1
|
Verzola D, Rumeo N, Alberti S, Loiacono F, La Maestra S, Passalacqua M, Artini C, Russo E, Verrina E, Angeletti A, Matarese S, Mancianti N, Cravedi P, Gentile M, Viazzi F, Esposito P, La Porta E. Coexposure to microplastic and Bisphenol A exhacerbates damage to human kidney proximal tubular cells. Heliyon 2024; 10:e39426. [PMID: 39498083 PMCID: PMC11532844 DOI: 10.1016/j.heliyon.2024.e39426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024] Open
Abstract
Microplastics (MPs) accumulate in tissues, including kidney tissue, while Bisphenol A (BPA) is a plasticizer of particular concern. At present, the combined effects of MPs and BPA are unexplored in human renal cells. Therefore, we exposed a proximal tubular cell line (PTECs) to polyethylene (PE)-MPs and BPA, both separately and in combination. When co-exposed, cells showed a significantly reduced cell viability (MTT test) and a pronounced pro-oxidant (MDA levels, NRF2 and NOX4 expression by Western blot) and pro-inflammatory response (IL1β, CCL/CCR2 and CCL/CCR5 mRNAs by RT-PCR), compared to those treated with a single compound. In addition, heat shock protein (HSP90), a chaperone involved in multiple cellular functions, was reduced (by Western Blot and immunocytochemistry), while aryl hydrocarbon receptor (AHR) expression, a transcription factor which binds environmental ligands, was increased (RT-PCR and immunofluorescence). Our research can contribute to the study of the nephrotoxic effects of pollutants and MPs and shed new light on the combined effects of BPA and PE-MPs.
Collapse
Affiliation(s)
- Daniela Verzola
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| | - Noemi Rumeo
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Alberti
- DCCI, Department of Chemistry and Industrial Chemistry, University of Genoa, Italy
| | - Fabrizio Loiacono
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Mario Passalacqua
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Cristina Artini
- DCCI, Department of Chemistry and Industrial Chemistry, University of Genoa, Italy
- Institute of Condensed Matter Chemistry and Technologies for Energy, National Research Council, CNR-ICMATE, Genoa, Italy
| | - Elisa Russo
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Enrico Verrina
- UOC Nephrology IRCCS Istituto Giannina Gaslini, Genoa, Italy
- UOSD Dialysis IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Angeletti
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- UOC Nephrology IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Simona Matarese
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Nicoletta Mancianti
- Department of Emergency-Urgency and Transplantation, Nephrology, Dialysis and Transplantation Unit, University Hospital of Siena, Siena, Italy
| | - Paolo Cravedi
- Division of Nephrology, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Micaela Gentile
- Division of Nephrology, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- UO Nefrologia, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Francesca Viazzi
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Pasquale Esposito
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Edoardo La Porta
- UOC Nephrology IRCCS Istituto Giannina Gaslini, Genoa, Italy
- UOSD Dialysis IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
2
|
Uaciquete D, Mitsunaga K, Aoyama K, Kitajima K, Chiba T, Jamal DL, Jiang JJ, Horie Y. Microplastic abundance in the semi-enclosed Osaka Bay, Japan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34444-x. [PMID: 39078549 DOI: 10.1007/s11356-024-34444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Anthropogenic particles in sea surface water of the semi-enclosed Osaka Bay were identified using stereomicroscopy, classified according to polymer type using Fourier-transform infrared spectroscopy (FTIR), and categorized according to their physical characteristics. A total of 565.1 particles were detected in the water samples. However, plastic particles accounted for only 22.4% of the particles. Microplastic abundance in Osaka Bay showed seasonal variance from 8.9 ± 1.4 (in May) to 22.8 ± 6.5 particles/L (in July), which is consistent with previous reports in other semi-enclosed bays. Microplastics were mainly fragmented and fiber shaped, with gray and colorless/white coloration. The dominant polymer types were polypropylene, poly(methylmethacrylate), polyester, polyethylene, and polyethylene terephthalate. Generally, there were considerably higher abundances of microplastics at offshore sites compared with nearshore sites. The results of this study suggest that local river effluents and marine-related activities are probable sources of microplastics in Osaka Bay.
Collapse
Affiliation(s)
- Dorcas Uaciquete
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-Machi, Higashinada-Ku, Kobe, 658-0022, Japan
| | - Kensuke Mitsunaga
- Faculty of Maritime Science, Kobe University, Fukaeminami-Machi, Higashinada-Ku, Kobe, 658-0022, Japan
| | - Katsumi Aoyama
- Faculty of Maritime Science, Kobe University, Fukaeminami-Machi, Higashinada-Ku, Kobe, 658-0022, Japan
| | - Keisuke Kitajima
- Faculty of Maritime Science, Kobe University, Fukaeminami-Machi, Higashinada-Ku, Kobe, 658-0022, Japan
| | - Takashi Chiba
- Department of Environmental and Symbiotic Science, Rakuno Gakuen University, 582, Bunkyodai Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Daud Liace Jamal
- Eduardo Mondlane University, Av. Julius Nyerere, Nr, 3453, Maputo, Mozambique
| | - Jheng-Jie Jiang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 320314, Taiwan
| | - Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-Machi, Higashinada-Ku, Kobe, 658-0022, Japan.
| |
Collapse
|
3
|
Solhaug A, Vlegels S, Eriksen GS. Atlantic salmon gill epithelial cell line ASG-10, an in vitro model for studying effects of microplastics in gills. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106946. [PMID: 38759525 DOI: 10.1016/j.aquatox.2024.106946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Microplastics are ubiquitous environmental pollutants frequently detected in aquatic environments. Here we used the Atlantic salmon epithelial gill cell line (ASG-10) to investigate the uptake and effects of polystyrene (PS) microplastic. The ASG-10 cell line has phagocytotic/endocytic capacities and can take up clear PS particles at 0.2 and 1.0 µm, while PS at 10 µm was not taken up. As a response to the uptake, the ASG-10 cells increased their lysosomal activity. Furthermore, no effects on the mitochondria were found, neither on the mitochondrial membrane potential nor the mitochondria morphology (branch length and diameter). Interestingly, even a very high concentration of PS (200 µg/ml) with all tested particle sizes had no effects on cell viability or cell cycle. The environmental toxin Benzo(a)pyrene (B(a)P), a known inducer of CYP1A, is highly hydrophobic and thus sticks to the PS particles. However, co-exposure of B(a)P and PS the particles did not increase the induction of CYP1A activity compared to B(a)P alone. Our study contributes to the understanding of the cellular effects of PS particles using a highly relevant Atlantic salmon gill epithelium in vitro model.
Collapse
Affiliation(s)
- Anita Solhaug
- Chemistry and Toxinology Research group, Norwegian Veterinary Institute, 1431 Ås, Norway.
| | - Sarah Vlegels
- Chemistry and Toxinology Research group, Norwegian Veterinary Institute, 1431 Ås, Norway
| | | |
Collapse
|
4
|
Diansyah G, Rozirwan, Rahman MA, Nugroho RY, Syakti AD. Dynamics of microplastic abundance under tidal fluctuation in Musi estuary, Indonesia. MARINE POLLUTION BULLETIN 2024; 203:116431. [PMID: 38692003 DOI: 10.1016/j.marpolbul.2024.116431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Tidal dynamics contribute to fluctuations in microplastic abundance (MPs). This is the first study to characterize MPs under the influence of tidal fluctuations in the Musi River Estuary. MPs samples were collected during flood and ebb tides at 10 research stations representing the inner, middle and outer parts of the Musi River Estuary. MPs were extracted to identify the shape, color and size. MP abundances were 467.67 ± 127.84 particles/m3 during flood tide and 723.67 ± 112.05 particles/m3 during ebb tide. The concentration of MPs in the outer zone of the estuary (ocean) was detected to be higher than in the inner zone of the estuary (river). The MPs found were dominated by black color, film shape and size 101-250 μm. A greater abundance of MPs at ebb tide than at flood tide implies that the Musi Estuary's largest source of emissions is discharge from the river.
Collapse
Affiliation(s)
- Gusti Diansyah
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir 30662, South Sumatra, Indonesia.
| | - Rozirwan
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir 30662, South Sumatra, Indonesia
| | - M Akbar Rahman
- Environmental Management Study Program, Graduate Program, Universitas Sriwijaya, Palembang 30139, South Sumatra, Indonesia
| | - Redho Yoga Nugroho
- Environmental Management Study Program, Graduate Program, Universitas Sriwijaya, Palembang 30139, South Sumatra, Indonesia
| | - Agung Dhamar Syakti
- Marine Science and Fisheries Faculty, Raja Ali Haji Maritime University, Tanjung Pinang 29100, Riau Islands, Indonesia
| |
Collapse
|
5
|
Do VM, Trinh VT, Le XTT, Nguyen DT. Evaluation of microplastic bioaccumulation capacity of mussel (Perna viridis) and surrounding environment in the North coast of Vietnam. MARINE POLLUTION BULLETIN 2024; 199:115987. [PMID: 38160603 DOI: 10.1016/j.marpolbul.2023.115987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
This study aimed to identify the presence of microplastics in green mussels (Perna viridis), surface seawater, and beach sediment on the North Coast of Vietnam. The average concentration of MPs in mussels was 3.67 ± 1.20 MPs/g wet weight and 25.05 ± 5.36 MPs/individual. Regarding surface seawater and beach sediments, the MPs concentration was found at 88.00 ± 30.88 MPs/L and 4800 ± 1776 MPs/kg dry weight, respectively. The dominant microplastics shape was fragment with the fractions ranging from 69.86 to 82.41 %. In addition, the size distribution of MPs was mostly in the range of smaller than 50 μm and 1-150 μm (34.17 % and 45.62 % in mussels; 29.65 % and 43.20 % in surface seawater and 40.22 % and 39.40 % in beach sediment, respectively). Polyethylene terephthalate was the major polymer types 49.93-58.44 % of the detected MPs. The risk assessment results based on the polymer types indicated a warning level in several sites.
Collapse
Affiliation(s)
- Van Manh Do
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Viet Nam
| | - Van Tuyen Trinh
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Viet Nam
| | - Xuan Thanh Thao Le
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Viet Nam
| | - Duy Thanh Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Viet Nam; Vietnam National Institute of Occupational Safety and Health, 99 Tran Quoc Toan Road, Hoan Kiem District, Hanoi, Viet Nam.
| |
Collapse
|
6
|
Athira TR, Aarif KM, Thomas JA, Alatawi AS, Muzaffar SB, Nefla A, Reshi OR, Jobiraj T, Thejass P. The threat of microplastics: Exploring pollution in coastal ecosystems and migratory shorebirds along the west coast of India. MARINE POLLUTION BULLETIN 2024; 198:115912. [PMID: 38113815 DOI: 10.1016/j.marpolbul.2023.115912] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
To evaluate the exposure risk and ingestion of microplastics by migratory shorebirds, which are regarded as apex predators in the coastal ecosystem, this study investigated the ubiquitous presence of microplastics in estuarine and coastal habitats and their potential to be transferred in the food chains. We analysed the presence of microplastics in water, sediment, major macroinvertebrate prey and the guano samples of ten shorebird species from ten important wintering grounds in the west coast of India. Our results revealed that water is the primary source through which microplastics disseminate into various ecosystem components. Microplastic debris in various forms were reported in all samples analysed, with microfibres being the most abundant form. While polyethylene and polypropylene were found as the major microplastic types in water, sediment, and prey samples, polystyrene was most abundant in guano samples. Microplastic transfer and impacts in this delicate ecosystem demand further investigations.
Collapse
Affiliation(s)
- T R Athira
- Department of Zoology, Government College, Madappally, Affiliated to University of Calicut, Kozhikode, 670 645, Kerala, India.
| | - K M Aarif
- Terrestrial Ecology, Centre for Environment and Marine Studies, Research & Innovation, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Jeniffer Ann Thomas
- Department of Zoology, Fatima Mata National College, Kollam, University of Kerala, 691001, India
| | - Abdulaziz S Alatawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk City, Saudi Arabia
| | - Sabir Bin Muzaffar
- Department of Biology, United Arab Emirates University, 15551, Al Ain, United Arab Emirates; Department of Science, The Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, UK
| | - Aymen Nefla
- Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar II, 2092, Tunis, Tunisia
| | - Omer R Reshi
- Sustainability, Centre for Environment and Marine Studies, Research & Innovation, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - T Jobiraj
- Department of Zoology, Govt College, Kodanchery, Kozhikode, 673580, Affiliated to University of Calicut, Kerala, India
| | - P Thejass
- Department of Zoology, Government College, Madappally, Affiliated to University of Calicut, Kozhikode, 670 645, Kerala, India
| |
Collapse
|
7
|
Bilal M, Yaqub A, Hassan HU, Akhtar S, Rafiq N, Ali Shah MI, Hussain I, Salman Khan M, Nawaz A, Manoharadas S, Rizwan Khan M, Arai T, Ríos-Escalante PDL. Microplastic Quantification in Aquatic Birds: Biomonitoring the Environmental Health of the Panjkora River Freshwater Ecosystem in Pakistan. TOXICS 2023; 11:972. [PMID: 38133373 PMCID: PMC10748139 DOI: 10.3390/toxics11120972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 12/23/2023]
Abstract
Microplastic pollution has become a global concern, with potential negative impacts on various ecosystems and wildlife species. Among these species, ducks (Anas platyrhynchos) are particularly vulnerable due to their feeding habits and proximity to aquatic environments contaminated with microplastics. The current study was designed to monitor microplastic (MP) pollutants in the freshwater ecosystem of the Panjkora River, Lower Dir, Pakistan. A total of twenty (20) duck samples were brought up for four months and 13 days on the banks of the river, with no food intake outside the river. When they reached an average weight of 2.41 ± 0.53 kg, all samples were sacrificed, dissected, and transported in an ice box to the laboratory for further analysis. After sample preparation, such as digestion with 10% potassium hydroxide (KOH), density separation, filtration, and identification, the MP content was counted. A total of 2033 MP particles were recovered from 20 ducks with a mean value of 44.6 ± 15.8 MPs/crop and 57.05 ± 18.7 MPs/gizzard. MPs detected in surface water were 31.2 ± 15.5 MPs/L. The major shape types of MPs recovered were fragments in crop (67%) and gizzard (58%) samples and fibers in surface water (56%). Other types of particles recovered were fibers, sheets, and foams. The majority of these detected MP particles were in the size range of 300-500 µm (63%) in crops, and 50-150 µm (55%) in gizzards, while in water samples the most detected particles were in the range of 150-300 µm (61%). Chemical characterization by FTIR found six types of polymers. Low-density polyethylene (LDPE) had the greatest polymer detection rate (39.2%), followed by polyvinyl chloride (PVC) (28.3%), high-density polyethylene (HDPE) (22.7%), polystyrene (6.6%), co-polymerized polypropylene (2.5%), and polypropylene homopolymer (0.7%). This study investigated the presence of microplastics in the crops and gizzards of ducks, as well as in river surface water. The results revealed the significant and pervasive occurrence of microplastics in both the avian digestive systems and the surrounding water environment. These findings highlight the potential threat of microplastic pollution to wildlife and ecosystems, emphasizing the need for further research and effective mitigation strategies to address this pressing environmental concern.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Zoology, Government College University Lahore, Lahore 54000, Pakistan; (M.B.); (A.Y.)
| | - Atif Yaqub
- Department of Zoology, Government College University Lahore, Lahore 54000, Pakistan; (M.B.); (A.Y.)
| | - Habib Ul Hassan
- Department of Zoology, University of Karachi, Karachi 75270, Pakistan
- Fisheries Development Board, Ministry of National Food Security and Research, Islamabad 44000, Pakistan
| | - Sohail Akhtar
- Department of Mathematics and Statistics, University of Haripur, Haripur 22620, Pakistan;
| | - Naseem Rafiq
- Department of Zoology, Abdul Wali Khan University, Mardan 23200, Pakistan; (N.R.); (M.S.K.)
| | | | - Ibrar Hussain
- Department of Statistics, Government College University Lahore, Lahore 54000, Pakistan
| | - Muhammad Salman Khan
- Department of Zoology, Abdul Wali Khan University, Mardan 23200, Pakistan; (N.R.); (M.S.K.)
| | - Asad Nawaz
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Takaomi Arai
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Gadong BE 1410, Brunei;
| | - Patricio De Los Ríos-Escalante
- Facultad de Recursos Naturales, Departamento de Ciencias Biológicas y Químicas, Universidad Católica de Temuco, Temuco 4780000, Chile;
| |
Collapse
|