1
|
Purbonegoro T, Damar A, Riani E, Butet NA, Cordova MR. Accumulation of Cd and Pb in sediments and Asian swamp eels (Monopterus albus) from downstream area of Cisadane River, Indonesia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:496. [PMID: 38693437 DOI: 10.1007/s10661-024-12635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
This study examined the presence of two heavy metals (Cd and Pb) in the sediments and Asian swamp eels (Monopterus albus) in the downstream area of Cisadane River. The average concentrations of Cd and Pb in the sediments from all sampling locations were 0.594 ± 0.230 mg/kg and 34.677 ± 24.406 mg/kg, respectively. These concentrations were above the natural background concentration and the recommended value of interim sediment quality guidelines (ISQG), suggesting an enrichment process and potential ecological risk of studied metals to the ecosystem of Cisadane River. The increase in contamination within this region may be attributed to point sources such as landfill areas, as well as the industrial and agricultural land activities in surrounding area, and experienced an increasing level leading towards the estuary of Cisadane River. Meanwhile, the average concentrations of Cd and Pb in the eels from all sampling locations were 0.775 ± 0.528 μg/g and 28.940 ± 12.921 μg/g, respectively. This study also discovered that gill tissues contained higher levels of Cd and Pb than the digestive organ and flesh of Asian swamp eels. These concentrations were higher than Indonesian and international standards, suggesting a potential human health risk and therefore the needs of limitations in the consumption of the eels. Based on the human health risk assessment, the eels from the downstream of Cisadane River are still considered safe to be consumed as long as they comply with the specified maximum consumption limits.
Collapse
Affiliation(s)
- Triyoni Purbonegoro
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, Jakarta, Indonesia.
- Study Program of Coastal and Marine Resources Management, Department of Aquatic Resources Management, Faculty of Fisheries and Marine Sciences, IPB University, Bogor, Indonesia.
| | - Ario Damar
- Department of Aquatic Resources Management, Faculty of Fishery and Marine Science, IPB University, Bogor, Indonesia
- Center for Coastal and Marine Resources Studies, IPB University, Bogor, Indonesia
| | - Etty Riani
- Department of Aquatic Resources Management, Faculty of Fishery and Marine Science, IPB University, Bogor, Indonesia
| | - Nurlisa A Butet
- Department of Aquatic Resources Management, Faculty of Fishery and Marine Science, IPB University, Bogor, Indonesia
| | - Muhammad Reza Cordova
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, Jakarta, Indonesia
| |
Collapse
|
2
|
Kutluyer Kocabaş F, Göktürk Aksu E, Kocabaş M. Evaluation of metal pollution related to human health risk in freshwater snail Viviparus contectus (Millet, 1813) as a potential bioindicator species in Lake Habitat (Turkey). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93686-93696. [PMID: 37515620 DOI: 10.1007/s11356-023-29062-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Freshwater mollusks are employed as bioindicators for the assessment of water quality in biomonitoring studies since the water quality of natural resources is crucial for humans. The freshwater snail species known as Viviparus contectus (Viviparidae: Gastropoda) is one that people eat. Here, the levels of heavy metals (Cd, Cr, Pb, As, Zn, and Cu) in water and V. contectus samples were determined. An Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES, Spectro Arcos, vertical plasma) was used for the analysing the heavy metal concentrations in water and freshwater snail samples. The results of the current investigation demonstrated that freshwater snails accumulated metals in their water and soft tissues in the following orders: Pb > Cr = Zn = Cu = Cd = As and Zn > Cu > Pb > Cd > As = Cr. Autumn was the time of year when higher amounts of heavy metals (As, Cr, Cu, Zn, and Hg) were found. Pb content in the freshwater snail samples was strongly impacted by seasonal fluctuations (P 0.05). For adults, the EDI (estimated daily intake) values were lower than the TDI (tolerable daily intake) values, and the HI (hazard index) values were below 1. Freshwater snail samples had Zn and Pb levels that were over the FAO/WHO, Turkish Food Codex, JECFA, and EC limit values. Except for Pb, the water study shows mean metal concentrations below the USEPA, Turkish Pollution Control Regulation, and World Health Organisation maximum allowed levels. Aquatic ecosystems were negatively impacted by anthropogenic activities overall, and this study can provide a helpful data set for investigations on metallic contamination in water bodies and biomonitoring in freshwater ecosystems.
Collapse
Affiliation(s)
| | | | - Mehmet Kocabaş
- Faculty of Forestry, Department of Wildlife Ecology and Management, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
3
|
Saputri M, Yusnaini Y, Sara L, Widowati I, Guyot T, Fichet D, Radenac G. Multi-Year Monitoring of the Toxicological Risk of Heavy Metals Related to Fish Consumption by the Population of the Kendari Region (Southeast Sulawesi, Indonesia). TOXICS 2023; 11:592. [PMID: 37505558 PMCID: PMC10383168 DOI: 10.3390/toxics11070592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
This study measured the concentrations of Hg, As, Ni, Cd, and Pb in six fish species commonly consumed in Kendari. Samples were bought within local markets from 2012 to 2017 at the end of the dry season. Results showed that mercury concentrations fluctuated between years and within species, except in the Caranx sexfasciatus, which showed no significant differences (Kruskall-Wallis, p-value > 0.05, df = 5) and an average concentration of 0.371 ± 0.162 µg g-1 DW. Arsenic was found in high concentrations across species and years and varied widely in C. sexfasciatus, the lowest value being 0.32 ± 0.01 µg g-1 DW in 2012 and the highest was 5.63 ± 1.89 µg g-1 DW in 2017. The highest nickel concentrations were found in 2016 across four of the six species. The fish samples displayed very low cadmium and lead concentrations throughout the study. In addition, the potential human health risk due to fish consumption was assessed. This showed that mercury is the only one of the five metals present in concentrations high enough to individually pose a potential hazard, the only metal likely to be accumulated beyond a safe concentration in Kendari. Chanos chanos never posed a toxicological risk based on the results of this research.
Collapse
Affiliation(s)
- Mimie Saputri
- UMRi LIENSs 7266 CNRS, La Rochelle Université, 17000 La Rochelle, France; (T.G.); (D.F.); (G.R.)
- Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Semarang 50275, Indonesia;
- Faculty of Teacher Training and Education, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Yusnaini Yusnaini
- Faculty of Fisheries and Marine Sciences, Universitas Halu Oleo, Kendari 93232, Indonesia; (Y.Y.); (L.S.)
| | - La Sara
- Faculty of Fisheries and Marine Sciences, Universitas Halu Oleo, Kendari 93232, Indonesia; (Y.Y.); (L.S.)
| | - Ita Widowati
- Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Semarang 50275, Indonesia;
| | - Thierry Guyot
- UMRi LIENSs 7266 CNRS, La Rochelle Université, 17000 La Rochelle, France; (T.G.); (D.F.); (G.R.)
| | - Denis Fichet
- UMRi LIENSs 7266 CNRS, La Rochelle Université, 17000 La Rochelle, France; (T.G.); (D.F.); (G.R.)
| | - Gilles Radenac
- UMRi LIENSs 7266 CNRS, La Rochelle Université, 17000 La Rochelle, France; (T.G.); (D.F.); (G.R.)
| |
Collapse
|
4
|
Impellitteri F, Multisanti CR, Rusanova P, Piccione G, Falco F, Faggio C. Exploring the Impact of Contaminants of Emerging Concern on Fish and Invertebrates Physiology in the Mediterranean Sea. BIOLOGY 2023; 12:767. [PMID: 37372052 DOI: 10.3390/biology12060767] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
In this historical context, the Mediterranean Sea faces an increasing threat from emerging pollutants such as pharmaceuticals, personal care products, heavy metals, pesticides and microplastics, which pose a serious risk to the environment and human health. In this regard, aquatic invertebrates and fish are particularly vulnerable to the toxic effects of these pollutants, and several species have been identified as bio-indicators for their detection. Among these, bivalve molluscs and elasmobranchs are now widely used as bio-indicators to accurately assess the effects of contaminants. The study focuses on the catshark Scyliorhinus canicular and on the Mediterranean mussel Mytilus galloprovincialis. The first one is a useful indicator of localised contamination levels due to its exposure to pollutants that accumulate on the seabed. Moreover, it has a high trophic position and plays an important role in the Mediterranean Sea ecosystem. The bivalve mollusc Mytilus galloprovincialis, on the other hand, being a filter-feeding organism, can acquire and bioaccumulate foreign particles present in its environment. Additionally, because it is also a species of commercial interest, it has a direct impact on human health. In conclusion, the increasing presence of emerging pollutants in the Mediterranean Sea is a serious issue that requires immediate attention. Bivalve molluscs and elasmobranchs are two examples of bio-indicators that must be used to precisely determine the effects of these pollutants on the marine ecosystem and human health.
Collapse
Affiliation(s)
- Federica Impellitteri
- Department of Veterinary Science, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy
| | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Polina Rusanova
- Department of Biological, Geological and Environmental Sciences (BiGeA)-Marine Biology and Fisheries Laboratory of Fano (PU), University of Bologna, 61032 Bologna, Italy
- Institute for Marine Biological Resources and Biotechnology (IRBIM)-CNR, L. Vaccara, 91026 Mazara del Vallo, Italy
| | - Giuseppe Piccione
- Department of Veterinary Science, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy
| | - Francesca Falco
- Institute for Marine Biological Resources and Biotechnology (IRBIM)-CNR, L. Vaccara, 91026 Mazara del Vallo, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
5
|
Yap CK, Al-Mutairi KA. Lower Health Risks of Potentially Toxic Metals after Transplantation of Aquacultural Farmed Mussels from a Polluted Site to Unpolluted Sites: A Biomonitoring Study in the Straits of Johore. Foods 2023; 12:foods12101964. [PMID: 37238781 DOI: 10.3390/foods12101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The present field-based study aimed to determine the levels of six potentially toxic metals (PTM)s (Cd, Cu, Fe, Ni, Pb, and Zn determined using a flame atomic-absorption spectrophotometer) using transplanted green-lipped mussel Perna viridis from a polluted site at Kampung Pasir Puteh (KPP) to unpolluted sites at Kampung Sungai Melayu (KSM) and Sungai Belungkor (SB) in the Johore Straits (SOJ), and to estimate the human health risks of the PTMs after the depuration periods. Interestingly, after 10 weeks of depuration in the two unpolluted sites, there were 55.6-88.4% and 51.3-91.7% reductions of the six PTMs after transplantation from KPP to SB and KSM, respectively. Lower risks of health assessments were recorded and judged on the present findings of significantly (p < 0.05) lower levels of safety guidelines, significantly (p < 0.05) lower values of target hazard quotient, and significantly (p < 0.05) lower values of estimated weekly intake, of all the six PTMs after 10 weeks of depuration of the transplanted polluted mussels to the two unpolluted sites in the SOJ. Thus, further reducing the noncarcinogenic risks of the PTMs to the consumers. From an aquacultural point of view, this depuration technique can be recommended to reduce the health risks of PTMs to mussel consumers.
Collapse
Affiliation(s)
- Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | | |
Collapse
|
6
|
Puspitasari R, Takarina ND, Soesilo TEB, Agustina H. Potential risks of heavy metals in green mussels (Perna viridis) harvested from Cilincing and Kamal Muara, Jakarta Bay, Indonesia to human health. MARINE POLLUTION BULLETIN 2023; 189:114754. [PMID: 36913801 DOI: 10.1016/j.marpolbul.2023.114754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
This study investigates Pb, Cd, and Cr in the suspended particulate matter (SPM), sediments, and green mussels from Cilincing and Kamal Muara, Jakarta Bay and estimates their potential human health risks. The results showed that the metal levels in SPM from Cilincing ranged from 0.81 to 1.69 mg/kg for Pb and 2.14 to 5.31 mg/kg for Cr, while in Kamal Muara ranged from 0.70 to 3.82 mg/kg for Pb and 1.88 to 4.78 mg/kg dry weight for Cr. The levels of Pb, Cd, and Cr in sediments from Cilincing ranged from 16.53 to 32.51 mg/kg, 0.91 to 2.52 mg/kg; and 0.62 to 1.0 mg/kg whereas in Kamal Muara ranged from 8.74 to 8.81 mg/kg; 0.51 to 1.79 mg/kg, and 0.27 to 0.31 mg/kg dry weight, respectively. The levels of Cd and Cr of green mussels in Cilincing ranged from 0.014 to 0.75 mg/kg and 0.003 to 0.11 mg/kg; while in Kamal Muara ranged from 0.015 to 0.073 mg/kg and 0.01 to 0.04 mg/kg wet weight, respectively. Pb was not detected in all samples of green mussels. The Pb, Cd, and Cr levels in the green mussels were still below the permissible limits set by international standards. However, the Target Hazard Quotient (THQ) for adult and children in several samples were higher than one indicating potential noncarcinogenic effects to consumers due to Cd accumulation. To reduce the detrimental effects of metals, we suggest maximum mussel consumption of 0.65 kg for adults and 0.19 kg for children in a week based on the highest level of metals.
Collapse
Affiliation(s)
- Rachma Puspitasari
- School of Environmental Sciences, Universitas Indonesia, Salemba Raya Street No. 4, Central Jakarta 10430, Indonesia; Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih, Ancol, North Jakarta 14430, Indonesia.
| | - Noverita Dian Takarina
- Departement of Biology, Faculty of Mathematics and Natural Science, Universitas Indonesia, Gedung E, Campus UI, Depok, West Java 16424, Indonesia
| | - Tri Edhi Budhi Soesilo
- School of Environmental Sciences, Universitas Indonesia, Salemba Raya Street No. 4, Central Jakarta 10430, Indonesia
| | - Haruki Agustina
- School of Environmental Sciences, Universitas Indonesia, Salemba Raya Street No. 4, Central Jakarta 10430, Indonesia; Ministry of Environment and Forestry, Manggala Wanabakti Building, Jakarta 10270, Indonesia
| |
Collapse
|
7
|
Zhu W, Lv Y, Zhang QD, Chang LM, Chen QH, Wang B, Jiang JP. Cascading effects of Pb on the environmental and symbiotic microbiota and tadpoles' physiology based on field data and laboratory validation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160817. [PMID: 36502979 DOI: 10.1016/j.scitotenv.2022.160817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Heavy metal pollution poses a serious threat to ecosystems. Currently, there is a lack of field data that would enable us to gain a systematic understanding of the influences of heavy metals on aquatic ecosystems, especially the interactions between environments and animals. We studied the relationships between the variations in heavy metal concentrations (10 species including Pb in sediments and surface water), the community structure of environmental and symbiotic microbiota, and the gut traits of Bufo gargarizans tadpoles across 16 sampling sites on the Chengdu Plain through rigorous statistical analysis and laboratory validation. The results show that heavy metal concentrations, especially the Pb concentration of the sediment, are linked to the variations in sediment and tadpoles' gut microbiomes but not to water microbiota. For the sediment microbiota, Pb causes a trade-off between the proportions of Burkholderiales and Verrucomicrobiae and affects the methane, sulfide, and nitrate metabolisms. For tadpoles, a high sediment Pb content leads to a low abundance of gut aerobic bacteria and a large relative gut weight under both field and laboratory conditions. In addition, Pb promotes the growth of B. gargarizans tadpoles under laboratory conditions. These effects seem to be beneficial to tadpoles. However, a high Pb content leads to a low abundance of probiotic bacteria (e.g., Verrucomicrobiae, Eubacteriaceae, and Cetobacterium) and a high abundance of pathogenic bacteria in the gut and environment, suggesting potential health risks posed by Pb. Interestingly, there is a causal relationship between Pb-induced variations in sediment and symbiotic microbiotas, and the latter is further linked to the variation in relative gut weight of tadpoles. This suggests a cascading effect of Pb on the ecosystem. In conclusion, our results indicate that among the heavy metals, the Pb in sediment is a critical factor affecting the aquatic ecosystem through an environment-gut-physiology pathway mediated by microbiota.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Yan Lv
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| | - Qun-De Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Li-Ming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qi-Heng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Bin Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Jian-Ping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
8
|
Choueri RB, Moreira LB, Jimenez PC, de Castro ÍB, Gusso-Choueri PK, Pereira CDS, de Souza Abessa DM. A reply to "Reviewing the effects of contamination on the biota of Brazilian coastal ecosystems: Scientific challenges for a developing country in a changing world". THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:153048. [PMID: 35033569 DOI: 10.1016/j.scitotenv.2022.153048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Rodrigo Brasil Choueri
- Department of Marine Sciences, Federal University of São Paulo, Santos, São Paulo, Brazil.
| | - Lucas Buruaem Moreira
- Department of Marine Sciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | | | - Ítalo Braga de Castro
- Department of Marine Sciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | | | - Camilo Dias Seabra Pereira
- Department of Marine Sciences, Federal University of São Paulo, Santos, São Paulo, Brazil; Department of Ecotoxicology, Santa Cecília University, Santos, São Paulo, Brazil
| | | |
Collapse
|
9
|
Zong R, Gong Y. Malformations in Late Devonian brachiopods from the western Junggar, NW China and their potential causes. PeerJ 2022; 10:e13447. [PMID: 35602897 PMCID: PMC9119298 DOI: 10.7717/peerj.13447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/26/2022] [Indexed: 01/14/2023] Open
Abstract
Although malformations are found in both extant organisms and the fossil record, they are more rarely reported in the fossil record than in living organisms, and the environmental factors causing the malformations are much more difficult to identify for the fossil record. Two athyrid brachiopod taxa from the Upper Devonian Hongguleleng Formation in western Junggar (Xinjiang, NW China) show distinctive shell malformation. Of 198 Cleiothyridina and 405 Crinisarina specimens, 18 and 39 individuals were malformed, respectively; an abnormality ratio of nearly 10%. Considering the preservation status and buried environment of the abnormal specimens, and analysis of trace elements and rare earth elements from whole-rock and brachiopod shells, we conclude that the appearance of malformed athyrids is likely related to epi/endoparasites, or less likely the slightly higher content of heavy metal in the sea.
Collapse
|
10
|
Celis-Hernandez O, Cundy AB, Croudace IW, Ward RD. Environmental risk of trace metals and metalloids in estuarine sediments: An example from Southampton Water, U.K. MARINE POLLUTION BULLETIN 2022; 178:113580. [PMID: 35366548 DOI: 10.1016/j.marpolbul.2022.113580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Industrial and commercial port activities are widely recognized worldwide as an important source of pollution to proximal estuaries. In this study, we analysed geochemical and sedimentological parameters including major and trace elements, organic matter and sediment texture in surface sediments from the estuarine environment of Southampton Water, U.K. Using these data, and multivariate statistical tools [correlation, factor and cluster analysis and pollution indices such as Enrichment Factor (EF), Pollution Load Index (PLI) and the Adverse Effect Index (AEI)], we examine sedimentary trace metal and metalloid contamination, contamination sources, and potential biological impacts of the contamination present. The geochemical data, multivariate statistical analysis and pollution indices indicate that the spatial distribution of trace metals and metalloids is influenced by both sediment composition (and mixing) and anthropogenic activities. Most trace metal and metalloid concentrations are close to local geological background levels, except for Cu, Zn and Pb. The spatial distribution of these elements indicates that the Exxon oil refinery, Southampton port, local marinas and runoff from domestic and industrial activities act effectively as point sources of these elements. Pollution indices calculations highlight a degraded environment as a result of these pollutants, and further work is needed to assess the current impact of trace metals and metalloids on local ecology.
Collapse
Affiliation(s)
- Omar Celis-Hernandez
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Estación el Carmen, Campeche, 24157 Ciudad del Carmen, Mexico; Dirección de Cátedras CONACYT, Av. Insurgentes Sur 1582, Alcaldía Benito Juárez, 03940 Ciudad de México, Mexico; GAU-Radioanalytical, School of Ocean and Earth Science, National Oceanography Centre (Southampton), University of Southampton, Southampton SO14 3ZH, United Kingdom.
| | - Andrew B Cundy
- GAU-Radioanalytical, School of Ocean and Earth Science, National Oceanography Centre (Southampton), University of Southampton, Southampton SO14 3ZH, United Kingdom; Hong Kong Branch of the Southern Marine Science and Engineering Guandong Laboratory (Guangzhou), Hong Kong, China
| | - Ian W Croudace
- GAU-Radioanalytical, School of Ocean and Earth Science, National Oceanography Centre (Southampton), University of Southampton, Southampton SO14 3ZH, United Kingdom
| | - Raymond D Ward
- Centre for Aquatic Environments, University of Brighton, Cockcroft Building, Moulsecoomb, Brighton, BN2 4GJ, United Kingdom; Institute of Agriculture and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, EE-51014 Tartu, Estonia
| |
Collapse
|
11
|
Pavón A, Riquelme D, Jaña V, Iribarren C, Manzano C, Lopez-Joven C, Reyes-Cerpa S, Navarrete P, Pavez L, García K. The High Risk of Bivalve Farming in Coastal Areas With Heavy Metal Pollution and Antibiotic-Resistant Bacteria: A Chilean Perspective. Front Cell Infect Microbiol 2022; 12:867446. [PMID: 35463633 PMCID: PMC9021898 DOI: 10.3389/fcimb.2022.867446] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
Anthropogenic pollution has a huge impact on the water quality of marine ecosystems. Heavy metals and antibiotics are anthropogenic stressors that have a major effect on the health of the marine organisms. Although heavy metals are also associate with volcanic eruptions, wind erosion or evaporation, most of them come from industrial and urban waste. Such contamination, coupled to the use and subsequent misuse of antimicrobials in aquatic environments, is an important stress factor capable of affecting the marine communities in the ecosystem. Bivalves are important ecological components of the oceanic environments and can bioaccumulate pollutants during their feeding through water filtration, acting as environmental sentinels. However, heavy metals and antibiotics pollution can affect several of their physiologic and immunological processes, including their microbiome. In fact, heavy metals and antibiotics have the potential to select resistance genes in bacteria, including those that are part of the microbiota of bivalves, such as Vibrio spp. Worryingly, antibiotic-resistant phenotypes have been shown to be more tolerant to heavy metals, and vice versa, which probably occurs through co- and cross-resistance pathways. In this regard, a crucial role of heavy metal resistance genes in the spread of mobile element-mediated antibiotic resistance has been suggested. Thus, it might be expected that antibiotic resistance of Vibrio spp. associated with bivalves would be higher in contaminated environments. In this review, we focused on co-occurrence of heavy metal and antibiotic resistance in Vibrio spp. In addition, we explore the Chilean situation with respect to the contaminants described above, focusing on the main bivalves-producing region for human consumption, considering bivalves as potential vehicles of antibiotic resistance genes to humans through the ingestion of contaminated seafood.
Collapse
Affiliation(s)
- Alequis Pavón
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Diego Riquelme
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Víctor Jaña
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas (NIAVA), Universidad de Las Américas, Santiago, Chile
| | - Cristian Iribarren
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Camila Manzano
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Carmen Lopez-Joven
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Paola Navarrete
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Leonardo Pavez
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas (NIAVA), Universidad de Las Américas, Santiago, Chile
- *Correspondence: Leonardo Pavez, ; Katherine García,
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- Carrera de Nutrición y Dietética, Universidad Autónoma de Chile, Santiago, Chile
- *Correspondence: Leonardo Pavez, ; Katherine García,
| |
Collapse
|
12
|
López-Pedrouso M, Lorenzo JM, Varela Z, Fernández JÁ, Franco D. Finding Biomarkers in Antioxidant Molecular Mechanisms for Ensuring Food Safety of Bivalves Threatened by Marine Pollution. Antioxidants (Basel) 2022; 11:antiox11020369. [PMID: 35204251 PMCID: PMC8868406 DOI: 10.3390/antiox11020369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Aquaculture production as an important source of protein for our diet is sure to continue in the coming years. However, marine pollution will also likely give rise to serious problems for the food safety of molluscs. Seafood is widely recognized for its high nutritional value in our diet, leading to major health benefits. However, the threat of marine pollution including heavy metals, persistent organic pollutants and other emerging pollutants is of ever-growing importance and seafood safety may not be guaranteed. New approaches for the search of biomarkers would help us to monitor pollutants and move towards a more global point of view; protocols for the aquaculture industry would also be improved. Rapid and accurate detection of food safety problems in bivalves could be carried out easily by protein biomarkers. Hence, proteomic technologies could be considered as a useful tool for the discovery of protein biomarkers as a first step to improve the protocols of seafood safety. It has been demonstrated that marine pollutants are altering the bivalve proteome, affecting many biological processes and molecular functions. The main response mechanism of bivalves in a polluted marine environment is based on the antioxidant defense system against oxidative stress. All these proteomic data provided from the literature suggest that alterations in oxidative stress due to marine pollution are closely linked to robust and confident biomarkers for seafood safety.
Collapse
Affiliation(s)
- María López-Pedrouso
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain;
| | - José M. Lorenzo
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia No. 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Zulema Varela
- CRETUS, Ecology Unit, Department of Functional Biology, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain; (Z.V.); (J.Á.F.)
| | - J. Ángel Fernández
- CRETUS, Ecology Unit, Department of Functional Biology, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain; (Z.V.); (J.Á.F.)
| | - Daniel Franco
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia No. 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Correspondence:
| |
Collapse
|
13
|
Danabaş D, Kutluyer F, Ural M, Özçelik M, Kocabaş M. Age- and Sex-Specific Bioaccumulation of Selected Metals in Freshwater Mussel (Unio elangatulus eucirrus Bourguignat, 1860) Populating from Keban Dam Lake (Elazig, Turkey). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:366-371. [PMID: 34817632 DOI: 10.1007/s00128-021-03414-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
In aquatic life, environmental chemicals are accumulated by mussels due to their sentinel nature and filter-feeding characteristics. Herein, the present study focused on assessing the concentrations of Cu, Zn, Mg, Mn, Fe, Cd, Pb, Ca, K, and Na levels in freshwater mussels (Unio elangatulus eucirrus) depending on sex and age. For all trace metals, some important differences of bioaccumulations were determined depending on ages and sex. In details, the results indicated that an important age-related accumulation of Mg, Cd, Ca, and K was in females and all trace elements, except Cu, Mg, and K levels in males (p < 0.05). No statistical differences were determined in mean concentrations of Cu, Zn, Mg, and Na. There are statistical differences in Mg, Mn, Fe, and Ca levels between females and males in four aged mussels (p < 0.05). Lead levels were under detectable limits. Overall, metal levels and their toxicity in freshwater mussels should be closely monitored for health of the environment, animals, and humans, since mussels and fish species fed on them are consumed highly in the research region and around.
Collapse
Affiliation(s)
- Durali Danabaş
- Fisheries Faculty, Munzur University, TR62000, Tunceli, Turkey.
| | - Filiz Kutluyer
- Fisheries Faculty, Munzur University, TR62000, Tunceli, Turkey
| | - Mesut Ural
- Fisheries Faculty, Munzur University, TR62000, Tunceli, Turkey
| | - Mehtap Özçelik
- High School of Health Sciences, Firat University, TR23100, Elaziğ, Turkey
| | - Mehmet Kocabaş
- Department Wildlife Ecology and Management, Forestry Faculty, Karadeniz Technical University, TR61080, Trabzon, Turkey
| |
Collapse
|
14
|
Yap CK, Al-Mutairi KA. Ecological-Health Risk Assessments of Heavy Metals (Cu, Pb, and Zn) in Aquatic Sediments from the ASEAN-5 Emerging Developing Countries: A Review and Synthesis. BIOLOGY 2021; 11:biology11010007. [PMID: 35053006 PMCID: PMC8773003 DOI: 10.3390/biology11010007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022]
Abstract
The ASEAN-5 countries (Malaysia, Indonesia, Thailand, Philippines, and Vietnam) of the Association of Southeast Asian Nations as a group is an ever-increasing major economy developmental hub in Asia besides having wealthy natural resources. However, heavy metal (HM) pollution in the region is of increasing environmental and public concern. This study aimed to review and compile the concentrations of Cu, Pb, and Zn in the aquatic sediments of the ASEAN-5 countries published in the literature from 1981 to February 2021. The mean values of Cu, Pb, and Zn in aquatic sediments were elevated and localized in high human activity sites and compared to the earth's upper continental crust and reference values. Based on 176 reports from 113 publications, the ranges of concentrations (mg/kg dry weight) were 0.09-3080 for Cu, 0.37-4950 for Zn, and 0.07-2666 for Pb. The ecological risk (ER) values ranged from 0.02-1077 for Cu, 0.01-95.2 for Zn, and 0.02-784 for Pb. All reports (100%) showed the Zn ER values were categorized as being between 'low potential ecological risk' and 'considerable potential ecological risk'. Almost all Cu ER values (97.7%) also showed similar ranges of the above two risk categories except for a few reports. The highest Cu level (3080 mg/kg dry weight) was reported from a mine-tailing spill in Marinduque Island of the Philippines with 'very high ecological risk'. In addition, drainage sediments in the western part of Peninsular Malaysia were categorized as Cu 'high potential ecological risk'. Almost all reports (96%) showed Pb ER values categorized as between 'low potential ecological risk' and 'moderate potential ecological risk' except for a few reports. Six reports showed Pb ER values of 'considerable potential ecological risk', while one report from Semarang (Indonesia) showed Pb ER of 'very high ecological risk' (Pb level of 2666 mg/kg dry weight). For the ingestion and dermal contact pathways for sediments from the ASEAN-5 countries, all non-carcinogenic risk (NCR) values (HI values 1.0) for Cu, Pb, and Zn reflected no NCR. The ER and human health risk assessment of Cu, Pb, and Zn were compared in an integrative and accurate manner after we reassessed the HM data mentioned in the literature. The synthesis carried out in this review provided the basis for us to consider Cu, Pb, and Zn as being of localized elevated levels. This provided evidence for the ASEAN-5 group of countries to be considered as being a new socio-economic corridor. Beyond any reasonable doubt, an ever-increasing anthropogenic input of HMs is to be expected to a certain degree. We believe that this paper provides the most fundamental useful baseline data for the future management and sustainable development of the aquatic ecosystems in the region. Lastly, we claim that this review is currently the most up-to-date review on this topic in the literature.
Collapse
Affiliation(s)
- Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Correspondence: or
| | - Khalid Awadh Al-Mutairi
- Department of Biology, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
15
|
Adyasari D, Pratama MA, Teguh NA, Sabdaningsih A, Kusumaningtyas MA, Dimova N. Anthropogenic impact on Indonesian coastal water and ecosystems: Current status and future opportunities. MARINE POLLUTION BULLETIN 2021; 171:112689. [PMID: 34256325 DOI: 10.1016/j.marpolbul.2021.112689] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Indonesia, the world's largest archipelagic country and the fourth most populated nation, has struggled with coastal water pollution in the last decades. With the increasing population in coastal urban cities, more land-based pollutants are transported to the coastal water and adversely affected the tropical ecosystems. This paper provides an overview of anthropogenic pollutant studies in Indonesian coastal water and ecosystems from 1986 to 2021. Nutrients, heavy metals, organic pollutants, and plastic debris are the most-studied contaminants. We found that 82%, 54% and 50% of the studies exceeding nutrients, heavy metals, and organic pollutants standard limit, respectively; thus, indicating poor water quality status in part of Indonesian coastal water. The coral reef ecosystems is found to be the most sensitive to anthropogenic disturbance. The potential effect of climate change, new coastal pollution hotspots in eastern Indonesia, marine anthropogenic sources, legacy/emerging pollutants, and the need for research related to the biological contamination, are discussed for future opportunities.
Collapse
Affiliation(s)
- Dini Adyasari
- Department of Geological Sciences, University of Alabama, Tuscaloosa 35487, USA.
| | | | - Novi Andriany Teguh
- Department of Civil Engineering, Sepuluh Nopember Institute of Technology, Surabaya 60111, Indonesia
| | - Aninditia Sabdaningsih
- Department of Aquatic Resources, Faculty of Fisheries and Marine Sciences, Diponegoro University, Semarang 50275, Indonesia; Tropical Marine Biotechnology Laboratory, Faculty of Fisheries and Marine Sciences, Diponegoro University, Semarang 50275, Indonesia
| | | | - Natasha Dimova
- Department of Geological Sciences, University of Alabama, Tuscaloosa 35487, USA
| |
Collapse
|
16
|
Irnidayanti Y. Toxicological Analysis of Gonad Development in Green Mussels ( Perna viridis) in Jakarta Bay, Indonesia. Pak J Biol Sci 2021; 24:394-400. [PMID: 34486325 DOI: 10.3923/pjbs.2021.394.400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> The accumulation of heavy metals such as cadmium and lead in mussels is very high compared to that in another marine biota. The mussels are sessile, widely distributed filter-feeding organisms, with the ability to sequester many lipophilic organic compounds, absorb anything in their surroundings. The very low mobility allows heavy metal bioaccumulation to occur and cannot avoid pollutants, which increase over time. This bioaccumulation can be toxic to mussels. This study aimed to evaluate the effect of different toxic chemicals and histological changes in green mussels. <b>Materials and Methods:</b> All archive gonad sample of green mussels in 2015 was fixed in paraformaldehyde 4% solution and were sliced by a rotary microtome at 8 μm thickness and finally, the slides were stained with a solution of hematoxylin-eosin. <b>Results:</b> The obtained results demonstrated that developmental disorders in the testes are characterized by the arrangement of follicle cells in a relatively less dense state and some follicles are not fully filled with spermatozoa. It means that the male gonad samples of green mussels in the port of Muara Angke undergoing toxicity and the process of gonad developmental was disrupted. <b>Conclusion:</b> The effects of toxicity of the male gonad of green mussels were more sensitive and were more susceptible than the female gonad of the green mussels.
Collapse
|
17
|
Takarina ND, Purwiyanto AIS, Suteja Y. Cadmium (Cd), Copper (Cu), and Zinc (Zn) levels in commercial and non-commercial fishes in the Blanakan River Estuary, Indonesia: A preliminary study. MARINE POLLUTION BULLETIN 2021; 170:112607. [PMID: 34182305 DOI: 10.1016/j.marpolbul.2021.112607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
The Blanakan River Estuary, located on the northern coast of West Java, receives heavy metals from anthropogenic activities nearby. This study investigates Cu, Cd, and Zn metals in water and their accumulation in fish (commercial and non-commercial). The samples (water and fish) were collected from seven sampling stations. The metals concentration in the surface water of the Blanakan River Estuary has exceeded the limit allowed by the Indonesian government. The average metal concentration sequence in commercial and non-commercial fish was Zn > Cu > Cd. In general, it was found that the concentration of Zn and Cd (Cu) metals in fish had (had not) exceeded the limits allowed by the FAO/WHO. Based on Bioconcentration Factor (BCF) value, all of fishes species have a low ability to accumulate heavy metals (BCF <1000). Based on Estimated Daily Intake (EDI), all fish species have a low risk for health, both for adult and children.
Collapse
Affiliation(s)
- Noverita Dian Takarina
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia. Gedung E, Kampus UI Depok, Depok, 16424, Indonesia.
| | - Anna Ida Sunaryo Purwiyanto
- Marine Science Department, Faculty of Mathematics and Natural Science, Sriwijaya University, Palembang, Indonesia.
| | - Yulianto Suteja
- Marine Science Department, Faculty of Marine and Fisheries, Udayana University Indonesia. Jl. Raya Kampus Universitas Udayana, Bukit Jimbaran, Bali, Indonesia.
| |
Collapse
|
18
|
Yan M, Li W, Chen X, He Y, Zhang X, Gong H. A preliminary study of the association between colonization of microorganism on microplastics and intestinal microbiota in shrimp under natural conditions. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124882. [PMID: 33370700 DOI: 10.1016/j.jhazmat.2020.124882] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/06/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
The microplastics pollution in wild aquatic organisms has been described by many studies. However, few studies focused on the farmed ones and MPs impacts on their gut microbiota under natural conditions. Here, we present the first detection of MPs in shrimp ponds and Litopenaeus vannamei. We also globally, firstly and preliminarily investigate the association between colonization of microorganism on MPs and intestinal microbiota under natural conditions. Microplastics (5129 ± 1176 items/kg d.w.) in sediments were mainly pellets, mostly white and blue, and in size less than 1 mm. Microplastics (14.08 ± 5.70 items/g w.w.) in shrimps were higher than that in mostly wild aquatic organisms and positively correlated with that in sediments. Blue fibers in small size (<0.5 mm) were dominant in shrimps. The bacterial communities and their microbial function on MPs were similar with that in shrimp gut, with higher diversity and richness in bacteria communities colonized on MPs. Network analysis demonstrated that the colonization of microorganism on MPs were associated with shrimp intestinal microbiota. Results suggest that except for toxicity reported previously, the effects on intestinal microbiota induced by MPs were possibly because of the biofilm on their surfaces as well, causing notable impacts on aquatic animals.
Collapse
Affiliation(s)
- Muting Yan
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural Universtiy, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Weixin Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural Universtiy, Guangzhou 510641, China
| | - Xiaofeng Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural Universtiy, Guangzhou 510641, China
| | - Yuhui He
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural Universtiy, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural Universtiy, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Han Gong
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural Universtiy, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Yap CK, Sharifinia M, Cheng WH, Al-Shami SA, Wong KW, Al-Mutairi KA. A Commentary on the Use of Bivalve Mollusks in Monitoring Metal Pollution Levels. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3386. [PMID: 33805997 PMCID: PMC8061770 DOI: 10.3390/ijerph18073386] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 01/09/2023]
Abstract
The objective of this commentary is to promote the use of bivalves as biomonitors, which is a part of the continual efforts of the International Mussel Watch. This commentary is an additional discussion on "Bivalve mollusks in metal pollution studies: From bioaccumulation to biomonitoring" by Zuykov et al., published in Chemosphere 93, 201-208. The present discussion can serve as a platform for further insights to provide new thoughts and novel ideas on how to make better use of bivalves in biomonitoring studies. The certainty of better and more extensive applications of mollusks in environmental monitoring in the future is almost confirmed but more studies are urgently needed. With all the reported studies using bivalves as biomonitors of heavy metal pollution, the effectiveness of using Mussel Watch is beyond any reasonable doubts. The challenge is the development of more accurate methodologies for of heavy metal data interpretation, and the precision of the biomonitoring studies using bivalves as biomonitors, whether in coastal or freshwater ecosystems. Lastly, inclusion of human health risk assessment of heavy metals in commercial bivalves would make the research papers of high public interest.
Collapse
Affiliation(s)
- Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Moslem Sharifinia
- Shrimp Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran;
| | - Wan Hee Cheng
- Faculty of Health and Life Sciences, Inti International University, Persiaran Perdana BBN, Nilai 71800, Negeri Sembilan, Malaysia;
| | - Salman Abdo Al-Shami
- Indian River Research and Education Center, IFAS, University of Florida, Fort Pierce, FL 34945, USA;
| | - Koe Wei Wong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Khalid Awadh Al-Mutairi
- Department of Biology, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
20
|
Lisiak-Zielińska M, Borowiak K, Budka A, Kanclerz J, Janicka E, Kaczor A, Żyromski A, Biniak-Pieróg M, Podawca K, Mleczek M, Niedzielski P. How polluted are cities in central Europe? - Heavy metal contamination in Taraxacum officinale and soils collected from different land use areas of three representative cities. CHEMOSPHERE 2021; 266:129113. [PMID: 33310525 DOI: 10.1016/j.chemosphere.2020.129113] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/12/2020] [Accepted: 11/21/2020] [Indexed: 05/15/2023]
Abstract
The level of environmental contamination can vary according to different types of land use. The aim of the present study was to determine the relations among Cd, Pb, Ni and Cr content in plants (Taraxacum officinale) and soils for 10 types of land use in the urban areas of representative cities for central Europe region (Warsaw, Poznan and Wroclaw in Poland). Descriptive statistical analysis, as well as cluster analysis and principal component analysis, heatmaps and Andrews curves, was performed to identify relations between HMs and land use, as well as differences between particular cities. The investigations revealed variation among sites, plant organs and cities. The content (mg kg-1 DW) in soils, roots and leaves for Cd varied between 0.4 and 3.6, 0.4-2.8 and 0.5-3.9, Cr ranged between 23.2 and 40.6, 14.0-26.1 and 15.8-24.8, Ni varied between 2.1 and 13.2, 0.2-42.1 and 0.0-3.9, while Pb varied between 27.0 and 231.5, 4.3-34.2 and 3.0-9.5, respectively. It was possible to note some tendencies. Nickel was the element with the highest content in the roots (up to 42.1 mg kg-1 DW) in comparison to leaves and soils and the highest bioaccumulation factor (up to 15.0). This means that the main source of Ni might be contamination of the soil. The cluster analysis of standardized HM levels in leaves revealed that cadmium is a different from the other three elements, which might be related to the translocation factor, for which this element was found to have the highest levels at many sites.
Collapse
Affiliation(s)
- Marta Lisiak-Zielińska
- Department of Ecology and Environmental Protection, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Piatkowska 94C, 60-649, Poznań, Poland.
| | - Klaudia Borowiak
- Department of Ecology and Environmental Protection, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Piatkowska 94C, 60-649, Poznań, Poland.
| | - Anna Budka
- Department of Mathematical and Statistical Methods, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637, Poznań, Poland.
| | - Jolanta Kanclerz
- Department of Land Improvement, Environmental Development and Spatial Management, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Piatkowska 94E, 60-649, Poznań, Poland.
| | - Ewelina Janicka
- Department of Land Improvement, Environmental Development and Spatial Management, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Piatkowska 94E, 60-649, Poznań, Poland.
| | - Anna Kaczor
- Department of Land Improvement, Environmental Development and Spatial Management, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Piatkowska 94E, 60-649, Poznań, Poland.
| | - Andrzej Żyromski
- Institute of Environmental Protection and Development, Faculty of Environmental Engineering and Geodesy, Wrocław University of Environmental and Life Sciences, Plac Grunwaldzki 24, 50-363, Wrocław, Poland.
| | - Małgorzata Biniak-Pieróg
- Institute of Environmental Protection and Development, Faculty of Environmental Engineering and Geodesy, Wrocław University of Environmental and Life Sciences, Plac Grunwaldzki 24, 50-363, Wrocław, Poland.
| | - Konrad Podawca
- Department of Remote Sensing and Environmental Assessment, Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787, Warsaw, Poland.
| | - Mirosław Mleczek
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland.
| | - Przemysław Niedzielski
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| |
Collapse
|
21
|
Cd(II) and Pb(II) Adsorption Using a Composite Obtained from Moringa oleifera Lam. Cellulose Nanofibrils Impregnated with Iron Nanoparticles. WATER 2021. [DOI: 10.3390/w13010089] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This work informs on the green synthesis of a novel adsorbent and its adsorption capacity. The adsorbent was synthesized by the combination of iron nanoparticles and cellulose nanofibers (FeNPs/NFCs). Cellulose nanofibers (NFCs) were obtained from Moringa (Moringa oleifera Lam.) by a pulping Kraft process, acid hydrolysis, and ultrasonic methods. The adsorption method has advantages such as high heavy metal removal in water treatment. Therefore, cadmium (Cd) and lead (Pb) adsorption with FeNP/NFC from aqueous solutions in batch systems was investigated. The kinetic, isotherm, and thermodynamic parameters, as well as the adsorption capacities of FeNP/NFC in each system at different temperatures, were evaluated. The adsorption kinetic data were fitted to mathematical models, so the pseudo-second-order kinetic model described both Cd and Pb. The kinetic rate constant (K2), was higher for Cd than for Pb, indicating that the metal adsorption was very fast. The adsorption isotherm data were best described by the Langmuir–Freundlich model for Pb multilayer adsorption. The Langmuir model described Cd monolayer sorption. However, experimental maximum adsorption capacities (qe exp) for Cd (>12 mg/g) were lower than those for Pb (>80 mg/g). In conclusion, iron nanoparticles on the FeNP/NFC composite improved Cd and Pb selectivity during adsorption processes, indicating the process’ spontaneous and exothermic nature.
Collapse
|
22
|
Cordova MR. A preliminary study on heavy metal pollutants chrome (Cr), cadmium (Cd), and lead (Pb) in sediments and beach morning glory vegetation (Ipomoea pes-caprae) from Dasun Estuary, Rembang, Indonesia. MARINE POLLUTION BULLETIN 2021; 162:111819. [PMID: 33203606 DOI: 10.1016/j.marpolbul.2020.111819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to assess the condition of the Dasun estuary, Indonesia, from the influence of heavy metals Cr, Cd, and Pb that accumulated in sediments and beach morning glory vegetation (Ipomoea pes-caprae). The results showed that the metal concentrations of Cr, Cd, and Pb in the sediments were 3.39-5.29 mg/kg, 0.21-0.29 mg/kg, and 5.36-6.87 mg/kg, respectively. The concentrations of metals that accumulated in the tissue of entire plants were 0.98-1.22 mg/kg (Cr), 0.31-0.40 mg/kg (Cd), and 0.94-1.23 mg/kg (Pb). Dasun estuary is still in the safe category for the living habitat, even though the concentration of Cd was relatively high and was estimated to originate from batik industry waste. The vegetation of Ipomoea pes-caprae was found to have a high ability to absorb Cd; thus, it can be used as a bioindicator for heavy metals in the environment.
Collapse
Affiliation(s)
- Muhammad Reza Cordova
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol Timur, Jakarta, Indonesia.
| |
Collapse
|
23
|
Cordova MR, Riani E, Shiomoto A. Microplastics ingestion by blue panchax fish (Aplocheilus sp.) from Ciliwung Estuary, Jakarta, Indonesia. MARINE POLLUTION BULLETIN 2020; 161:111763. [PMID: 33120036 DOI: 10.1016/j.marpolbul.2020.111763] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/03/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Plastic pollution has a detrimental effect on marine environments, and there is limited information regarding its ingestion by biota, which is the primary consumer. Therefore, this research aims to assess microplastic ingestion by blue panchax fish (Aplocheilus sp.). To achieve this, microplastics were extracted and identified from Ciliwung estuary, coastal waters in North Jakarta, and the Aplocheilus sp. Its various forms and sizes were found in river flow (9.37 ± 1.37 particles/m3), coastal waters (8.48 ± 9.43 particles/m3), and in 75% samples of Aplocheilus sp. (1.97 particles/individual). The microplastic size which was of highest concentration in Aplocheilus sp. was relatively small, ranging from 300 to 500 μm. This small size indicates that the fish has difficulty in distinguishing between their food and the microplastics. Further, there was a possibility of the absorption of other pollutants by the plastics. Therefore, an in-depth study on the effects of plastic ingestion on aquatic life, biomagnification, exposure, chemical toxicity, and socio-economy is recommended.
Collapse
Affiliation(s)
- Muhammad Reza Cordova
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1 Ancol, Jakarta 14430, Indonesia; Department of Aquatic Biosciences, Graduate School of Bioindustry, Tokyo University of Agriculture, Hokkaido-Okhotsk Campus, 196 Ysaka, Abashiri-shi, Hokkaido, Japan.
| | - Etty Riani
- Department of Aquatic Resources Management, Faculty of Fishery and Marine Science, Bogor Agricultural University (IPB University), Jl. Agatis Kampus IPB Darmaga, Bogor 16680, Indonesia.
| | - Akihiro Shiomoto
- Department of Aquatic Biosciences, Graduate School of Bioindustry, Tokyo University of Agriculture, Hokkaido-Okhotsk Campus, 196 Ysaka, Abashiri-shi, Hokkaido, Japan.
| |
Collapse
|
24
|
Harayashiki CAY, Márquez F, Cariou E, Castro ÍB. Mollusk shell alterations resulting from coastal contamination and other environmental factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114881. [PMID: 32505962 DOI: 10.1016/j.envpol.2020.114881] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/13/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Effects of contamination on aquatic organisms have been investigated and employed as biomarkers in environmental quality assessment for years. A commonly referenced aquatic organism, mollusks represent a group of major interest in toxicological studies. Both gastropods and bivalves have external mineral shells that protects their soft tissue from predation and desiccation. These structures are composed of an organic matrix and an inorganic matrix, both of which are affected by environmental changes, including exposure to hazardous chemicals. This literature review evaluates studies that propose mollusk shell alterations as biomarkers of aquatic system quality. The studies included herein show that changes to natural variables such as salinity, temperature, food availability, hydrodynamics, desiccation, predatory pressure, and substrate type may influence the form, structure, and composition of mollusk shells. However, in the spatial and temporal studies performed in coastal waters around the world, shells of organisms sampled from multi-impacted areas were found to differ in the form and composition of both organic and inorganic matrices relative to shells from less contaminated areas. Though these findings are useful, the toxicological studies were often performed in the field and were not able to attribute shell alterations to a specific molecule. It is known that the organic matrix of shells regulates the biomineralization process; proteomic analyses of shells may therefore elucidate how different contaminants affect shell biomineralization. Further research using approaches that allow a clearer distinction between shell alterations caused by natural variations and those caused by anthropogenic influence, as well as studies to identify which molecule is responsible for such alterations or to determine the ecological implications of shell alterations, are needed before any responses can be applied universally.
Collapse
Affiliation(s)
- Cyntia Ayumi Yokota Harayashiki
- Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP, 11070-100, Santos, Brazil.
| | - Federico Márquez
- LARBIM - IBIOMAR. CCT CONICET-CENPAT, Bvd. Brown 2915, U9120ACV, Puerto Madryn, Chubut, Argentina; Facultad de Ciencias Naturales, Universidad Nacional de La Patagonia San Juan Bosco (UNPSJB), Bvd. Brown 3051, U9120ACV, Puerto Madryn, Chubut, Argentina
| | - Elsa Cariou
- Observatory of Universe Sciences of Nantes-Atlantique, University of Nantes, Campus Lombarderie, 2 Rue de La Houssinière, 44322, Nantes, France
| | - Ítalo Braga Castro
- Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP, 11070-100, Santos, Brazil
| |
Collapse
|
25
|
Harayashiki CAY, Martins CP, Márquez F, Bigatti G, Castro ÍB. Historical shell form variation in Lottia subrugosa from southeast Brazilian coast: Possible responses to anthropogenic pressures. MARINE POLLUTION BULLETIN 2020; 155:111180. [PMID: 32469786 DOI: 10.1016/j.marpolbul.2020.111180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Mollusk shells can provide important information regarding environmental parameters. It is known that shell morphology is affected by both natural and anthropogenic factors. However, few studies have investigated alterations in shell morphology over a historical perspective and considering chemical contamination and climate changes. The present study assessed shell form (shape and size) variations of limpet (Lottia subrugosa) shells sampled from 1950 to 1981 (past) in comparison with organisms obtained in 2018 (present). Differences between shells from the past and present (2018) were detected, being shell weight and height the two most important affected parameters. The differences observed were attributed to the possible increase in contamination over the years due to human population growth and to climate change. Additionally, when shells from the past were evaluated according to the decade they were sampled, results indicate that it was necessary an interval of 40 years to shell form be altered within populations.
Collapse
Affiliation(s)
- Cyntia Ayumi Yokota Harayashiki
- Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP 11070-100 Santos, Brazil.
| | - Camila Pratalli Martins
- Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP 11070-100 Santos, Brazil
| | - Federico Márquez
- LARBIM - IBIOMAR, CCT CONICET-CENPAT, Bvd. Brown 2915, U9120ACV Puerto Madryn, Chubut, Argentina; Universidad Nacional de la Patagonia San Juan Bosco, Bvd. Brown 3051, U9120ACV Puerto Madryn, Chubut, Argentina
| | - Gregorio Bigatti
- LARBIM - IBIOMAR, CCT CONICET-CENPAT, Bvd. Brown 2915, U9120ACV Puerto Madryn, Chubut, Argentina; Universidad Espíritu Santo, Ecuador
| | - Ítalo Braga Castro
- Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP 11070-100 Santos, Brazil
| |
Collapse
|
26
|
Abdelrahman EA, Hegazey R. Utilization of waste aluminum cans in the fabrication of hydroxysodalite nanoparticles and their chitosan biopolymer composites for the removal of Ni(II) and Pb(II) ions from aqueous solutions: Kinetic, equilibrium, and reusability studies. Microchem J 2019. [DOI: 10.1016/j.microc.2018.10.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Greener Method for the Removal of Toxic Metal Ions from the Wastewater by Application of Agricultural Waste as an Adsorbent. WATER 2018. [DOI: 10.3390/w10101316] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The presence of inorganic pollutants such as metal ions (Ni2+, Pb2+, Cr6+) in water, probably by long-term geochemical changes and from the effluents of various industries, causes diseases and disorders (e.g., cancer, neurodegenerative diseases, muscular dystrophy, hepatitis, and multiple sclerosis). Conventional methods for their removal are limited by technical and economic barriers. In biosorption, low-cost and efficient biomaterials are used for this purpose. In this study, Brassica Campestris stems from the agriculture waste and has been used for the removal of Ni2+, Cr6+ and Pb2+ ions from an aqueous solution containing all the ions. Effect of different parameters, e.g., pH, contact time, metal ion initial concentration, adsorbent dose, agitation rate and temperature were analyzed and optimized. The adsorbent worked well for removal of the Pb2+ and Cr6+ as compared to Ni2+. The atomic absorption spectrophotometer (AAS) and FTIR investigation of adsorbent before and after shows a clear difference in the adsorbent capability. The highest adsorption percentage was found at 98%, 91%, and 49% respectively, under the optimized parameters. Furthermore, the Langmuir isotherm was found better in fitting to the experimental data than that of the Freundlich isotherm.
Collapse
|