1
|
Blondeau-Bidet E, Tine M, Gonzalez AA, Guinand B, Lorin-Nebel C. Coping with salinity extremes: Gill transcriptome profiling in the black-chinned tilapia (Sarotherodon melanotheron). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172620. [PMID: 38642748 DOI: 10.1016/j.scitotenv.2024.172620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/21/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Steeper and sometimes extreme salinity gradients increasingly affect aquatic organisms because of climate change. Hypersalinity habitats demand powerful physiological adaptive strategies. Few teleost species have the capacity to spend their whole life cycle in salinities way over seawater levels. Focusing on the multifunctional gill, we unraveled the tilapia S. melanotheron key strategies to cope with different environmental conditions, ranging from freshwater up to hypersaline habitats. De novo transcriptome assembly based on RNAseq allowed for the analysis of 40,967 annotated transcripts among samples collected in three wild populations at 0, 40 and 80 ‰. A trend analysis of the expression patterns revealed responses across the salinity gradient with different gene pathways involved. Genes linked to ion transport, pH regulation and cell surface receptor signaling were mainly upregulated in the high salinity habitat. We identified tight junction proteins that were critical in high salinity habitats and that were different from the well-known tightening junctional proteins identified and expressed in fresh water. Expression profiles also suggest a change in the vascular tone that could be linked to an osmorespiratory compromise not only in fresh water, but also in high salinity environments. A striking downregulation of genes linked to the immune system and to the heat shock response was observed suggesting an energetic trade-off between immunity and acclimation/adaptation in the hypersaline habitat. The high expression of transcripts coding for immune and heat shock response in the freshwater habitat suggests the establishment of powerful mechanisms to protect gills from environmental threats and to maintain protein integrity. Non-directional expression trends were also detected with an upregulation of genes only in the hypersaline habitat (80 ‰) or only in the marine habitat (40 ‰). Unravel physiological strategies in S. melanotheron populations will help to better understand the molecular basis of fish euryhalinity in salinity-contrasted environments.
Collapse
Affiliation(s)
| | - Mbaye Tine
- UFR of Agricultural Sciences, Aquaculture and Food Technologies (UFR S2ATA), Gaston Berger University, Saint-Louis, Senegal
| | | | - Bruno Guinand
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| | | |
Collapse
|
2
|
Milan M, Bernardini I, Bertolini C, Dalla Rovere G, Manuzzi A, Pastres R, Peruzza L, Smits M, Fabrello J, Breggion C, Sambo A, Boffo L, Gallocchio L, Carrer C, Sorrentino F, Bettiol C, Lodi GC, Semenzin E, Varagnolo M, Matozzo V, Bargelloni L, Patarnello T. Multidisciplinary long-term survey of Manila clam grown in farming sites subjected to different environmental conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160796. [PMID: 36528093 DOI: 10.1016/j.scitotenv.2022.160796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/14/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
In recent years recurrent bivalve mass mortalities considerably increased around the world, causing the collapse of natural and farmed populations. Venice Lagoon has historically represented one of the major production areas of the Manila clam Ruditapes philippinarum in Europe. However, in the last 20 years a 75 % decrease in the annual production has been experienced. While climate change and anthropogenic interventions may have played a key role in natural and farmed stocks reductions, no studies investigated at multiple levels the environmental stressors affecting farmed Manila clam to date. In this work we carried out a long-term monitoring campaign on Manila clam reared in four farming sites located at different distances from the southern Venice Lagoon inlet, integrating (meta)genomic approaches (i.e. RNA-seq; microbiota characterization), biometric measurements and chemical-physical parameters. Our study allowed to characterize the molecular mechanisms adopted by this species to cope with the different environmental conditions characterizing farming sites and to propose hypotheses to explain mortality events observed in recent years. Among the most important findings, the disruption of clam's immune response, the spread of Vibrio spp., and the up-regulation of molecular pathways involved in xenobiotic metabolism suggested major environmental stressors affecting clams farmed in sites placed close to Chioggia's inlet, where highest mortality was also observed. Overall, our study provides knowledge-based tools for managing Manila clam farming on-growing areas. In addition, the collected data is a snapshot of the time immediately before the commissioning of MoSE, a system of mobile barriers aimed at protecting Venice from high tides, and will represent a baseline for future studies on the effects of MoSE on clams farming and more in general on the ecology of the Venice Lagoon.
Collapse
Affiliation(s)
- Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy.
| | - Ilaria Bernardini
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| | - Camilla Bertolini
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via torino 155, 30170 Venezia, Italy
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| | - Alice Manuzzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| | - Roberto Pastres
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via torino 155, 30170 Venezia, Italy
| | - Luca Peruzza
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| | - Morgan Smits
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| | - Jacopo Fabrello
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Cristina Breggion
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Andrea Sambo
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | | | - Loretta Gallocchio
- Thetis s.p.a., c /o Provveditorato Interregionale OO.PP. - Ufficio Tecnico Antinquinamento Laboratorio CSMO, Via Asconio Pediano, 9, 35127 Padova, PD, Italy
| | - Claudio Carrer
- Thetis s.p.a., c /o Provveditorato Interregionale OO.PP. - Ufficio Tecnico Antinquinamento Laboratorio CSMO, Via Asconio Pediano, 9, 35127 Padova, PD, Italy
| | - Francesco Sorrentino
- Provveditorato Interregionale OO.PP. - Ufficio Tecnico Antinquinamento, San Polo 19, 30124 Venezia, Italy)
| | - Cinzia Bettiol
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via torino 155, 30170 Venezia, Italy
| | - Giulia Carolina Lodi
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via torino 155, 30170 Venezia, Italy
| | - Elena Semenzin
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via torino 155, 30170 Venezia, Italy
| | - Maurizio Varagnolo
- Societa' Agricola Kappa S. S. di Varagnolo Maurizio E. C., Chioggia, VE, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| |
Collapse
|
3
|
Link K, Shved N, Serrano N, Akgül G, Caelers A, Faass O, Mouttet F, Raabe O, D’Cotta H, Baroiller JF, Eppler E. Effects of seawater and freshwater challenges on the Gh/Igf system in the saline-tolerant blackchin tilapia (Sarotherodon melanotheron). Front Endocrinol (Lausanne) 2022; 13:976488. [PMID: 36313755 PMCID: PMC9596810 DOI: 10.3389/fendo.2022.976488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Prolactin (Prl) and growth hormone (Gh) as well as insulin-like growth factor 1 (Igf1) are involved in the physiological adaptation of fish to varying salinities. The Igfs have been also ascribed other physiological roles during development, growth, reproduction and immune regulation. However, the main emphasis in the investigation of osmoregulatory responses has been the endocrine, liver-derived Igf1 route and local regulation within the liver and osmoregulatory organs. Few studies have focused on the impact of salinity alterations on the Gh/Igf-system within the neuroendocrine and immune systems and particularly in a salinity-tolerant species, such as the blackchin tilapia Sarotherodon melanotheron. This species is tolerant to hypersalinity and saline variations, but it is confronted by severe climate changes in the Saloum inverse estuary. Here we investigated bidirectional effects of increased salinity followed by its decrease on the gene regulation of prl, gh, igf1, igf2, Gh receptor and the tumor-necrosis factor a. A mixed population of sexually mature 14-month old blackchin tilapia adapted to freshwater were first exposed to seawater for one week and then to fresh water for another week. Brain, pituitary, head kidney and spleen were excised at 4 h, 1, 2, 3 and 7 days after both exposures and revealed differential expression patterns. This investigation should give us a better understanding of the role of the Gh/Igf system within the neuroendocrine and immune organs and the impact of bidirectional saline challenges on fish osmoregulation in non-osmoregulatory organs, notably the complex orchestration of growth factors and cytokines.
Collapse
Affiliation(s)
- Karl Link
- Institute of Anatomy, University of Zurich, Zürich, Switzerland
- Institute of Evolutionary Medicine IEM, University of Zürich, Zürich, Switzerland
| | - Natallia Shved
- Institute of Anatomy, University of Zurich, Zürich, Switzerland
- Institute of Evolutionary Medicine IEM, University of Zürich, Zürich, Switzerland
| | - Nabil Serrano
- Institute of Anatomy, University of Zurich, Zürich, Switzerland
- Institute of Evolutionary Medicine IEM, University of Zürich, Zürich, Switzerland
| | - Gülfirde Akgül
- Institute of Anatomy, University of Zurich, Zürich, Switzerland
- Institute of Evolutionary Medicine IEM, University of Zürich, Zürich, Switzerland
| | - Antje Caelers
- Institute of Anatomy, University of Zurich, Zürich, Switzerland
| | - Oliver Faass
- Institute of Anatomy, University of Zurich, Zürich, Switzerland
| | | | - Oksana Raabe
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Helena D’Cotta
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Université Montpellier, Institut de Recherche pour le Développement (the French National Research Institute for Sustainable Development) (IRD), Ecole Pratique des Hautes Etudes (Practical School of Advanced Studies) (EPHE), Centre National de la Recherche Scientifique (French National Centre for Scientific Research) (CNRS), Unité Mixte de Recherche (Mixed Research Unit) (UMR) 5554, Montpellier, France
- UMR116-Institut des Sciences de l’Evolution de Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Jean-François Baroiller
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Université Montpellier, Institut de Recherche pour le Développement (the French National Research Institute for Sustainable Development) (IRD), Ecole Pratique des Hautes Etudes (Practical School of Advanced Studies) (EPHE), Centre National de la Recherche Scientifique (French National Centre for Scientific Research) (CNRS), Unité Mixte de Recherche (Mixed Research Unit) (UMR) 5554, Montpellier, France
- UMR116-Institut des Sciences de l’Evolution de Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Elisabeth Eppler
- Institute of Anatomy, University of Zurich, Zürich, Switzerland
- Institute of Evolutionary Medicine IEM, University of Zürich, Zürich, Switzerland
- Institute of Anatomy, University of Bern, Bern, Switzerland
- *Correspondence: Elisabeth Eppler,
| |
Collapse
|
4
|
Muñoz PT, Rodríguez-Rojas F, Celis-Plá PSM, Méndez L, Pinto D, Pardo D, Moenne F, Sánchez-Lizaso JL, Sáez CA. Physiological and metabolic responses to hypersalinity reveal interpopulation tolerance in the green macroalga Ulva compressa with different pollution histories. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105552. [PMID: 32615475 DOI: 10.1016/j.aquatox.2020.105552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/12/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
There is scarce investigation addressing interpopulation tolerance responses to address the influence of a history of chronic stress exposure, as that occurring in polluted environments, in photoautotrophs. We evaluated ecophysiological (photosynthetic activity) and metabolic (oxidative stress and damage) responses of two populations of green macroalga Ulva compressa from polluted (Ventanas) and non-polluted (Cachagua) localions of central Chile, and exposed to controlled hypersalinity conditions of 32 (control), 42, 62 and 82 psu (practical salinity units) for 6 h, 48 h and 6 d. Both primary production (ETRmax) and photosynthetic efficiency (αETR) were generally higher in the population from Cachagua compared to Ventanas at all times and salinities. Moreover, at most experimental times and salinities the population from Ventanas had greater levels of H2O2 and lipid peroxidation that individuals from Cachagua. Total ascorbate was higher in the population of Cachagua than Ventanas at 42 and 82 psu after 6 and 48 h, respectively, while at 6 d concentrations were similar between both populations at all salinities. Total glutathione was greater in both populations after 6 h at all salinities, but at 48 h its concentrations were higher only in the population from Cachagua, a trend that was maintained at 6 d under 82 psu only. Reduced and oxidized ascorbate (ASC and DHA, respectively) and glutathione (GSH and GSSG, respectively) demonstrated similar patterns between U. compressa populations, with an increase oxidation with greater salinities but efficient recycling to maintain sufficient batch of ASC and GSH. When assessing the expression of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and dehydroascorbate reductase (DHAR), while the population of Ventanas displayed a general trend of upregulation with increasing salinities along the experiments, U. compressa from Cachagua revealed patterns of downregulation. Results demonstrated that although both populations were still viable after the applied hypersalinities during all experimental times, biological performance was usually more affected in the population from the Ventanas than Cachagua, likely due to a depressed baseline metabolism after a long history of exposition to environmental pollution.
Collapse
Affiliation(s)
- Pamela T Muñoz
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar, Chile; Doctorado Interdisciplinario en Ciencias Ambientales, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile; Doctorado en Ciencias del Mar y Biología Aplicada, Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, Alicante, Spain; ENVIRONMENTAL HUB UPLA, Universidad de Playa Ancha, Valparaíso, Chile
| | - Fernanda Rodríguez-Rojas
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar, Chile; ENVIRONMENTAL HUB UPLA, Universidad de Playa Ancha, Valparaíso, Chile
| | - Paula S M Celis-Plá
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar, Chile; ENVIRONMENTAL HUB UPLA, Universidad de Playa Ancha, Valparaíso, Chile
| | - Lorena Méndez
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar, Chile; Carrera de Biología Marina, Facultad de Ciencias del Mar y Recursos Naturales, Universidad de Valparaíso, Viña del Mar, Chile
| | - Denise Pinto
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar, Chile; Doctorado Interdisciplinario en Ciencias Ambientales, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile; ENVIRONMENTAL HUB UPLA, Universidad de Playa Ancha, Valparaíso, Chile
| | - Diego Pardo
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar, Chile; Carrera de Ingeniería Civil Ambiental, Facultad de Ingeniería, Universidad de Playa Ancha, Valparaíso, Chile; ENVIRONMENTAL HUB UPLA, Universidad de Playa Ancha, Valparaíso, Chile
| | - Fabiola Moenne
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar, Chile; ENVIRONMENTAL HUB UPLA, Universidad de Playa Ancha, Valparaíso, Chile
| | | | - Claudio A Sáez
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar, Chile; ENVIRONMENTAL HUB UPLA, Universidad de Playa Ancha, Valparaíso, Chile.
| |
Collapse
|
5
|
Hong M, Jiang A, Li N, Li W, Shi H, Storey KB, Ding L. Comparative analysis of the liver transcriptome in the red-eared slider Trachemys scripta elegans under chronic salinity stress. PeerJ 2019; 7:e6538. [PMID: 30923649 PMCID: PMC6431541 DOI: 10.7717/peerj.6538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/29/2019] [Indexed: 01/27/2023] Open
Abstract
The red-eared slider (Trachemys scripta elegans), identified as one of the 100 most invasive species in the world, is a freshwater turtle originally from the eastern United States and northeastern Mexico. Field investigations have shown that T. s. elegans can survive and lay eggs in saline habitats. In order to understand the molecular mechanisms of salinity adaptation, high-throughput RNA-Seq was utilized to identify the changes in gene expression profiles in the liver of T. s. elegans in response to elevated salinity. We exposed individuals to 0, 5, or 15 psu (practical salinity units) for 30 days. A total of 157.21 million reads were obtained and assembled into 205138 unigenes with an average length of 620 bp and N50 of 964 bp. Of these, 1019 DEGs (differentially expressed genes) were found in the comparison of 0 vs. 5 psu, 1194 DEGs in 0 vs. 15 psu and 1180 DEGs in 5 vs. 15 psu, which are mainly related to macromolecule metabolic process, ion transport, oxidoreductase activity and generation of precursor metabolites and energy by GO (Gene Ontology) enrichment analyses. T. s. elegans can adapt itself into salinity by balancing the entry of sodium and chloride ions via the up-regulation expression genes of ion transport (potassium voltage-gated channel subfamily H member 5, KCNH5; erine/threonine-protein kinase 32, STK32; salt-inducible kinase 1, SIK1; adiponectin, ACDC), and by accumulating plasma urea and free amino acid via the up-regulation expression genes of amino acid metabolism (ornithine decarboxylase antizyme 3, OAZ3; glutamine synthetase, GLUL; asparaginase-like protein 1b, ASRGL; L-amino-acid oxidase-like, LAAO; sodium-dependent neutral amino acid transporter B, SLC6A15s; amino acid permease, SLC7A9) in response to osmotic regulation. An investment of energy to maintain their homeostatic balance is required to salinity adaptation, therefore, the genes related to energy production and conversion (F-ATPase protein 6, ATP6; cytochrome c oxidase subunit I, COX1; cytochrome c oxidase subunit III, COX3; cytochrome b, CYTb; cytochrome P450 17A1, CYP17A1) were up-regulated with the increase of gene expression associated with lipid metabolism (apolipoprotein E precursor, APoE; coenzyme Q-binding protein, CoQ10; high-density lipoprotein particle, SAA) and carbohydrate metabolism (HK, MIP). These findings improve our understanding of the underlying molecular mechanisms involved in salinity adaptation and provide general guidance to illuminate the invasion potential of T. s. elegans into saline environments.
Collapse
Affiliation(s)
- Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Aiping Jiang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Na Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Weihao Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | | | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| |
Collapse
|
6
|
Tine M. Evidence of the Complexity of Gene Expression Analysis in Fish Wild Populations. Int J Genomics 2017; 2017:1258396. [PMID: 29201893 PMCID: PMC5672613 DOI: 10.1155/2017/1258396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/24/2017] [Accepted: 09/18/2017] [Indexed: 11/17/2022] Open
Abstract
The present work examines the induction of the band 3 anion transport protein, mitogen-activated protein kinase, and lactate dehydrogenase, respectively related to osmolyte transport, cell volume regulation, and energy production in the gills of two tilapia strains exposed to either freshwater or hypersaline water. Overall, genes showed similar expression patterns between strains. However, a wild population survey across a range of natural habitats and salinities did not reveal the expected patterns. Although significant, the correlations between gene expression and salinity were slightly ambiguous and did not show any link with phenotypic differences in life history traits previously reported between the same populations. The differential expression was also not associated with the population genetic structure inferred from neutral markers. The results suggest that the differential expression observed is not the result of evolutionary forces such as genetic drift or adaptation by natural selection. Instead, it can be speculated that genes responded to various abiotic and biotic stressors, including factors intrinsic to animals. This study provides clear evidence of the complexity of gene expression analysis in wild populations and shows that more attention needs to be paid when selecting candidates as potential biomarkers for monitoring adaptive responses to a specific environmental perturbation.
Collapse
Affiliation(s)
- Mbaye Tine
- UFR des Sciences Agronomiques, de l'Aquaculture et des Technologies Alimentaires (UFR S2ATA), Universite Gaston Berger (UGB), Route de Ngallele BP 234, Saint-Louis, Senegal
| |
Collapse
|
7
|
Evaluation of potential candidate genes involved in salinity tolerance in striped catfish (Pangasianodon hypophthalmus) using an RNA-Seq approach. Mar Genomics 2015; 25:75-88. [PMID: 26653845 DOI: 10.1016/j.margen.2015.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/21/2015] [Accepted: 11/21/2015] [Indexed: 12/19/2022]
Abstract
Increasing salinity levels in freshwater and coastal environments caused by sea level rise linked to climate change is now recognized to be a major factor that can impact fish growth negatively, especially for freshwater teleost species. Striped catfish (Pangasianodon hypophthalmus) is an important freshwater teleost that is now widely farmed across the Mekong River Delta in Vietnam. Understanding the basis for tolerance and adaptation to raised environmental salinity conditions can assist the regional culture industry to mitigate predicted impacts of climate change across this region. Attempt of next generation sequencing using the ion proton platform results in more than 174 million raw reads from three tissue libraries (gill, kidney and intestine). Reads were filtered and de novo assembled using a variety of assemblers and then clustered together to generate a combined reference transcriptome. Downstream analysis resulted in a final reference transcriptome that contained 60,585 transcripts with an N50 of 683 bp. This resource was further annotated using a variety of bioinformatics databases, followed by differential gene expression analysis that resulted in 3062 transcripts that were differentially expressed in catfish samples raised under two experimental conditions (0 and 15 ppt). A number of transcripts with a potential role in salinity tolerance were then classified into six different functional gene categories based on their gene ontology assignments. These included; energy metabolism, ion transportation, detoxification, signal transduction, structural organization and detoxification. Finally, we combined the data on functional salinity tolerance genes into a hypothetical schematic model that attempted to describe potential relationships and interactions among target genes to explain the molecular pathways that control adaptive salinity responses in P. hypophthalmus. Our results indicate that P. hypophthalmus exhibit predictable plastic regulatory responses to elevated salinity by means of characteristic gene expression patterns, providing numerous candidate genes for future investigations.
Collapse
|
8
|
Leguen I, Le Cam A, Montfort J, Peron S, Fautrel A. Transcriptomic Analysis of Trout Gill Ionocytes in Fresh Water and Sea Water Using Laser Capture Microdissection Combined with Microarray Analysis. PLoS One 2015; 10:e0139938. [PMID: 26439495 PMCID: PMC4595143 DOI: 10.1371/journal.pone.0139938] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/18/2015] [Indexed: 12/22/2022] Open
Abstract
Fish gills represent a complex organ composed of several cell types that perform multiple physiological functions. Among these cells, ionocytes are implicated in the maintenance of ion homeostasis. However, because the ionocyte represents only a small percent of whole gill tissue, its specific transcriptome can be overlooked among the numerous cell types included in the gill. The objective of this study is to better understand ionocyte functions by comparing the RNA expression of this cell type in freshwater and seawater acclimated rainbow trout. To realize this objective, ionocytes were captured from gill cryosections using laser capture microdissection after immunohistochemistry. Then, transcriptome analyses were performed on an Agilent trout oligonucleotide microarray. Gene expression analysis identified 108 unique annotated genes differentially expressed between freshwater and seawater ionocytes, with a fold change higher than 3. Most of these genes were up-regulated in freshwater cells. Interestingly, several genes implicated in ion transport, extracellular matrix and structural cellular proteins appeared up-regulated in freshwater ionocytes. Among them, several ion transporters, such as CIC2, SLC26A6, and NBC, were validated by qPCR and/or in situ hybridization. The latter technique allowed us to localize the transcripts of these ion transporters in only ionocytes and more particularly in the freshwater cells. Genes involved in metabolism and also several genes implicated in transcriptional regulation, cell signaling and the cell cycle were also enhanced in freshwater ionocytes. In conclusion, laser capture microdissection combined with microarray analysis allowed for the determination of the transcriptional signature of scarce cells in fish gills, such as ionocytes, and aided characterization of the transcriptome of these cells in freshwater and seawater acclimated trout.
Collapse
Affiliation(s)
- Isabelle Leguen
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
- * E-mail:
| | - Aurélie Le Cam
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
| | | | - Sandrine Peron
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
| | - Alain Fautrel
- INSERM UMR991, Rennes, France
- Université de Rennes 1 Plateforme H2P2, Biosit, Rennes, France
| |
Collapse
|
9
|
Kavembe GD, Franchini P, Irisarri I, Machado-Schiaffino G, Meyer A. Genomics of Adaptation to Multiple Concurrent Stresses: Insights from Comparative Transcriptomics of a Cichlid Fish from One of Earth’s Most Extreme Environments, the Hypersaline Soda Lake Magadi in Kenya, East Africa. J Mol Evol 2015; 81:90-109. [DOI: 10.1007/s00239-015-9696-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/29/2015] [Indexed: 11/29/2022]
|
10
|
Ronkin D, Seroussi E, Nitzan T, Doron-Faigenboim A, Cnaani A. Intestinal transcriptome analysis revealed differential salinity adaptation between two tilapiine species. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 13:35-43. [DOI: 10.1016/j.cbd.2015.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 11/27/2022]
|
11
|
Avarre JC, Guinand B, Dugué R, Cosson J, Legendre M, Panfili J, Durand JD. Plasticity of gene expression according to salinity in the testis of broodstock and F1 black-chinned tilapia, Sarotherodon melanotheron heudelotii. PeerJ 2014; 2:e702. [PMID: 25548735 PMCID: PMC4273931 DOI: 10.7717/peerj.702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/27/2014] [Indexed: 11/20/2022] Open
Abstract
The black-chinned tilapia Sarotherodon melanotheron heudelotii Rüppell 1852 (Teleostei, Cichlidae) displays remarkable acclimation capacities. When exposed to drastic changes of salinity, which can be the case in its natural habitat, it develops quick physiological responses and keeps reproducing. The present study focused on the physiological impact of salinity on male reproductive capacities, using gene expression as a proxy of acclimation process. Two series of experimental fish were investigated: the first one was composed of fish maintained in freshwater for several generations and newly acclimated to salinities of 35 and 70, whereas the second one consisted of the descendants of the latter born and were raised under their native salinity. Expression patterns of 43 candidate genes previously identified from the testes of wild males was investigated in the three salinities and two generations. Twenty of them showed significant expression differences between salinities, and their predicted function revealed that most of them are involved in the osmotic tolerance of sperm cells and/or in the maintenance of sperm motility. A high level of expression variation was evidenced, especially for fish maintained in freshwater. In spite of this, gene expression patterns allowed the differentiation between fish raised in freshwater and those maintained in hypersaline water in both generations. Altogether, the results presented here suggest that this high variability of expression is likely to ensure the reproductive success of this species under varying salinities.
Collapse
Affiliation(s)
- Jean-Christophe Avarre
- Institut des Sciences de l'Evolution de Montpellier , UMR 226 IRD-CNRS-UM2, Montpellier , France
| | - Bruno Guinand
- Institut des Sciences de l'Evolution de Montpellier , UMR 226 IRD-CNRS-UM2, Montpellier , France
| | - Rémi Dugué
- Institut des Sciences de l'Evolution de Montpellier , UMR 226 IRD-CNRS-UM2, Montpellier , France
| | - Jacky Cosson
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice , Vodňany , Czech Republic
| | - Marc Legendre
- Institut des Sciences de l'Evolution de Montpellier , UMR 226 IRD-CNRS-UM2, Montpellier , France
| | - Jacques Panfili
- Ecologie des Systèmes Marins Côtiers , UMR 5119 IRD-UM2-CNRS-IFREMER, Montpellier , France
| | - Jean-Dominique Durand
- Ecologie des Systèmes Marins Côtiers , UMR 5119 IRD-UM2-CNRS-IFREMER, Montpellier , France
| |
Collapse
|
12
|
Thanh NM, Jung H, Lyons RE, Chand V, Tuan NV, Thu VTM, Mather P. A transcriptomic analysis of striped catfish (Pangasianodon hypophthalmus) in response to salinity adaptation: De novo assembly, gene annotation and marker discovery. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 10:52-63. [PMID: 24841517 DOI: 10.1016/j.cbd.2014.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 04/16/2014] [Accepted: 04/28/2014] [Indexed: 01/25/2023]
Abstract
The striped catfish (Pangasianodon hypophthalmus) culture industry in the Mekong Delta in Vietnam has developed rapidly over the past decade. The culture industry now however, faces some significant challenges, especially related to climate change impacts notably from predicted extensive saltwater intrusion into many low topographical coastal provinces across the Mekong Delta. This problem highlights a need for development of culture stocks that can tolerate more saline culture environments as a response to expansion of saline water-intruded land. While a traditional artificial selection program can potentially address this need, understanding the genomic basis of salinity tolerance can assist development of more productive culture lines. The current study applied a transcriptomic approach using Ion PGM technology to generate expressed sequence tag (EST) resources from the intestine and swim bladder from striped catfish reared at a salinity level of 9ppt which showed best growth performance. Total sequence data generated was 467.8Mbp, consisting of 4,116,424 reads with an average length of 112bp. De novo assembly was employed that generated 51,188 contigs, and allowed identification of 16,116 putative genes based on the GenBank non-redundant database. GO annotation, KEGG pathway mapping, and functional annotation of the EST sequences recovered with a wide diversity of biological functions and processes. In addition, more than 11,600 simple sequence repeats were also detected. This is the first comprehensive analysis of a striped catfish transcriptome, and provides a valuable genomic resource for future selective breeding programs and functional or evolutionary studies of genes that influence salinity tolerance in this important culture species.
Collapse
Affiliation(s)
- Nguyen Minh Thanh
- International University, VNU HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| | - Hyungtaek Jung
- Institute for Future Environment, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia; Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Russell E Lyons
- CSIRO Livestock Industries, Queensland Biosciences Precinct, QLD 4057, Australia.
| | - Vincent Chand
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Nguyen Viet Tuan
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Vo Thi Minh Thu
- International University, VNU HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| | - Peter Mather
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| |
Collapse
|
13
|
Norman JD, Ferguson MM, Danzmann RG. An integrated transcriptomic and comparative genomic analysis of differential gene expression in Arctic charr (Salvelinus alpinus) following seawater exposure. J Exp Biol 2014; 217:4029-42. [DOI: 10.1242/jeb.107441] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Abstract
High-throughput RNA sequencing was employed to compare expression profiles in two Arctic charr (Salvelinus alpinus) families post seawater exposure to identify genes and biological processes involved in hypo-osmoregulation and regulation of salinity tolerance. To further understand the genetic architecture of hypo-osmoregulation, the genomic organization of differentially expressed (DE) genes was also analysed. Using a de novo gill transcriptome assembly we found over 2300 contigs to be DE. Major transporters from the seawater mitochondrion-rich cell (MRC) complex were up-regulated in seawater. Expression ratios for 257 differentially expressed contigs were highly correlated between families, suggesting they are strictly regulated. Based on expression profiles and known molecular pathways we inferred that seawater exposure induced changes in methylation states and elevated peroxynitrite formation in gill. We hypothesized that concomitance between DE immune genes and the transition to a hypo-osmoregulatory state could be related to Cl- sequestration by antimicrobial defence mechanisms. Gene Ontology analysis revealed that cell division genes were up-regulated, which could reflect the proliferation of ATP1α1b-type seawater MRCs. Comparative genomics analyses suggest that hypo-osmoregulation is influenced by the relative proximities among a contingent of genes on Arctic charr linkage groups AC-4 and AC-12 that exhibit homologous affinities with a region on stickleback chromosome Ga-I. This supports the hypothesis that relative gene location along a chromosome is a property of the genetic architecture of hypo-osmoregulation. Evidence of non-random structure between hypo-osmoregulation candidate genes was found on AC-1/11 and AC-28, suggesting that interchromosomal rearrangements played a role in the evolution of hypo-osmoregulation in Arctic charr.
Collapse
|
14
|
Norman JD, Ferguson MM, Danzmann RG. Transcriptomics of salinity tolerance capacity in Arctic charr (Salvelinus alpinus): a comparison of gene expression profiles between divergent QTL genotypes. Physiol Genomics 2013; 46:123-37. [PMID: 24368751 DOI: 10.1152/physiolgenomics.00105.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Osmoregulatory capabilities have played an important role in the evolution, dispersal, and diversification of vertebrates. To better understand the genetic architecture of hypo-osmoregulation in fishes and to determine which genes and biological processes affect intraspecific variation in salinity tolerance, we used mRNA sequence libraries from Arctic charr gill tissue to compare gene expression profiles in fish exhibiting divergent salinity tolerance quantitative trait locus (QTL) genotypes. We compared differentially expressed genes with QTL positions to gain insight about the nature of the underlying polymorphisms and examined gene expression within the context of genome organization to gain insight about the evolution of hypo-osmoregulation in fishes. mRNA sequencing of 18 gill tissue libraries produced 417 million reads, and the final reduced de novo transcriptome assembly consisted of 92,543 contigs. Families contained a similar number of differentially expressed contigs between high and low salinity tolerance capacity groups, and log2 expression ratios ranged from 10.4 to -8.6. We found that intraspecific variation in salinity tolerance capacity correlated with differential expression of immune response genes. Some differentially expressed genes formed clusters along linkage groups. Most clusters comprised gene pairs, though clusters of three, four, and eight genes were also observed. We postulated that conserved synteny of gene clusters on multiple ancestral and teleost chromosomes may have been preserved via purifying selection. Colocalization of QTL with differentially expressed genes suggests that polymorphisms in cis-regulatory elements are part of a majority of QTL.
Collapse
Affiliation(s)
- Joseph D Norman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|
15
|
Avarre JC, Dugué R, Alonso P, Diombokho A, Joffrois C, Faivre N, Cochet C, Durand JD. Analysis of the black-chinned tilapia Sarotherodon melanotheron heudelotii reproducing under a wide range of salinities: from RNA-seq to candidate genes. Mol Ecol Resour 2013; 14:139-49. [PMID: 23889972 DOI: 10.1111/1755-0998.12148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/12/2013] [Accepted: 06/30/2013] [Indexed: 11/30/2022]
Abstract
The black-chinned tilapia Sarotherodon melanotheron heudelotii is an ecologically appealing model as it shows exceptional adaptive capacities, especially with regard to salinity. In spite of this, this species is devoid of genomic resources, which impedes the understanding of such remarkable features. De novo assembly of transcript sequences produced by next-generation sequencing technologies offers a rapid approach to obtain expressed gene sequences for non-model organisms. It also facilitates the development of quantitative real-time PCR (qPCR) assays for analysing gene expression under different environmental conditions. Nevertheless, obtaining accurate and reliable qPCR results from such data requires a number of validations prior to interpretation. The transcriptome of S. melanotheron was sequenced to discover transcripts potentially involved in the plasticity of male reproduction in response to salinity variations. A set of 54 candidate and reference genes was selected through a digital gene expression (DGE) approach, and a de novo qPCR assay using these genes was validated for further detailed expression analyses. A user-friendly web interface was created for easy handling of the sequence data. This sequence collection represents a major transcriptomic resource for S. melanotheron and will provide a useful tool for functional genomics and genetics studies.
Collapse
Affiliation(s)
- J-C Avarre
- Institut des Sciences de l'Evolution de Montpellier, UMR 226 IRD-CNRS-UM2, BP5095, Montpellier Cedex 05, 34196, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Meyer BS, Salzburger W. A novel primer set for multilocus phylogenetic inference in East African cichlid fishes. Mol Ecol Resour 2012; 12:1097-104. [PMID: 22816488 DOI: 10.1111/j.1755-0998.2012.03169.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cichlid fishes in the East African Great Lakes are a prime model system for the study of adaptive radiation. Therefore, the availability of an elaborate phylogenetic framework is an important prerequisite. Previous phylogenetic hypotheses on East African cichlids are mainly based on mitochondrial and/or fragment-based markers, and, to date, no taxon-rich phylogeny exists that is based on multilocus DNA sequence data. Here, we present the design of an extensive new primer set (24 nuclear makers) for East African cichlids that will be used for multilocus phylogenetic analyses in the future. The primers are designed to work for both Sanger sequencing and next-generation sequencing with the 454 technology. As a proof of principle, we validate these primers in a phylogenetically representative set of 16 cichlid species from Lake Tanganyika and main river systems in the area and provide a basic evaluation of the markers with respect to marker length and diversity indices.
Collapse
Affiliation(s)
- Britta S Meyer
- Zoological Institute, University of Basel, Basel, Switzerland
| | | |
Collapse
|
17
|
Guyon R, Rakotomanga M, Azzouzi N, Coutanceau JP, Bonillo C, D'Cotta H, Pepey E, Soler L, Rodier-Goud M, D'Hont A, Conte MA, van Bers NEM, Penman DJ, Hitte C, Crooijmans RPMA, Kocher TD, Ozouf-Costaz C, Baroiller JF, Galibert F. A high-resolution map of the Nile tilapia genome: a resource for studying cichlids and other percomorphs. BMC Genomics 2012; 13:222. [PMID: 22672252 PMCID: PMC3441813 DOI: 10.1186/1471-2164-13-222] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 04/23/2012] [Indexed: 12/25/2022] Open
Abstract
Background The Nile tilapia (Oreochromis niloticus) is the second most farmed fish species worldwide. It is also an important model for studies of fish physiology, particularly because of its broad tolerance to an array of environments. It is a good model to study evolutionary mechanisms in vertebrates, because of its close relationship to haplochromine cichlids, which have undergone rapid speciation in East Africa. The existing genomic resources for Nile tilapia include a genetic map, BAC end sequences and ESTs, but comparative genome analysis and maps of quantitative trait loci (QTL) are still limited. Results We have constructed a high-resolution radiation hybrid (RH) panel for the Nile tilapia and genotyped 1358 markers consisting of 850 genes, 82 markers corresponding to BAC end sequences, 154 microsatellites and 272 single nucleotide polymorphisms (SNPs). From these, 1296 markers could be associated in 81 RH groups, while 62 were not linked. The total size of the RH map is 34,084 cR3500 and 937,310 kb. It covers 88% of the entire genome with an estimated inter-marker distance of 742 Kb. Mapping of microsatellites enabled integration to the genetic map. We have merged LG8 and LG24 into a single linkage group, and confirmed that LG16-LG21 are also merged. The orientation and association of RH groups to each chromosome and LG was confirmed by chromosomal in situ hybridizations (FISH) of 55 BACs. Fifty RH groups were localized on the 22 chromosomes while 31 remained small orphan groups. Synteny relationships were determined between Nile tilapia, stickleback, medaka and pufferfish. Conclusion The RH map and associated FISH map provide a valuable gene-ordered resource for gene mapping and QTL studies. All genetic linkage groups with their corresponding RH groups now have a corresponding chromosome which can be identified in the karyotype. Placement of conserved segments indicated that multiple inter-chromosomal rearrangements have occurred between Nile tilapia and the other model fishes. These maps represent a valuable resource for organizing the forthcoming genome sequence of Nile tilapia, and provide a foundation for evolutionary studies of East African cichlid fishes.
Collapse
Affiliation(s)
- Richard Guyon
- Institut Génétique et Développement (UMR 6061) CNRS/Université de Rennes 1, Rennes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tine M, Guinand B, Durand JD. Variation in gene expression along a salinity gradient in wild populations of the euryhaline black-chinned tilapia Sarotherodon melanotheron. JOURNAL OF FISH BIOLOGY 2012; 80:785-801. [PMID: 22471799 DOI: 10.1111/j.1095-8649.2012.03220.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study evaluated variation in expression of 11 genes within and among six wild populations of the black-chinned tilapia Sarotherodon melanotheron distributed along a salinity gradient from 0 to 100. Previous laboratory studies had shown that expression of these genes was sensitive to water salinity; the current study confirmed that a number of them also varied in expression in wild populations along the salinity gradient. Principal component analysis (PCA) first distinguished two, not mutually exclusive, sets of genes: trade-off genes that were highly expressed at one or other extreme of the salinity gradient and stress genes that were up-regulated at the two salinity extremes (i.e. a U-shaped expression pattern). The PCA clearly partitioned the populations into three groups based on their gene expression patterns and their position along the salinity gradient: a freshwater (GL; 0) population, four brackish and seawater (GB, HB, SM, SF; ranging from 20 to 50) populations and a hypersaline (SK, 100) population. Individual variation in gene expression was significantly greater within the populations at the extreme compared to intermediate salinities. These results reveal phenotypically plastic regulation of gene expression in S. melanotheron, and greater osmoregulatory and plasticity costs at extreme salinities, where fitness-related traits are known to be altered.
Collapse
Affiliation(s)
- M Tine
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, D-14195 Berlin, Germany.
| | | | | |
Collapse
|
19
|
Lorin-Nebel C, Avarre JC, Faivre N, Wallon S, Charmantier G, Durand JD. Osmoregulatory strategies in natural populations of the black-chinned tilapia Sarotherodon melanotheron exposed to extreme salinities in West African estuaries. J Comp Physiol B 2012; 182:771-80. [DOI: 10.1007/s00360-012-0657-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/23/2012] [Accepted: 02/26/2012] [Indexed: 11/24/2022]
|
20
|
Gonzalez RJ. The physiology of hyper-salinity tolerance in teleost fish: a review. J Comp Physiol B 2011; 182:321-9. [DOI: 10.1007/s00360-011-0624-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/27/2011] [Accepted: 10/04/2011] [Indexed: 10/16/2022]
|
21
|
Norman JD, Danzmann RG, Glebe B, Ferguson MM. The genetic basis of salinity tolerance traits in Arctic charr (Salvelinus alpinus). BMC Genet 2011; 12:81. [PMID: 21936917 PMCID: PMC3190344 DOI: 10.1186/1471-2156-12-81] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/21/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The capacity to maintain internal ion homeostasis amidst changing conditions is particularly important for teleost fishes whose reproductive cycle is dependent upon movement from freshwater to seawater. Although the physiology of seawater osmoregulation in mitochondria-rich cells of fish gill epithelium is well understood, less is known about the underlying causes of inter- and intraspecific variation in salinity tolerance. We used a genome-scan approach in Arctic charr (Salvelinus alpinus) to map quantitative trait loci (QTL) correlated with variation in four salinity tolerance performance traits and six body size traits. Comparative genomics approaches allowed us to infer whether allelic variation at candidate gene loci (e.g., ATP1α1b, NKCC1, CFTR, and cldn10e) could have underlain observed variation. RESULTS Combined parental analyses yielded genome-wide significant QTL on linkage groups 8, 14 and 20 for salinity tolerance performance traits, and on 1, 19, 20 and 28 for body size traits. Several QTL exhibited chromosome-wide significance. Among the salinity tolerance performance QTL, trait co-localizations occurred on chromosomes 1, 4, 7, 18 and 20, while the greatest experimental variation was explained by QTL on chromosomes 20 (19.9%), 19 (14.2%), 4 (14.1%) and 12 (13.1%). Several QTL localized to linkage groups exhibiting homeologous affinities, and multiple QTL mapped to regions homologous with the positions of candidate gene loci in other teleosts. There was no gene × environment interaction among body size QTL and ambient salinity. CONCLUSIONS Variation in salinity tolerance capacity can be mapped to a subset of Arctic charr genomic regions that significantly influence performance in a seawater environment. The detection of QTL on linkage group 12 was consistent with the hypothesis that variation in salinity tolerance may be affected by allelic variation at the ATP1α1b locus. IGF2 may also affect salinity tolerance capacity as suggested by a genome-wide QTL on linkage group 19. The detection of salinity tolerance QTL in homeologous regions suggests that candidate loci duplicated from the salmonid-specific whole-genome duplication may have retained their function on both sets of homeologous chromosomes. Homologous affinities suggest that loci affecting salinity tolerance in Arctic charr may coincide with QTL for smoltification and salinity tolerance traits in rainbow trout. The effects of body size QTL appear to be independent of changes in ambient salinity.
Collapse
Affiliation(s)
- Joseph D Norman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | | | | | | |
Collapse
|
22
|
Lee BY, Howe AE, Conte MA, D'Cotta H, Pepey E, Baroiller JF, di Palma F, Carleton KL, Kocher TD. An EST resource for tilapia based on 17 normalized libraries and assembly of 116,899 sequence tags. BMC Genomics 2010; 11:278. [PMID: 20433739 PMCID: PMC2874815 DOI: 10.1186/1471-2164-11-278] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 04/30/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Large collections of expressed sequence tags (ESTs) are a fundamental resource for analysis of gene expression and annotation of genome sequences. We generated 116,899 ESTs from 17 normalized and two non-normalized cDNA libraries representing 16 tissues from tilapia, a cichlid fish widely used in aquaculture and biological research. RESULTS The ESTs were assembled into 20,190 contigs and 36,028 singletons for a total of 56,218 unique sequences and a total assembled length of 35,168,415 bp. Over the whole project, a unique sequence was discovered for every 2.079 sequence reads. 17,722 (31.5%) of these unique sequences had significant BLAST hits (e-value < 10(-10)) to the UniProt database. CONCLUSION Normalization of the cDNA pools with double-stranded nuclease allowed us to efficiently sequence a large collection of ESTs. These sequences are an important resource for studies of gene expression, comparative mapping and annotation of the forthcoming tilapia genome sequence.
Collapse
Affiliation(s)
- Bo-Young Lee
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tine M, Bonhomme F, McKenzie DJ, Durand JD. Differential expression of the heat shock protein Hsp70 in natural populations of the tilapia, Sarotherodon melanotheron, acclimatised to a range of environmental salinities. BMC Ecol 2010; 10:11. [PMID: 20429891 PMCID: PMC2873927 DOI: 10.1186/1472-6785-10-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 04/29/2010] [Indexed: 01/17/2023] Open
Abstract
Background The relationship between environmental variation and induction of heat shock proteins (Hsps) has been much documented under experimental conditions. However, very little is known about such induction in natural populations acclimatised to prevailing environmental conditions. Furthermore, while induction of stress proteins has been well documented in response to environmental contaminants and thermal stressors, little is known about whether factors, such as extreme salinity, are also potential inductors. The black-chinned tilapia Sarotherodon melanotheron is unusual for its ability to colonise estuarine environments in West Africa that are characterised by extremely high salinities. The relationships between mRNA levels of the 70 kDa heat shock protein (Hsp70) and Na+, K+-ATPase1α (Naka) in the gills, environmental salinity, and a life-history trait (condition factor) were investigated in wild populations of this species sampled from three locations in the Saloum estuary, at salinities ranging from 40 to 100 psu. Results The highest Hsp70 and Naka mRNA levels, and the poorest condition factors were recorded in the most saline sampling site (100 psu). The Hsp70 and Naka mRNA were correlated amongst themselves and showed a direct positive correlation with environmental salinity, and a negative correlation with fish condition factor. Thus, the Hsp70 is constitutively overexpressed by S. melanotheron acclimatised to extreme hypersalinity. Conclusions These results indicate that, although S. melanotheron can colonise extremely saline environments, the overexpression of Hsp70 combined with the higher Naka mRNA expression reveals that this represents a chronic stress. The induction of Hsp70 was, therefore, a biomarker of chronic hyper-osmotic stress which presumably can be linked to the impaired growth performance and precocious reproduction that have been demonstrated in the populations at the extremely saline sites.
Collapse
Affiliation(s)
- Mbaye Tine
- Biologie Intégrative ISEM CNRS-UMR 5554, Université Montpellier II, Station Méditerranéenne de l'Environnement Littoral, 1 quai de la Daurade, Sète, France.
| | | | | | | |
Collapse
|