanes
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.,The University of Sydney, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - Laura M Parker
- The University of New South Wales, School of Biological, Earth and Environmental Sciences, Kensington, New South Wales 2052, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - William L King
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.,Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - K Mathias Wegner
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Coastal Ecology, Wadden Sea Station Sylt, List 25992, Germany
| | - Michael C Dove
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, New South Wales 2316, Australia
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, New South Wales 2316, Australia
| | - Pauline M Ross
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| |
Collapse
|
6
|
Matoo OB, Lannig G, Bock C, Sokolova IM. Temperature but not ocean acidification affects energy metabolism and enzyme activities in the blue mussel, Mytilus edulis. Ecol Evol 2021; 11:3366-3379. [PMID: 33841790 PMCID: PMC8019023 DOI: 10.1002/ece3.7289] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/29/2022] Open
Abstract
In mosaic marine habitats, such as intertidal zones, ocean acidification (OA) is exacerbated by high variability of pH, temperature, and biological CO2 production. The nonlinear interactions among these drivers can be context-specific and their effect on organisms in these habitats remains largely unknown, warranting further investigation.We were particularly interested in Mytilus edulis (the blue mussel) from intertidal zones of the Gulf of Maine (GOM), USA, for this study. GOM is a hot spot of global climate change (average sea surface temperature (SST) increasing by >0.2°C/year) with >60% decline in mussel population over the past 40 years.Here, we utilize bioenergetic underpinnings to identify limits of stress tolerance in M. edulis from GOM exposed to warming and OA. We have measured whole-organism oxygen consumption rates and metabolic biomarkers in mussels exposed to control and elevated temperatures (10 vs. 15°C, respectively) and current and moderately elevated P CO2 levels (~400 vs. 800 µatm, respectively).Our study demonstrates that adult M. edulis from GOM are metabolically resilient to the moderate OA scenario but responsive to warming as seen in changes in metabolic rate, energy reserves (total lipids), metabolite profiles (glucose and osmolyte dimethyl amine), and enzyme activities (carbonic anhydrase and calcium ATPase).Our results are in agreement with recent literature that OA scenarios for the next 100-300 years do not affect this species, possibly as a consequence of maintaining its in vivo acid-base balance.
Collapse
Affiliation(s)
- Omera B. Matoo
- School of Biological SciencesUniversity of Nebraska‐LincolnLincolnNEUSA
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| | - Gisela Lannig
- Helmholtz Centre for Polar and Marine ResearchAlfred Wegener InstituteBremerhavenGermany
| | - Christian Bock
- Helmholtz Centre for Polar and Marine ResearchAlfred Wegener InstituteBremerhavenGermany
| | - Inna M. Sokolova
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
- Department of Marine BiologyInstitute of Biological SciencesUniversität RostockRostockGermany
| |
Collapse
|
7
|
Intracellular pH regulation in mantle epithelial cells of the Pacific oyster, Crassostrea gigas. J Comp Physiol B 2020; 190:691-700. [PMID: 32816118 PMCID: PMC7520413 DOI: 10.1007/s00360-020-01303-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 07/31/2020] [Accepted: 08/09/2020] [Indexed: 12/26/2022]
Abstract
Shell formation and repair occurs under the control of mantle epithelial cells in bivalve molluscs. However, limited information is available on the precise acid–base regulatory machinery present within these cells, which are fundamental to calcification. Here, we isolate mantle epithelial cells from the Pacific oyster, Crassostrea gigas and utilise live cell imaging in combination with the fluorescent dye, BCECF-AM to study intracellular pH (pHi) regulation. To elucidate the involvement of various ion transport mechanisms, modified seawater solutions (low sodium, low bicarbonate) and specific inhibitors for acid–base proteins were used. Diminished pH recovery in the absence of Na+ and under inhibition of sodium/hydrogen exchangers (NHEs) implicate the involvement of a sodium dependent cellular proton extrusion mechanism. In addition, pH recovery was reduced under inhibition of carbonic anhydrases. These data provide the foundation for a better understanding of acid–base regulation underlying the physiology of calcification in bivalves.
Collapse
|
8
|
Single and combined effects of the "Deadly trio" hypoxia, hypercapnia and warming on the cellular metabolism of the great scallop Pecten maximus. Comp Biochem Physiol B Biochem Mol Biol 2020; 243-244:110438. [PMID: 32251734 DOI: 10.1016/j.cbpb.2020.110438] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/20/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
In the ocean the main climate drivers affecting marine organisms are warming, hypercapnia, and hypoxia. We investigated the acute effects of warming (W), warming plus hypercapnia (WHc, ~1800 μatm CO2), warming plus hypoxia (WHo, ~12.1 kPa O2), and a combined exposure of all three drivers (Deadly Trio, DT) on king scallops (Pecten maximus). All exposures started at 14 °C and temperature was increased by 2 °C once every 48 h until the lethal temperature was reached (28 °C). Gill samples were taken at 14 °C, 18 °C, 22 °C, and 26 °C and analyzed for their metabolic response by 1H-nuclear magnetic resonance (NMR) spectroscopy. Scallops were most tolerant to WHc and most susceptible to oxygen reduction (WHo and DT). In particular under DT, scallops' mitochondrial energy metabolism was affected. Changes became apparent at 22 °C and 26 °C involving significant accumulation of glycogenic amino acids (e.g. glycine and valine) and anaerobic end-products (e.g. acetic acid and succinate). In line with these observations the LT50 was lower under the exposure to DT (22.5 °C) than to W alone (~ 25 °C) indicating a narrowing of the thermal niche due to an imbalance between oxygen demand and supply.
Collapse
|
9
|
Schwaner C, Barbosa M, Connors P, Park TJ, de Silva D, Griffith A, Gobler CJ, Pales Espinosa E, Allam B. Experimental acidification increases susceptibility of Mercenaria mercenaria to infection by Vibrio species. MARINE ENVIRONMENTAL RESEARCH 2020; 154:104872. [PMID: 32056698 DOI: 10.1016/j.marenvres.2019.104872] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Ocean acidification alters seawater carbonate chemistry, which can have detrimental impacts for calcifying organisms such as bivalves. This study investigated the physiological cost of resilience to acidification in Mercenaria mercenaria, with a focus on overall immune performance following exposure to Vibrio spp. Larval and juvenile clams reared in seawater with high pCO2 (~1200 ppm) displayed an enhanced susceptibility to bacterial pathogens. Higher susceptibility to infection in clams grown under acidified conditions was derived from a lower immunity to infection more so than an increase in growth of bacteria under high pCO2. A reciprocal transplant of juvenile clams demonstrated the highest mortality amongst animals transplanted from low pCO2/high pH to high pCO2/low pH conditions and then exposed to bacterial pathogens. Collectively, these results suggest that increased pCO2 will result in immunocompromised larvae and juveniles, which could have complex and pernicious effects on hard clam populations.
Collapse
Affiliation(s)
- Caroline Schwaner
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA.
| | - Michelle Barbosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA.
| | - Peter Connors
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA.
| | - Tae-Jin Park
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA.
| | - Darren de Silva
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, USA.
| | - Andrew Griffith
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, USA.
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, USA.
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA.
| |
Collapse
|