1
|
Zheng L, Han B, Wang G, Yin X, Sun Y, Yan W. Polycyclic aromatic hydrocarbons in intertidal surface sediments of mangrove wetlands in Dongzhai Harbor, Haikou, China: Understanding sources, distribution, and ecological risk. MARINE POLLUTION BULLETIN 2025; 216:117950. [PMID: 40233580 DOI: 10.1016/j.marpolbul.2025.117950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/30/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) can be stored for long periods in soil or sediments, especially in sediments containing large amounts of organic matter, because of their special properties. Due to the high organic matter content in mangrove forests, this area serve as natural reservoir or a "sink" for persistent organic pollution. For this reason, sediment and soil samples were obtained from the mangrove wetland in Dongzhai Harbor, Hainan, to examine the distribution of PAHs concentration, source, and ecological danger. The PAHs content varied from 69.94 to 1481.91 ng·g-1 and presented a mean of 244.44 ng·g-1. The maximum PAHs concentration of 1481.91 ng·g-1 occurred at station DZ-03 which located at the innermost of the harbor. The PAHs concentrations in the other stations ranged within 69.94-356.66 ng·g-1, and the average value was 131.95 ng·g-1, which denotes a medium to low pollution level. The diagnostic ratio approach and principal component analysis revealed that the primary source of PAHs was the combustion of coal and biomass. The majority of the PAHs at Station DZ-03 showed high potential danger according to the ecological risk assessment. At the other stations, Ace and BghiP pose danger while the potential risk of the other PAHs was low. TEQBaP revealed high concentrations at Station DZ-03 and low concentrations at the other stations, where the overall potential ecological risk was low. Nevertheless, PAHs emissions should still be given attention, and the burning of fossil fuels and biomass should be reduced to decrease the potential ecological risk.
Collapse
Affiliation(s)
- Li Zheng
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Bin Han
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China.
| | - Gui Wang
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xin Yin
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Yonggen Sun
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Wenwen Yan
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| |
Collapse
|
2
|
Ying Z, Chen S, Zhang C, Liao Q, Yuan F, Feng D, Wang S, Liu Q, Hao Z. Vertical distribution and influencing factors of soil PAHs under different ecosystem habitats in the Liaohe River Estuary Wetlands, Northeastern China. MARINE POLLUTION BULLETIN 2025; 210:117289. [PMID: 39613515 DOI: 10.1016/j.marpolbul.2024.117289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 12/01/2024]
Abstract
The vertical distribution, sources and influencing factors of polycyclic aromatic hydrocarbons (PAHs) in soil across ecosystem habitats were investigated around the Liaohe River Estuary (LRE) Wetland. The concentration of Ʃ16PAHs ranged from 41.0 to 435.4 ng g-1 dw, with a predominance of low molecular weight PAHs. Overall, PAHs and physicochemical properties of soil decreased with depth. Vegetation was found to increase soil PAHs. Additionally, soil physicochemical properties also regulated PAHs concentration, particularly for PAHs with high molecular weight. Among the habitats, total organic carbon was the key influencing factor for Suaeda heteroptera, while specific surface area was crucial for Phragmites australis. Results of characteristic ratio method and principal component analysis revealed that PAHs in LRE primarily originate petroleum, coal and biomass combustion. In summary, vegetation colonization significantly affected the distribution, sources, and controlling factors of PAHs. These findings are meaningful for management of soil PAHs across various ecosystem habitats.
Collapse
Affiliation(s)
- Zeguo Ying
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200441, China
| | - Shuyu Chen
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chuchu Zhang
- School of Geographic and Oceanographic Sciences, Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210093, China
| | - Qihang Liao
- School of Geographic and Oceanographic Sciences, Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210093, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210093, China
| | - Feng Yuan
- School of Geographic and Oceanographic Sciences, Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210093, China
| | - Dawei Feng
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Siwen Wang
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qing Liu
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Zhe Hao
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
3
|
Ye Z, Han B, Wang G, Lei X, Qing S, Su Q, Zheng L, Ding R. Occurrence status, source analysis and risk assessment of polycyclic aromatic hydrocarbons in intertidal surface sediments of typical mangrove wetlands in Guangxi Province, China. MARINE POLLUTION BULLETIN 2024; 209:117170. [PMID: 39461179 DOI: 10.1016/j.marpolbul.2024.117170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
This study investigated the occurrence status, sources, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in sediments from three typical mangrove areas in Guangxi Province, China. Results showed that the PAH content in the three studied regions ranged from 39.76 ng·g-1 to 164.93 ng·g-1, and the average concentration was 92.87 ng·g-1. The PAHs that were detected were mainly 3-ring and 4-ring. The source of PAHs, as traced by the diagnostic ratio method and principal component analysis, was mainly from combustion. The toxicity risk assessment showed that the content of all PAHs was lower than the Effects Range Low (ERL), and the potential ecological risk was low. The toxicity equivalent (TEQBaP) content ranged from 4.75 ng·g-1 to 19.20 ng·g-1, with an average of 12.08 ng·g-1. Overall, the ecological risk of PAHs in mangrove sediments in Guangxi is considered low.
Collapse
Affiliation(s)
- Zuchao Ye
- Beihai Marine Environmental Monitoring Center Station of Oceanic Administration, Beihai 536000, China.
| | - Bin Han
- Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China.
| | - Gui Wang
- Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xuetie Lei
- Beihai Marine Environmental Monitoring Center Station of Oceanic Administration, Beihai 536000, China
| | - Shangmin Qing
- Beihai Marine Environmental Monitoring Center Station of Oceanic Administration, Beihai 536000, China
| | - Qizhong Su
- Beihai Marine Environmental Monitoring Center Station of Oceanic Administration, Beihai 536000, China
| | - Li Zheng
- Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Runtian Ding
- Qingdao Hailukong Environmental Automatic-control Engineering Co., Ltd, Qingdao 266071, China
| |
Collapse
|
4
|
Wang S, He P, Wu X, Zan F, Yuan Z, Zhou J, Xu M. It's time to reevaluate the list of priority polycyclic aromatic compounds: Evidence from a large urban shallow lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173988. [PMID: 38889819 DOI: 10.1016/j.scitotenv.2024.173988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/16/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Monitoring only 16 priority PAHs (Pri-PAHs) may greatly underestimate the pollutant load and toxicity of polycyclic aromatic compounds (PACs) in aquatic environments. There is an urgent need to reevaluate the list of priority PACs. To determine which PACs deserve priority monitoring, the occurrence, sources, and toxicity of 78 PACs, including 24 parent PAHs (Par-PAHs), 49 alkylated PAHs (Alk-PAHs), 3 oxygenated PAHs (OPAHs), carbazole, and dibenzothiophene were investigated for the first time in Lake Chaohu sediments, China. Concentrations of ∑Par-PAHs, ∑Alk-PAHs, and ∑OPAHs ranged from 35 to 165, 3.4-26, and 7.7-26 ng g-1, respectively. Concentrations of 16 Pri-PAHs have decreased by 1-2 orders of magnitude compared to a decade ago, owing to the effective implementation of PAHs emission control measures. Comparisons with the sediment quality guidelines indicated that 16 Pri-PAHs have negligible adverse effects on benthic organisms. Positive matrix factorization (PMF) model results showed that coal combustion was the major source of PACs (accounting for 23.5 %), followed by traffic emissions (23.4 %), petroleum volatilization (21.9 %), wood/biomass combustion (18.2 %), and biological/microbial transformation (13.1 %). The toxicity of PACs was assessed by calculating the BaP toxic equivalent concentrations (TEQBaP) and toxic units. It was found that Par-PAHs were the predominant toxic substances. In addition, monomethyl-BaPs, OPAHs, BeP, and 7,12-DMBaA should be prioritized for monitoring due to their noticeable contributions to overall toxicity. The contributions of different sources to the toxicity of PACs were determined based on PMF model results and TEQBaP values, which revealed that combustion sources mainly contributed to the comprehensive toxicity of PACs in Lake Chaohu sediments.
Collapse
Affiliation(s)
- Shanshan Wang
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Wuhu Dongyuan New Country Developing Co., Ltd., Wuhu, Anhui 241000, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China; CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pengpeng He
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Xiaoguo Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China.
| | - Fengyu Zan
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Zijiao Yuan
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Jiale Zhou
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Miaoqing Xu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| |
Collapse
|
5
|
Yan Y, Bao K, Zhao K, Neupane B, Gao C. A baseline study of polycyclic aromatic hydrocarbons distribution, source and ecological risk in Zhanjiang mangrove wetlands, South China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114437. [PMID: 38321658 DOI: 10.1016/j.ecoenv.2022.114437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 02/08/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants and pose a severe threat to human health. Here, 38 surface sediment samples collected from the Gaoqiao mangrove wetland in Zhanjiang, south China, were analyzed to determine 16 Environmental Protection Agency (EPA) priority PAHs. Total PAHs concentrations ranged from 33.5 µg/kg to 404.8 µg/kg with an average of 147.7 ± 77.7 µg/kg, inferring a moderate pollution level. Three and four-ring compounds dominated the PAHs composition patterns. Significant positive correlations were observed between the PAHs and the physicochemical properties of the sediments. According to the characteristic molecular ratio method, PAHs in sediments were mainly derived from combustion sources, including the incomplete combustion of liquid fossil fuels, grass, wood, and coal. The result based on the PMF model indicates that the primary combustion sources of PAHs are coal combustion, diesel-powered vehicles, biomass combustion and gasoline-powered vehicles, with a share of 39.01%, 25.21%, 12.72% and 10.48%, respectively. The petrogenic source contributes 12.58% PAHs to the sediments. The mean effects range median quotient (m-ERM-Q) and toxic equivalent method (TEQ) indicate a low comprehensive ecological risk of PAHs in the study area. Still, the evaluation results of effects range low (ERL) suggest that PAHs in the sediment would occasionally have adverse biological effects. Therefore, this situation demands attention and calls for protection strategies in the processes of urbanization and industrialization in south China.
Collapse
Affiliation(s)
- Ying Yan
- School of Geographical Sciences, South China Normal University, Guangzhou 510631, China
| | - Kunshan Bao
- School of Geographical Sciences, South China Normal University, Guangzhou 510631, China.
| | - Kewei Zhao
- School of Geographical Sciences, South China Normal University, Guangzhou 510631, China
| | - Bigyan Neupane
- School of Geographical Sciences, South China Normal University, Guangzhou 510631, China; Institute of Fundamental Research and Studies (InFeRS), Kathmandu 44600, Nepal
| | - Changjun Gao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| |
Collapse
|
6
|
Carbonized MXene-polyvinylpyrrolidone as an adsorbent for solid-phase microextraction of polycyclic aromatic hydrocarbons from tea beverages prior to GC analysis. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Bateni F, Mehdinia A, Lundin L, Hashtroudi MS. Distribution, source and ecological risk assessment of polycyclic aromatic hydrocarbons in the sediments of northern part of the Persian Gulf. CHEMOSPHERE 2022; 295:133859. [PMID: 35149014 DOI: 10.1016/j.chemosphere.2022.133859] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 01/04/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Distribution, sources, and ecological risk of 43 compounds of polycyclic aromatic hydrocarbons (PAHs) in surficial sediments of the Persian Gulf were investigated. The sediments were sampled from 60 offshore stations during an oceanographic cruise in the winter of 2012. Gas chromatography high-resolution mass spectrometry was used for the PAHs determinations in sediment samples. The concentrations of 21 parent PAHs, 7 methylated PAHs, 11 oxygenated PAHs and 4 nitrated PAHs were 9.0-201.5 ng g-1 dw, 3.3-60.3 ng g-1 dw, 15.2-172.7 ng g-1 dw and 0.1-8.3 ng g-1 dw, respectively. Among 21 parental PAHs, naphthalene (29.35 ng g-1 dw), phenanthrene (4.6 ng g-1 dw), and pyrene (3.18 ng g-1 dw) were the most abundant compound. 1-acenaphthenone (43.41 ng g-1 dw) and 2-methylnaphthalene (7.15 ng g-1 dw) showed the highest concentration in the oxy- and methyl-PAHs, respectively. The concentrations of nitro-PAHs were between not detected to 4 ng g-1 dw. According to the ecological risk assessment, the calculated total toxicity of PAHs was at below the lethal level on benthic organisms in all stations in the Persian Gulf, but there is risk of toxicity for the benthic organism in the Gulf of Oman (from the Strait of Hormuz to Jask). In general, nitrogenated and oxygenated derivatives did not show a significant risk in the study area. Based on the diagnostic ratios, the mixed sources (both petrogenic and pyrogenic) and pyrogenic sources have been identified for PAHs. Biomass combustion source has been identified for the stations near flares and gas fields. Principle component analysis-multivariate linear regression analysis for source identification shows that maritime traffic, abundant flares that burn the gas in oil, gas fields and dust storms have a major impact on the production of PAHs in this area.
Collapse
Affiliation(s)
- Fatemeh Bateni
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, P.O. Box: 14155-4781, Iran
| | - Ali Mehdinia
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, P.O. Box: 14155-4781, Iran.
| | - Lisa Lundin
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - Mehri Seyed Hashtroudi
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, P.O. Box: 14155-4781, Iran
| |
Collapse
|
8
|
Qiao M, Qi W, Liu H, Qu J. Oxygenated polycyclic aromatic hydrocarbons in the surface water environment: Occurrence, ecotoxicity, and sources. ENVIRONMENT INTERNATIONAL 2022; 163:107232. [PMID: 35427839 DOI: 10.1016/j.envint.2022.107232] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/17/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) have been ubiquitously detected in atmospheric, soil, sediment, and water environments, some of which show higher concentrations and toxicities than the parent polycyclic aromatic hydrocarbons (PAHs). The occurrence, source, fate, risks and methods of analysis for OPAHs in the atmosphere, soil, and the whole environment (comprising the atmosphere, soil, water, and biota) have been reviewed, but reviews focusing on OPAHs in the water environment have been lacking. Due to the higher polarity and water solubility of OPAHs than PAHs, OPAHs exist preferentially in water environments. In this review, the occurrence, ecological toxicity and source of OPAHs in surface water environments are investigated in detail. Most OPAHs show higher concentrations than the corresponding PAHs in surface water environments. OPAHs pose non-ignorable ecological risks to surface water ecosystems. Wastewater treatment plant effluent, atmospheric deposition, surface runoff, photochemical and microbiological transformation, and sediment release are possible sources for OPAHs in surface water. This review will fill important knowledge gaps on the migration and transformation of typical OPAHs in multiple media and their environmental impact on surface water environments. Further studies on OPAHs in the surface environment, including their ecotoxicity with the co-existing PAHs and mass flows of OPAHs from atmospheric deposition, surface runoff, transformation from PAHs, and sediment release, are also encouraged.
Collapse
Affiliation(s)
- Meng Qiao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Sola MCR, Santos AG, Nascimento MM, da Rocha GO, de Andrade JB. Occurrence, sources, and risk assessment of unconventional polycyclic aromatic compounds in marine sediments from sandy beach intertidal zones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152019. [PMID: 34856251 DOI: 10.1016/j.scitotenv.2021.152019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the concentrations of polycyclic aromatic compounds (PACs), including parent polyaromatic hydrocarbons (PAHs) and their nitrated and oxygenated derivatives, in 48 sediment samples from the intertidal region of sandy beaches in Baía de Todos os Santos (BTS), Salvador, State of Bahia, Brazil. The total PAH (∑PAH) concentration, total nitro-PAH (∑nitro-PAH) concentration, and total oxy-PAH (∑oxy-PAH) concentration ranged from 2.11 μg g-1 dry weight (dw) to 28.0 μg g-1 dw, 2.58 μg g-1 dw to 30.2 μg g-1 dw, and 0.34 μg g-1 dw to 3.65 μg g-1 dw, respectively. Elevated concentrations of parent PAHs and nitro-PAHs were found in samples from two sites in BTS, which were also characterized by high percentages of fine-medium sand and low organic matter contents. Potent mutagenic 3-nitrobenzanthrone (3-NBA) was found in 86% of the samples at concentrations ranging from 0.200 μg g-1 dw to 0.690 μg g-1 dw. Furthermore, calculations of the benzo[a]pyrene toxicity equivalency (BaPTEQ) indicated that three carcinogenic high-molecular-weight PAHs accounted for 98.7% of the total maximum PAH concentration. Finally, we assessed the possible environmental risks posed to benthic species living in the sediments of BTS. The results showed that the risk quotient for PAHs (RQPAHs) was ≥1. In turn, the summed RQ for all PACs (∑RQmixture) ranged from 1 to 30, but did not exceed the maximum allowable threshold; thus, the risks posed to benthic species were moderate for all sediment samples.
Collapse
Affiliation(s)
- Maria Claudia R Sola
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, UFBA, 40170-290 Salvador, BA, Brazil
| | - Aldenor G Santos
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, UFBA, 40170-290 Salvador, BA, Brazil; Universidade Federal da Bahia, Instituto de Química, Campus de Ondina, 40170-115 Salvador, BA, Brazil
| | - Madson M Nascimento
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, UFBA, 40170-290 Salvador, BA, Brazil; Universidade Federal da Bahia, Instituto de Química, Campus de Ondina, 40170-115 Salvador, BA, Brazil
| | - Gisele Olimpio da Rocha
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, UFBA, 40170-290 Salvador, BA, Brazil; Universidade Federal da Bahia, Instituto de Química, Campus de Ondina, 40170-115 Salvador, BA, Brazil
| | - Jailson Bittencourt de Andrade
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, UFBA, 40170-290 Salvador, BA, Brazil; Centro Universitário SENAI-CIMATEC, Av. Orlando Gomes, 1845 - Piatã, 41650-010 Salvador, BA, Brazil.
| |
Collapse
|
10
|
Angulo-Cuero J, Grassi MT, Dolatto RG, Palacio-Cortés AM, Rosero-Moreano M, Aristizábal BH. Impact of polycyclic aromatic hydrocarbons in mangroves from the Colombian pacific coast: Evaluation in sediments and bivalves. MARINE POLLUTION BULLETIN 2021; 172:112828. [PMID: 34526259 DOI: 10.1016/j.marpolbul.2021.112828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Bivalves and sediments were sampled from mangroves in the Pacific Coast of Colombia to evaluate the concentrations of the 16 polycyclic aromatic hydrocarbons (PAHs) prioritized by U.S.EPA. Mangroves are highly vulnerable to anthropogenic activities, such as oil spills, which affect sediments and the organisms that depend on that ecosystem. Twelve samples of mangrove and non-mangrove (sandy) sediments and 20 samples of Anadara tuberculosa from mangrove were collected in marine and estuarine areas. In sediments and A. tuberculosa, the highest concentration of Ʃ16PAHs was found in estuarine mangroves close to the Rosario River mouth, ranging from 171.4 to 564.0 ng g-1 and 31.0 to 169.0 ng g-1, respectively. For the bivalve, the concentrations showed less variability than sediment, with 25% and 20% of bivalve samples exceeding the limits established by the European Regulatory Commission and Ministry of Health and Social Protection of Colombia, respectively, which can cause effects on people's health. The PAHs isomeric ratios determined in sediments indicated that these compounds were originated mainly from petrogenic sources. The PAHs profile reveals the dominance of 3 and 4 rings PAHs in sediments and dominance of 4 rings PAHs in bivalves.
Collapse
Affiliation(s)
- Jesús Angulo-Cuero
- Hydraulic Engineering and Environmental Research Group (GTAIHA), Universidad Nacional de Colombia, Sede Manizales, Carrera 27 64-60, Manizales, Colombia.
| | - Marco Tadeu Grassi
- Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.
| | | | | | - Milton Rosero-Moreano
- Grupo de Investigación en Cromatografía y Técnicas Afines GICTA, Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 N° 26-10, Manizales, Colombia.
| | - Beatriz H Aristizábal
- Hydraulic Engineering and Environmental Research Group (GTAIHA), Universidad Nacional de Colombia, Sede Manizales, Carrera 27 64-60, Manizales, Colombia.
| |
Collapse
|
11
|
Li D, Yun Y, Gao R. Oxygenated Polycyclic aromatic hydrocarbons (Oxy-PAHs) facilitate lung cancer metastasis by epigenetically regulating the epithelial-to-mesenchymal transition (EMT). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113261. [PMID: 31580991 DOI: 10.1016/j.envpol.2019.113261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Oxygenated Polycyclic aromatic hydrocarbons (Oxy-PAHs) are widely distributed in the atmosphere, water, soil and sediments. Oxy-PAHs have been proved more carcinogenic than their parent PAHs, while there still lack of studies about the toxicological mechanism of Oxy-PAHs in epigenetic regulation. Our study revealed that exposure to Oxy-PAHs induced the invasion and migration of lung epithelial cells by the activation of epithelial-to-mesenchymal transition (EMT), including the up-regulation of Vimentin and alpha-smooth muscle actin (α-SMA) and the down-regulation of E-cadherin (E-cad). The reactive oxygen species (ROS) promoted histone acetylation mediated-Snail regulating the expression of E-cad after Oxy-PAHs treatment. Meanwhile, DNA methylation was also involved in epigenetic regulation of EMT. These results demonstrated a potential mechanism about Oxy-PAHs facilitate lung carcinogenesis by epigenetic regulation and suggested new ways for the treatment, improvement, and prevention of lung cancer caused by Oxy-PAHs environmental exposure.
Collapse
Affiliation(s)
- Dan Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Rui Gao
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
12
|
Zhou H, Tam NFY, Cheung SG, Wei P, Li S, Wu Q. Contamination of polybrominated diphenyl ethers (PBDEs) in watershed sediments and plants adjacent to e-waste sites. JOURNAL OF HAZARDOUS MATERIALS 2019; 379:120788. [PMID: 31254788 DOI: 10.1016/j.jhazmat.2019.120788] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are one of the persistent toxic organic pollutants in watersheds near electrical and electronic waste (e-waste) sites (EWS). Spatial redistribution, translocation and bioaccumulation of PBDEs in natural sediment-plant ecosystems, however, are still unclear. The contamination and distribution of PBDEs in core sediments and wetland plants from two EWS and two mangrove forest sites (MFS) were investigated. The eight PBDE congeners were all detected in plant tissue and sediment samples, indicating PBDE contamination was common and severe, and their spatial variations were significant. Although sediments from EWS had higher PBDE concentrations than those in MFS, with an extremely high value of 36392 ± 5992 ng g-1 dw, mangroves could be the sink of PBDEs, as high concentrations (327 ± 48 ng g-1 dw) were also detected in mangrove sediments. The historical usage of PBDEs was reflected by their distribution in mangrove sediment core but not so in e-waste sediment core. PBDEs were taken up and accumulated in six wetland plants, with more accumulation in mangrove plants. These results demonstrated that PBDEs were not only contaminated in sediments adjacent to e-waste sites but also plant tissues. PBDEs could enter other environments via plant littering and/or herbivorous processes that must not be neglected.
Collapse
Affiliation(s)
- Haichao Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Futian-CityU Mangrove Research & Development Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Nora F Y Tam
- Futian-CityU Mangrove Research & Development Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China.
| | - S G Cheung
- Futian-CityU Mangrove Research & Development Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Pingping Wei
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Futian-CityU Mangrove Research & Development Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Shuangfei Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qihang Wu
- Collaborative Innovation Center of Water Quality Safety and Protection in Pearl River Delta, Guangzhou University, Guangzhou, China
| |
Collapse
|
13
|
Trine LSD, Davis EL, Roper C, Truong L, Tanguay RL, Massey Simonich SL. Formation of PAH Derivatives and Increased Developmental Toxicity during Steam Enhanced Extraction Remediation of Creosote Contaminated Superfund Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4460-4469. [PMID: 30957485 PMCID: PMC7103206 DOI: 10.1021/acs.est.8b07231] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Steam enhanced extraction (SEE) is an in situ thermal remediation technique used to remove and recover polycyclic aromatic hydrocarbons (PAHs) from contaminated soils. However, limited studies have been conducted on the formation of PAH derivatives during and after SEE of PAH contaminated soils. Creosote contaminated soil samples collected from the Wyckoff-Eagle Harbor Superfund site were remediated with laboratory scale SEE. The samples were quantified for unsubstituted PAHs and their derivatives and assessed for developmental toxicity, pre- and post-SEE. Following SEE, unsubstituted PAH concentrations decreased, while oxygenated PAH concentrations increased in soil and aqueous extracts. Differences in developmental toxicity were also measured and linked to the formation of PAH derivatives. Additive toxicity was measured when comparing unfractionated extracts to fractionated extracts in pre- and post-SEE samples. SEE is effective in removing unsubstituted PAHs from contaminated soil, but other, potentially more toxic, PAH derivatives are formed.
Collapse
Affiliation(s)
- Lisandra Santiago Delgado Trine
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Eva L. Davis
- Groundwater, Watershed and Ecosystems Restoration Division, United States Environmental Protection Agency, Ada, OK 74820, USA
| | - Courtney Roper
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Lisa Truong
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Robert L. Tanguay
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Staci L. Massey Simonich
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
14
|
Yun Y, Zhang Y, Li G, Chen S, Sang N. Embryonic exposure to oxy-polycyclic aromatic hydrocarbon interfere with pancreatic β-cell development in zebrafish via altering DNA methylation and gene expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:1602-1609. [PMID: 30743951 DOI: 10.1016/j.scitotenv.2018.12.476] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/26/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are a class of anthropogenic, persistent and very toxic PAH contaminant associated with developmental toxicity. Abnormal glucose metabolism disturbs energy balances that impair the early development of vertebrates, but the mechanisms by which maternal OPAH exposure alters glucose homeostasis in offspring are not well understood. Studies have suggested that epigenetic changes, particularly in DNA methylation, provide a memory of plastic developmental responses to the environment, leading to the generation of novel offspring phenotypes. The objective of this study is to test the hypothesis that embryonic exposure to low-dose OPAH can impair early β-cell differentiation in zebrafish (Danio rerio) by altering DNA methylation and gene expression. The zebrafish embryos were exposed to 0, 0.03, 0.1, 0.3, 1 and 3 μM 9‑fluorenone (9-FLO) at 3 h postfertilization (hpf) until 120 hpf to assess pancreatic organogenesis. 9-FLO exposure reduced total body length, eye length and heart rate, decreased insulin generation, interfered with glucose metabolism, and altered the expression of pancreatic organogenesis-related genes pdx-1, foxa2, isl1 and ptf1a. In particular, low-dose embryonic 9-FLO exposure significantly decreased β-cell differentiation marker gene pdx-1 mRNA levels, indicating that pancreatic endocrine is a more sensitive target response to embryonic low-dose OPAH exposure. Additionally, we found that DNA methyltransferases dnmt1 and dnmt3 were elevated and the DNA methylation at promoter regions of pdx-1 was increased at an early stage of development. These data demonstrated that the low-dose OPAH embryonic exposure can impair pancreatic endocrine development by increasing DNA methylation at the promoter regions of pdx-1 that are essential for β-cell differentiation.
Collapse
Affiliation(s)
- Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yujie Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Shaoyu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, USA; University of Louisville Alcohol Research Center, Louisville, KY, USA
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
15
|
Ranjbar Jafarabadi A, Riyahi Bakhtiari A, Yaghoobi Z, Kong Yap C, Maisano M, Cappello T. Distributions and compositional patterns of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in three edible fishes from Kharg coral Island, Persian Gulf, Iran. CHEMOSPHERE 2019; 215:835-845. [PMID: 30359953 DOI: 10.1016/j.chemosphere.2018.10.092] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/06/2018] [Accepted: 10/15/2018] [Indexed: 05/24/2023]
Abstract
This is the first report on bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) and their derivatives (oxygen, nitrogen, sulfur, hydroxyl, carbonyl and methyl-containing PAHs) in three edible marine fishes, namely Lutjanus argentimaculatus, Lethrinus microdon and Scomberomorus guttatus, from Kharg Island, Persian Gulf, Iran. The concentrations (ng g-1dw) of Σ39PAHs resulted significantly higher in fish liver than muscle, with the PAH composition pattern dominated by low molecular weight compounds (naphthalene, alkyl-naphthalenes and phenanthrene). The highest mean concentrations of ∑9 oxygenated and ∑15 hydroxylated PAHs (ng g-1dw) were found ound in L. microdon and L. argentimaculatus, respectively, while the lowest values in S. guttatus. Additionally, the highest mean concentrations of Σ5 carbonylic PAHs (ng g-1dw) were found in L. argentimaculatus, followed by L. microdon. The PAHs levels and distribution in fish liver and muscle were dependent on both the Kow of PAHs congeners and fish lipid contents. Overall, the present findings provide important baseline data for further research on the ecotoxicity of PAHs in aquatic organisms, and consequent implications for human health.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Zeinab Yaghoobi
- Department of Marine Biology, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
16
|
Wang X, Li Y, Cai F, Qing Q, Yuan K, Chen B, Luan T. Fully automatic single-drop microextraction with one-setp extraction and derivatization and its application for rapid analysis of hydroxylated polycyclic aromatic hydrocarbons in seawaters. Talanta 2017; 164:727-734. [DOI: 10.1016/j.talanta.2016.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/31/2016] [Accepted: 06/05/2016] [Indexed: 12/16/2022]
|
17
|
Li R, Zhu Y, Zhang Y. In situ visualization and quantitative investigation of the distribution of polycyclic aromatic hydrocarbons in the micro-zones of mangrove sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:245-252. [PMID: 27814541 DOI: 10.1016/j.envpol.2016.10.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
The distribution of polycyclic aromatic hydrocarbons (PAHs) in the micro-zones of mangrove sediment is a predominant factors determining PAH bioavailability. In this study, a novel method for the in situ visualization (via microscope) and quantitative investigation of the PAH distribution in the micro-zones of mangrove sediment was established using microscopic fluorescence spectral analysis combined with derivative synchronous fluorescence spectroscopy (MFSA-DSFS). The MFSA-DSFS method significantly suppressed the background fluorescence signal of the sediment (the S/N values increased by over two orders of magnitude). The proportion of the nonpolar organic carbon content in the particulate organic matter (POM) rather than its content in the total organic matter (TOM) showed a significantly positive correlation with the uneven PAH distribution (Relative DC-M values) evaluated using the established method (p < 0.05). The extent of the uneven PAH distribution in the micro-zones of aged sediment was higher than that in the spiked sediment. Moreover, the distribution pattern of the PAHs within the mangrove sediment changed to become more homogeneous in the presence of low-molecular-weight organic acids (LMWOAs), which primarily contribute to increasing the POM content.
Collapse
Affiliation(s)
- Ruilong Li
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), Xiamen University, Xiamen, 361005, China
| | - Yaxian Zhu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), Xiamen University, Xiamen, 361005, China.
| |
Collapse
|