1
|
Maser E, Buenning TH, Strehse JS. How contaminated is flatfish living near World Wars' munition dumping sites with energetic compounds? Arch Toxicol 2024; 98:3825-3836. [PMID: 39158710 PMCID: PMC11489368 DOI: 10.1007/s00204-024-03834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Seas worldwide are threatened by an emerging source of pollution as millions of tons of warfare materials were dumped after the World Wars. As their metal shells are progressively corroding, energetic compounds (EC) leak out and distribute in the marine environment. EC are taken up by aquatic organisms and pose a threat to both the marine ecosphere and the human seafood consumer because of their toxicity and potential carcinogenicity. Here, sediment samples and fish from different locations in the German North Sea of Lower Saxony were examined to determine whether EC transfer to fish living close to munition dumping areas. EC were found in sediments with a maximum concentration of 1.5 ng/kg. All analyzed fish muscle tissues/fillets and bile samples were positive for EC detection. In bile, the max. EC concentrations ranged between 0.25 and 1.25 ng/mL. Interestingly, while detected TNT metabolites in the muscle tissues were in concentrations of max. 1 ng/g (dry weight), TNT itself was found in concentrations of up to 4 ng/g (dry weight). As we found considerable higher amounts of non-metabolized TNT in the fish muscle, rather than TNT metabolites, we conclude an additional absorption route of EC into fish other than per diet. This is the first study to detect EC in the edible parts of fish caught randomly in the North Sea.
Collapse
Affiliation(s)
- Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Brunswiker Str. 10, 24105, Kiel, Germany.
| | - Tobias H Buenning
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Brunswiker Str. 10, 24105, Kiel, Germany
| | - Jennifer S Strehse
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Brunswiker Str. 10, 24105, Kiel, Germany
| |
Collapse
|
2
|
Adomako-Bonsu AG, Jacobsen J, Maser E. Metabolic activation of 2,4,6-trinitrotoluene; a case for ROS-induced cell damage. Redox Biol 2024; 72:103082. [PMID: 38527399 PMCID: PMC10979124 DOI: 10.1016/j.redox.2024.103082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/27/2024] Open
Abstract
The explosive compound 2,4,6-trinitrotoluene (TNT) is well known as a major component of munitions. In addition to its potential carcinogenicity and mutagenicity in humans, recent reports have highlighted TNT toxicities in diverse organisms due to its occurrence in the environment. These toxic effects have been linked to the intracellular metabolism of TNT, which is generally characterised by redox cycling and the generation of noxious reactive molecules. The reactive intermediates formed, such as nitroso and hydroxylamine compounds, also interact with oxygen molecules and cellular components to cause macromolecular damage and oxidative stress. The current review aims to highlight the crucial role of TNT metabolism in mediating TNT toxicity, via increased generation of reactive oxygen species. Cellular proliferation of reactive species results in depletion of cellular antioxidant enzymes, DNA and protein adduct formation, and oxidative stress. While TNT toxicity is well known, its ability to induce oxidative stress, resulting from its reductive activation, suggests that some of its toxic effects may be caused by its reactive metabolites. Hence, further research on TNT metabolism is imperative to elucidate TNT-induced toxicities.
Collapse
Affiliation(s)
- Amma Gyapomah Adomako-Bonsu
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany
| | - Jana Jacobsen
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany.
| |
Collapse
|
3
|
Szopińska M, Prasuła P, Baran P, Kaczmarzyk I, Pierpaoli M, Nawała J, Szala M, Fudala-Książek S, Kamieńska-Duda A, Dettlaff A. Efficient removal of 2,4,6-trinitrotoluene (TNT) from industrial/military wastewater using anodic oxidation on boron-doped diamond electrodes. Sci Rep 2024; 14:4802. [PMID: 38413693 DOI: 10.1038/s41598-024-55573-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/25/2024] [Indexed: 02/29/2024] Open
Abstract
With growing public concern about water quality particular focus should be placed on organic micropollutants, which are harmful to the environment and people. Hence, the objective of this research is to enhance the security and resilience of water resources by developing an efficient system for reclaiming industrial/military wastewater and protecting recipients from the toxic and cancerogenic explosive compound-2,4,6-trinitrotoluene (TNT), which has been widely distributed in the environment. This research used an anodic oxidation (AO) process on a boron-doped diamond (BDD) electrode for the TNT removal from artificial and real-life matrices: marine water and treated wastewater. During experiments, TNT concentrations were significantly decreased, reaching the anodic degradation efficiency of above 92% within two hours and > 99.9% after six hours of environmental sample treatment. The presented results show the great potential of AO performed on BDD anodes for full-scale application in the industry and military sectors for TNT removal.
Collapse
Affiliation(s)
- Małgorzata Szopińska
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Piotr Prasuła
- Military Institute of Armament Technology, Wyszyńskiego 7, 05-220, Zielonka, Poland
| | - Piotr Baran
- Military Institute of Armament Technology, Wyszyńskiego 7, 05-220, Zielonka, Poland
| | - Iwona Kaczmarzyk
- Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Mattia Pierpaoli
- Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Jakub Nawała
- Military University of Technology, S. Kaliskiego 2, 00-908, Warsaw, Poland
| | - Mateusz Szala
- Military University of Technology, S. Kaliskiego 2, 00-908, Warsaw, Poland
| | - Sylwia Fudala-Książek
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Agata Kamieńska-Duda
- Military Institute of Armament Technology, Wyszyńskiego 7, 05-220, Zielonka, Poland
| | - Anna Dettlaff
- Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
- Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233, Gdańsk, Poland.
| |
Collapse
|
4
|
Maser E, Andresen KJ, Bünning TH, Clausen OR, Wichert U, Strehse JS. Ecotoxicological Risk of World War Relic Munitions in the Sea after Low- and High-Order Blast-in-Place Operations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20169-20181. [PMID: 37933956 DOI: 10.1021/acs.est.3c04873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Submerged munitions from World War I and II are threatening human activities in the oceans, including fisheries and shipping or the construction of pipelines and offshore facilities. To avoid unforeseen explosions, remotely controlled "blast-in-place" (BiP) operations are a common practice worldwide. However, after underwater BiP detonations, the toxic and carcinogenic energetic compounds (ECs) will not completely combust but rather distribute within the marine ecosphere. To shed light on this question, two comparable World War II mines in Denmark's Sejerø Bay (Baltic Sea) were blown up by either low-order or high-order BiP operations by the Royal Danish Navy. Water and sediment samples were taken before and immediately after the respective BiP operation and analyzed for the presence of ECs with sensitive GC-MS/MS and LC-MS/MS technology. EC concentrations increased after high-order BiP detonations up to 353 ng/L and 175 μg/kg in water and sediment, respectively, while low-order BiP detonations resulted in EC water and sediment concentrations up to 1,000,000 ng/L (1 mg/L) and >10,000,000 μg/kg (>10 g/kg), respectively. Our studies provide unequivocal evidence that BiP operations in general lead to a significant increase of contamination of the marine environment and ecotoxicological risk with toxic ECs. Moreover, as compared to high-order BiP detonations, low-order BiP detonations resulted in a several 1000-fold higher burden on the marine environment.
Collapse
Affiliation(s)
- Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Brunswiker Str. 10, 24105 Kiel, Germany
| | - Katrine J Andresen
- Department of Geoscience, Aarhus University, Høegh-Guldbergs Gade 2, 8000 Aarhus C, Denmark
| | - Tobias H Bünning
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Brunswiker Str. 10, 24105 Kiel, Germany
| | - Ole R Clausen
- Department of Geoscience, Aarhus University, Høegh-Guldbergs Gade 2, 8000 Aarhus C, Denmark
| | - Uwe Wichert
- Consultant BLANO, MEKUN and HELCOM SUBMERGED, Eichenweg 6, 24351 Damp, Germany
| | - Jennifer S Strehse
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Brunswiker Str. 10, 24105 Kiel, Germany
| |
Collapse
|
5
|
Strehse JS, Bünning TH, Koschorreck J, Künitzer A, Maser E. Long-Term Trends for Blue Mussels from the German Environmental Specimen Bank Show First Evidence of Munition Contaminants Uptake. TOXICS 2023; 11:347. [PMID: 37112574 PMCID: PMC10142797 DOI: 10.3390/toxics11040347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Submerged munitions are present in marine waters across the globe. They contain energetic compounds (ECs), such as TNT and metabolites thereof, which are considered carcinogenic, exhibit toxic effects in marine organisms, and may affect human health. The aim of this study was to investigate the occurrence of ECs and their trends in blue mussels from the annual collections of the German Environmental Specimen Bank sampled over the last 30 years at three different locations along the coastline of the Baltic and North Sea. Samples were analyzed by GC-MS/MS for 1,3-dinitrobenzene (1,3-DNB), 2,4-dinitrotoluene (2,4-DNT), 2,4,6-trinitrotoluene (TNT), 2-amino-4,6-dinitrotoluene (2-ADNT), and 4-amino-2,6-dinitrotoluene (4-ADNT). The first signals indicating trace levels of 1,3-DNB were observed in samples from 1999 and 2000. ECs were also found below the limit of detection (LoD) in subsequent years. From 2012 onwards, signals just above the LoD were detected. The highest signal intensities of 2-ADNT and 4-ADNT, just below the LoQ (0.14 ng/g d.w. and 0.17 ng/g d.w., respectively), were measured in 2019 and 2020. This study clearly shows that corroding submerged munitions are gradually releasing ECs into the waters that can be detected in randomly sampled blue mussels, even though the concentrations measured are still in the non-quantifiable trace range.
Collapse
Affiliation(s)
- Jennifer Susanne Strehse
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Brunswiker Straße 10, 24105 Kiel, Germany (E.M.)
| | - Tobias Hartwig Bünning
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Brunswiker Straße 10, 24105 Kiel, Germany (E.M.)
| | - Jan Koschorreck
- German Environment Agency, Wörlitzer Platz 1, 06844 Dessau, Germany
| | - Anita Künitzer
- German Environment Agency, Wörlitzer Platz 1, 06844 Dessau, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Brunswiker Straße 10, 24105 Kiel, Germany (E.M.)
| |
Collapse
|
6
|
den Otter JH, Pröfrock D, Bünning TH, Strehse JS, van der Heijden AEDM, Maser E. Release of Ammunition-Related Compounds from a Dutch Marine Dump Site. TOXICS 2023; 11:toxics11030238. [PMID: 36977003 PMCID: PMC10055382 DOI: 10.3390/toxics11030238] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 05/14/2023]
Abstract
After World War II, large amounts of ammunition were dumped in surface waters worldwide, potentially releasing harmful and toxic compounds to the environment. To study their degradation, ammunition items dumped in the Eastern Scheldt in The Netherlands were surfaced. Severe damage due to corrosion and leak paths through the casings were observed, making the explosives in the ammunition accessible to sea water. Using novel techniques, the concentrations of ammunition-related compounds in the surrounding seabed and in the seawater were analyzed at 15 different locations. In the direct vicinity of ammunition, elevated concentrations of ammunition-related compounds (both metals and organic substances) were found. Concentrations of energetic compounds ranged from below the limit of detection (LoD) up to the low two-digit ng/L range in water samples, and from below the LoD up to the one-digit ng/g dry weight range in sediment samples. Concentrations of metals were found up to the low microgram/L range in water and up the low ng/g dry weight in sediment. However, even though the water and sediment samples were collected as close to the ammunition items as possible, the concentrations of these compounds were low and, as far as available, no quality standards or limits were exceeded. The presence of fouling, the low solubility of the energetic compounds, and dilution by the high local water current were concluded to be the main causes for the absence of high concentrations of ammunition-related compounds. As a conclusion, these new analytical methods should be applied to continuously monitor the Eastern Scheldt munitions dump site.
Collapse
Affiliation(s)
- J. H. den Otter
- Department of Energetic Materials, TNO, Ypenburgse Boslaan 2, 2496 ZA The Hague, The Netherlands
- Correspondence:
| | - D. Pröfrock
- Department Inorganic Environmental Chemistry, Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - T. H. Bünning
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Brunswiker Straße 10, 24105 Kiel, Germany
| | - J. S. Strehse
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Brunswiker Straße 10, 24105 Kiel, Germany
| | | | - E. Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Brunswiker Straße 10, 24105 Kiel, Germany
| |
Collapse
|
7
|
Barbosa J, Asselman J, Janssen CR. Synthesizing the impact of sea-dumped munition and related chemicals on humans and the environment. MARINE POLLUTION BULLETIN 2023; 187:114601. [PMID: 36652858 DOI: 10.1016/j.marpolbul.2023.114601] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Marine environments are globally impacted by vast quantities of munition disposed following both World Wars. Dumped munitions contain conventional explosives, chemicals warfare agents as well as a variety of metals. Field monitoring studies around marine dumpsites report the presence of munition constituents in water and sediment samples. The growing interest and developments in the ocean as a new economic frontier underline the need to remediate existing dumpsites. Here, we provide a comprehensive assessment of the magnitude and potential risks associated with marine munition dumpsites. An overview of the global distribution of dumpsites identifying the most impacted areas is provided, followed by the currently available data on the detection of munition constituents in environmental samples and evidence of their toxic potential to human and environmental health. Finally, existing data gaps are identified and future research needs promoting better understanding of the impact of the dumped material on the marine environment suggested.
Collapse
Affiliation(s)
- João Barbosa
- Laboratory for Environmental Toxicology and Aquatic Ecology, GhEnToxLab, Ghent University, Belgium; Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium.
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Colin R Janssen
- Laboratory for Environmental Toxicology and Aquatic Ecology, GhEnToxLab, Ghent University, Belgium; Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium
| |
Collapse
|
8
|
Maser E, Bünning TH, Brenner M, Van Haelst S, De Rijcke M, Müller P, Wichert U, Strehse JS. Warship wrecks and their munition cargos as a threat to the marine environment and humans: The V 1302 "JOHN MAHN" from World War II. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159324. [PMID: 36216058 DOI: 10.1016/j.scitotenv.2022.159324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 05/27/2023]
Abstract
In addition to endangering sea traffic, cable routes, and wind farms, sunken warship wrecks with dangerous cargo, fuel, or munitions on board may emerge as point sources for environmental damage. Energetic compounds such as TNT (which could leak from these munitions) are known for their toxicity, mutagenicity, and carcinogenicity. These compounds may cause potential adverse effects on marine life via contamination of the marine ecosystem, and their entry into the marine and human food chain could directly affect human health. To ascertain the impending danger of an environmental catastrophe posed by sunken warships, the North Sea Wrecks (NSW) project (funded by the Interreg North Sea Region Program) was launched in 2018. Based on historical data (derived from military archives) including the calculated amount of munitions still on board, its known location and accessibility, the German World War II ship "Vorpostenboot 1302" (former civilian name - "JOHN MAHN") was selected as a case study to investigate the leakage and distribution of toxic explosives in the marine environment. The wreck site and surrounding areas were mapped in great detail by scientific divers and a multibeam echosounder. Water and sediment samples were taken in a cross-shaped pattern around the wreck. To assess a possible entry into the marine food chain, caged mussels were exposed at the wreck, and wild fish (pouting), a sedentary species that stays locally at the wreck, were caught. All samples were analyzed for the presence of TNT and derivatives thereof by GC-MS/MS analysis. As a result, we could provide evidence that sunken warship wrecks emerge as a point source of contamination with nitroaromatic energetic compounds leaking from corroding munitions cargo still on board. Not only did we find these explosive substances in bottom water and sediment samples around the wreck, but also in the caged mussels as well as in wild fish living at the wreck. Fortunately so far, the concentrations found in mussel meat and fish filet were only in the one-digit ng per gram range thus indicating no current concern for the human seafood consumer. However, in the future the situation may worsen as the corrosion continues. From our study, it is proposed that wrecks should not only be ranked according to critical infrastructure and human activities at sea, but also to the threats they pose to the environment and the human seafood consumer.
Collapse
Affiliation(s)
- Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Brunswiker Str. 10, 24105 Kiel, Germany.
| | - Tobias H Bünning
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Brunswiker Str. 10, 24105 Kiel, Germany
| | - Matthias Brenner
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Sven Van Haelst
- Flanders Marine Institute (VLIZ), Wandelaarkaai 7, 8400 Oostende, Belgium
| | - Maarten De Rijcke
- Flanders Marine Institute (VLIZ), Wandelaarkaai 7, 8400 Oostende, Belgium
| | - Patrick Müller
- 3D Artist Freelancer, Auf dem Steinchen 6, 53127 Bonn, Germany
| | - Uwe Wichert
- Consultant BLANO, MEKUN and HELCOM SUBMERGED, Eichenweg 6, 24351 Damp, Germany
| | - Jennifer S Strehse
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Brunswiker Str. 10, 24105 Kiel, Germany
| |
Collapse
|
9
|
Klapec DJ, Czarnopys G, Pannuto J. Interpol review of the analysis and detection of explosives and explosives residues. Forensic Sci Int Synerg 2023; 6:100298. [PMID: 36685733 PMCID: PMC9845958 DOI: 10.1016/j.fsisyn.2022.100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Douglas J. Klapec
- Arson and Explosives Section I, United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Greg Czarnopys
- Forensic Services, United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Julie Pannuto
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| |
Collapse
|
10
|
Schick LA, Strehse JS, Bünning TH, Maser E, Siebert U. Energetic Compounds in the Trophic Chain—A Pilot Study Examining the Exposure Risk of Common Eiders (Somateria mollissima) to TNT, Its Metabolites, and By-Products. TOXICS 2022; 10:685. [PMID: 36422895 PMCID: PMC9695780 DOI: 10.3390/toxics10110685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The Baltic and North Seas still contain large amounts of dumped munitions from both World Wars. The exposure of the munition shells to the seawater causes corrosion, which leads to the disintegration of shells and a leakage of energetic compounds, including the highly toxic 2,4,6-trinitrotoluene (TNT), and consequently threatening the marine environment. To evaluate the risk of accumulation of energetic compounds from conventional munitions in the marine food chain, we analyzed the presence of TNT and its metabolites 2-amino-4,6-dinitrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT) as well as their byproducts 1,3-dinitrobenzene (1,3-DNB) and 2,4-dinitrotoluene (2,4-DNT) in different tissues (including muscle, liver, kidney, brain, and bile) from 25 Common Eiders (Somateria mollissima) from the Danish Baltic Sea. Tissues were prepared according to approved protocols, followed by GC-MS/MS analysis. None of the aforementioned energetic compounds were detected in any of the samples. This pilot study is one of the first analyzing the presence of explosive chemicals in tissues from a free-ranging predatory species. This study highlights the need for continuous monitoring at different levels of the trophic chain to increase our knowledge on the distribution and possible accumulation of energetic compounds in the marine environment in order to provide reliable data for decision-making tools and risk assessments.
Collapse
Affiliation(s)
- Luca Aroha Schick
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, 25761 Büsum, Germany
| | - Jennifer Susanne Strehse
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Straße 10, 24105 Kiel, Germany
| | - Tobias Hartwig Bünning
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Straße 10, 24105 Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Straße 10, 24105 Kiel, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, 25761 Büsum, Germany
| |
Collapse
|
11
|
Wang W, Wang X, Lakey PSJ, Ezell MJ, Shiraiwa M, Finlayson-Pitts BJ. Gas Phase and Gas-Solid Interface Ozonolysis of Nitrogen Containing Alkenes: Nitroalkenes, Enamines, and Nitroenamines. J Phys Chem A 2022; 126:5398-5406. [PMID: 35925795 PMCID: PMC9393864 DOI: 10.1021/acs.jpca.2c04400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Indexed: 11/29/2022]
Abstract
Emerging contaminants are of concern due to their rapidly increasing numbers and potential ecological and human health effects. In this study, the synergistic effects of the presence of multifunctional nitro, amino and carbon-carbon double bond (C═C) groups on the gas phase ozonolysis in O2 or at the air/solid interface were investigated using five simple model compounds. The gas phase ozonolysis rate constants at 296 K were (3.5 ± 0.9) × 10-20 cm3 molecule-1 s-1 for 2-methyl-1-nitroprop-1-ene and (6.8 ± 0.8) × 10-19 cm3 molecule-1 s-1 for 4-methyl-4-nitro-1-pentene, with lifetimes of 134 and 7 days in the presence of 100 ppb ozone in the atmosphere, respectively. The rate constants for gas phase E-N,N-dimethyl-1-propenylamine and N,N-dimethylallylamine reactions with ozone were too fast (>10-18 cm3 molecule-1 s-1) to be measured, implying lifetimes of less than 5 days. A multiphase kinetics model (KM-GAP) was used to probe the gas-solid kinetics of 1-dimethylamino-2-nitroethylene, yielding a rate constant for the surface reaction of 1.8 × 10-9 cm2 molecule-1 s-1 and in the bulk 1× 10-16 cm3 molecule-1 s-1. These results show that a nitro group attached to the C═C lowers the gas phase rate constant by 2-3 orders of magnitude compared to the simple alkenes, while amino groups have the opposite effect. The presence of both groups provides counterbalancing effects. Products with deleterious health effects including dimethylformamide and formaldehyde were identified by FTIR. The identified products differentiate whether the initial site of ozone attack is C═C and/or the amino group. This study provides a basis for predicting the environmental fates of emerging contaminants and shows that both the toxicity of both the parent compounds and the products should be taken into account in assessing their environmental impacts.
Collapse
Affiliation(s)
| | | | - Pascale S. J. Lakey
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Michael J. Ezell
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | | |
Collapse
|
12
|
Mary Celin S, Sharma B, Bhanot P, Kalsi A, Sahai S, Tanwar RK. Trends in environmental monitoring of high explosives present in soil/sediment/groundwater using LC-MS/MS. MASS SPECTROMETRY REVIEWS 2022:e21778. [PMID: 35657034 DOI: 10.1002/mas.21778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Environmental contamination by explosives occurs due to improper handling and disposal procedures. Explosives and their transformation products pose threat to human health and the ecosystem. Trace level detection of explosives present in different environmental matrices is a challenge, due to the interference caused by matrix components and the presence of cocontaminants. Liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) is an advanced analytical tool, which is ideal for quantitative and qualitative detection of explosives and its metabolites at trace levels. This review aims to showcase the current trends in the application of LC-MS/MS for detecting explosives present in soil, sediment, and groundwater with detection limits ranging from nano to femtogram levels. Specificity and advantages of using LC-MS/MS over conventional analytical methods and various processing methods and techniques used for sample preparation are discussed in this article. Important application aspects of LC-MS/MS on environmental monitoring include site characterization and degradation evaluation. Studies on qualitative and quantitative LC-MS/MS analysis in determining the efficiency of treatment processes and contamination mapping, optimized conditions of LC and MS/MS adopted, role of different ionization techniques and mass analyzers in detection of explosives and its metabolites, relative abundance of various product ions formed on dissociation and the levels of detection achieved are reviewed. Ionization suppression, matrix effect, additive selection are some of the major factors which influence MS/MS detection. A summary of challenges and future research insights for effective utilization of this technique in the environmental monitoring of explosives are presented.
Collapse
Affiliation(s)
- Senthil Mary Celin
- Modelling Simulation and Explosive Safety research Group (MS&ESRG), Centre for Fire Explosive and Environment Safety (CFEES), DRDO, Delhi, India
| | - Bhumika Sharma
- Modelling Simulation and Explosive Safety research Group (MS&ESRG), Centre for Fire Explosive and Environment Safety (CFEES), DRDO, Delhi, India
| | - Pallvi Bhanot
- Modelling Simulation and Explosive Safety research Group (MS&ESRG), Centre for Fire Explosive and Environment Safety (CFEES), DRDO, Delhi, India
| | - Anchita Kalsi
- Modelling Simulation and Explosive Safety research Group (MS&ESRG), Centre for Fire Explosive and Environment Safety (CFEES), DRDO, Delhi, India
| | - Sandeep Sahai
- Modelling Simulation and Explosive Safety research Group (MS&ESRG), Centre for Fire Explosive and Environment Safety (CFEES), DRDO, Delhi, India
| | - Rajesh Kumar Tanwar
- Modelling Simulation and Explosive Safety research Group (MS&ESRG), Centre for Fire Explosive and Environment Safety (CFEES), DRDO, Delhi, India
| |
Collapse
|
13
|
Geomorphological Data from Detonation Craters in the Fehmarn Belt, German Baltic Sea. DATA 2022. [DOI: 10.3390/data7050063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Military munitions from World War I and II dumped at the seafloor are a threat to the marine environment and its users. Decades of saltwater exposure make the explosives fragile and difficult to dispose of. If required, the munition is blast-in-place. In August 2019, 42 ground mines were detonated in a controlled manner underwater during a NATO maneuver in the German Natura2000 Special Area of Conservation Fehmarn Belt, the Baltic Sea. In June 2020, four detonation craters were investigated with a multibeam echosounder for the first time. This dataset is represented here as maps of bathymetry, slope angle, and height difference to the surrounding. The circular craters were still clearly visible a year after the detonation. The diameter and depth of the structures were between 7.5–12.6 m and 0.7–2.2 m, respectively. In total, about 321 m2 of the seafloor was destroyed along the track line.
Collapse
|
14
|
Beck AJ, Gledhill M, Kampmeier M, Feng C, Schlosser C, Greinert J, Achterberg EP. Explosives compounds from sea-dumped relic munitions accumulate in marine biota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151266. [PMID: 34757098 DOI: 10.1016/j.scitotenv.2021.151266] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 05/27/2023]
Abstract
Relic munitions are a hazardous legacy of the two world wars present in coastal waters worldwide. The southwest Baltic Sea has an especially high prevalence of unexploded ordnance and dumped munition material, which represent a large potential source of toxic explosive chemicals (munition compounds, MC). In the current study, diverse biota (plankton, macroalgae, tunicate, sponge, mollusc, echinoderm, polychaete, anemone, crustacea, fish) were collected from the Kiel Bight and a munitions dumpsite at Kolberger Heide, Germany, to evaluate the potential bioaccumulation of explosives and their derivatives (2,4,6-trinitrotoluene, TNT; 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene, ADNT; 2,4-diamino-6-nitrotoluene and 2,6-diamino-4-nitrotoluene, DANT; 1,3-dinitrobenzene, DNB; and 1,3,5-trinitro-1,3,5-triazinane, RDX). One or more MCs were detected in >98% of organisms collected throughout the study region (n = 178), at a median level of 6 pmol/g (approximately 1 ng/g) and up to 2 × 107 pmol/g (TNT in Asterias rubens collected from Kolberger Heide). In most cases, TNT and its transformation product compounds ADNT and DANT were significantly higher in biota from the munitions dumpsite compared with other locations. Generally, DNB and RDX were detected less frequently and at lower concentrations than TNT, ADNT, and DANT. In commercially important fish species (plaice, flounder) from Kolberger Heide, TNT and ADNT were detected in 17 and 33% of samples, respectively. In contrast DANT was detected in every fish sample, including those outside the dumpsite. Dinitrobenzene was the second most prevalent MC in fish tissue. Fish viscera (stomach, kidney, liver) showed higher levels of DANT than edible muscle flesh, with highest DANT in liver, suggesting reduced risk to seafood consumers. This study provides some of the first environmental evidence for widespread bioaccumulation of MC in a coastal marine food web. Although tissue MC content was generally low, corrosion of munition housings may lead to greater MC release in the future, and the ecological risk of this exposure is unknown.
Collapse
Affiliation(s)
- Aaron J Beck
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany.
| | - Martha Gledhill
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany
| | - Mareike Kampmeier
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany
| | - Caiyan Feng
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany
| | - Christian Schlosser
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany
| | - Jens Greinert
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany; Christian-Albrechts University Kiel, Institute of Geosciences, Ludewig-Meyn-Str, Kiel, Germany
| | - Eric P Achterberg
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany
| |
Collapse
|
15
|
Kammann U, Aust MO, Siegmund M, Schmidt N, Straumer K, Lang T. Deep impact? Is mercury in dab (Limanda limanda) a marker for dumped munition? Results from munition dump site Kolberger Heide (Baltic Sea). ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:788. [PMID: 34757592 PMCID: PMC8580933 DOI: 10.1007/s10661-021-09564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Dumped munitions contain various harmful substances which can affect marine biota like fish. One of them is mercury (Hg), included in the common explosive primer Hg fulminate. There is still a lack of knowledge whether dumped munitions impact the Hg concentrations in the Baltic Sea environment. This study aims to answer the question if dab caught at the dump site Kolberger Heide show higher Hg concentrations released from munition sources and whether Hg in fish is a usable marker for munition exposure. Therefore, a total of 251 individual dab (Limanda limanda) were analysed including 99 fish from the dump site. In fish from the Kolberger Heide, no elevated Hg concentrations were found compared to reference sites when age-dependent bioaccumulation of mercury was considered. Therefore we conclude that Hg in fish is no suitable indicator for exposure to munition dumping, e.g. in the frame of possible future monitoring studies as Hg exposure originating from dumped munition is only a small contributor to overall Hg exposure of fish.
Collapse
Affiliation(s)
- Ulrike Kammann
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, Bremerhaven, 27572, Germany.
| | - Marc-Oliver Aust
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, Bremerhaven, 27572, Germany
| | - Maike Siegmund
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, Bremerhaven, 27572, Germany
| | - Nicole Schmidt
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, Bremerhaven, 27572, Germany
| | - Katharina Straumer
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, Bremerhaven, 27572, Germany
| | - Thomas Lang
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, Bremerhaven, 27572, Germany
| |
Collapse
|
16
|
Pažusienė J, Valskienė R, Grygiel W, Stankevičiūtė M, Butrimavičienė L, Baršienė J. Cytogenetic damage in native Baltic Sea fish species: environmental risks associated with chemical munition dumping in the Gotland Basin of the Baltic Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62200-62215. [PMID: 34189697 DOI: 10.1007/s11356-021-14827-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
This study represents the first attempt to assess genotoxicity and cytotoxicity effects in herring (Clupea harengus membras), flounder (Platichthys flesus), and cod (Gadus morhua callarias) caught at 47 study stations, located close to chemical munition dumpsites in the Gotland Basin, the Baltic Sea. Herring sampled from stations located in the center of chemical munition dumpsites exhibited the highest levels of micronuclei (MN) and total genotoxicity (ΣGentox), which is defined as the sum of frequencies of such nuclear abnormalities as micronuclei, nuclear buds, nuclear buds on the filament, and bi-nucleated erythrocytes with nucleoplasmic bridges. Exceptionally high and high ΣGentox risks were determined for flounder (89.47%), herring (79.31%), and cod (50%) caught at the stations located close to the chemical munition dumpsites.
Collapse
Affiliation(s)
- Janina Pažusienė
- Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania.
| | - Roberta Valskienė
- Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania
| | - Włodzimierz Grygiel
- National Marine Fisheries Research Institute, 1 Kołłątaja Street, 81-332, Gdynia, Poland
| | | | | | - Janina Baršienė
- Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania
| |
Collapse
|
17
|
Janßen R, Beck AJ, Werner J, Dellwig O, Alneberg J, Kreikemeyer B, Maser E, Böttcher C, Achterberg EP, Andersson AF, Labrenz M. Machine Learning Predicts the Presence of 2,4,6-Trinitrotoluene in Sediments of a Baltic Sea Munitions Dumpsite Using Microbial Community Compositions. Front Microbiol 2021; 12:626048. [PMID: 34659134 PMCID: PMC8513674 DOI: 10.3389/fmicb.2021.626048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 08/24/2021] [Indexed: 01/04/2023] Open
Abstract
Bacteria are ubiquitous and live in complex microbial communities. Due to differences in physiological properties and niche preferences among community members, microbial communities respond in specific ways to environmental drivers, potentially resulting in distinct microbial fingerprints for a given environmental state. As proof of the principle, our goal was to assess the opportunities and limitations of machine learning to detect microbial fingerprints indicating the presence of the munition compound 2,4,6-trinitrotoluene (TNT) in southwestern Baltic Sea sediments. Over 40 environmental variables including grain size distribution, elemental composition, and concentration of munition compounds (mostly at pmol⋅g–1 levels) from 150 sediments collected at the near-to-shore munition dumpsite Kolberger Heide by the German city of Kiel were combined with 16S rRNA gene amplicon sequencing libraries. Prediction was achieved using Random Forests (RFs); the robustness of predictions was validated using Artificial Neural Networks (ANN). To facilitate machine learning with microbiome data we developed the R package phyloseq2ML. Using the most classification-relevant 25 bacterial genera exclusively, potentially representing a TNT-indicative fingerprint, TNT was predicted correctly with up to 81.5% balanced accuracy. False positive classifications indicated that this approach also has the potential to identify samples where the original TNT contamination was no longer detectable. The fact that TNT presence was not among the main drivers of the microbial community composition demonstrates the sensitivity of the approach. Moreover, environmental variables resulted in poorer prediction rates than using microbial fingerprints. Our results suggest that microbial communities can predict even minor influencing factors in complex environments, demonstrating the potential of this approach for the discovery of contamination events over an integrated period of time. Proven for a distinct environment future studies should assess the ability of this approach for environmental monitoring in general.
Collapse
Affiliation(s)
- René Janßen
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Aaron J Beck
- Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Johannes Werner
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Olaf Dellwig
- Marine Geology, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Johannes Alneberg
- Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Claus Böttcher
- State Ministry of Energy, Agriculture, The Environment, Nature and Digitization, Kiel, Germany
| | - Eric P Achterberg
- Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Anders F Andersson
- Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Matthias Labrenz
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| |
Collapse
|
18
|
Can seafood from marine sites of dumped World War relicts be eaten? Arch Toxicol 2021; 95:2255-2261. [PMID: 33837803 PMCID: PMC8241755 DOI: 10.1007/s00204-021-03045-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/01/2021] [Indexed: 10/27/2022]
Abstract
Since World War I, considerable amounts of warfare materials have been dumped at seas worldwide. After more than 70 years of resting on the seabed, reports suggest that the metal shells of these munitions are corroding, such that explosive chemicals leak out and distribute in the marine environment. Explosives such as TNT (2,4,6-trinitrotoluene) and its derivatives are known for their toxicity and carcinogenicity, thereby posing a threat to the marine environment. Toxicity studies suggest that chemical components of munitions are unlikely to cause acute toxicity to marine organisms. However, there is increasing evidence that they can have sublethal and chronic effects in aquatic biota, especially in organisms that live directly on the sea floor or in subsurface substrates. Moreover, munition-dumping sites could serve as nursery habitats for young biota species, demanding special emphasis on all kinds of developing juvenile marine animals. Unfortunately, these chemicals may also enter the marine food chain and directly affect human health upon consuming contaminated seafood. While uptake and accumulation of toxic munition compounds in marine seafood species such as mussels and fish have already been shown, a reliable risk assessment for the human seafood consumer and the marine ecosphere is lacking and has not been performed until now. In this review, we compile the first data and landmarks for a reliable risk assessment for humans who consume seafood contaminated with munition compounds. We hereby follow the general guidelines for a toxicological risk assessment of food as suggested by authorities.
Collapse
|
19
|
Bünning TH, Strehse JS, Hollmann AC, Bötticher T, Maser E. A Toolbox for the Determination of Nitroaromatic Explosives in Marine Water, Sediment, and Biota Samples on Femtogram Levels by GC-MS/MS. TOXICS 2021; 9:toxics9030060. [PMID: 33809806 PMCID: PMC8002532 DOI: 10.3390/toxics9030060] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/07/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022]
Abstract
To determine the amount of the explosives 1,3-dinitrobenzene, 2,4-dinitrotoluene, 2,4,6-trinitrotoluene, and its metabolites in marine samples, a toolbox of methods was developed to enhance sample preparation and analysis of various types of marine samples, such as water, sediment, and different kinds of biota. To achieve this, established methods were adapted, improved, and combined. As a result, if explosive concentrations in sediment or mussel samples are greater than 10 ng per g, direct extraction allows for time-saving sample preparation; if concentrations are below 10 ng per g, techniques such as freeze-drying, ultrasonic, and solid-phase extraction can help to detect even picogram amounts. Two different GC-MS/MS methods were developed to enable the detection of these explosives in femtogram per microliter. With a splitless injector, limits of detection (LODs) between 77 and 333 fg/µL could be achieved in only 6.25 min. With the 5 µL programmable temperature vaporization-large volume method (PTV-LVI), LODs between 8 and 47 fg/µL could be achieved in less than 7 min. The detection limits achieved by these methods are among the lowest published to date. Their reliability has been tested and confirmed by measuring large and diverse sample sets.
Collapse
|
20
|
Strehse JS, Brenner M, Kisiela M, Maser E. The explosive trinitrotoluene (TNT) induces gene expression of carbonyl reductase in the blue mussel (Mytilus spp.): a new promising biomarker for sea dumped war relicts? Arch Toxicol 2020; 94:4043-4054. [PMID: 33094350 PMCID: PMC8215042 DOI: 10.1007/s00204-020-02931-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022]
Abstract
Millions of tons of all kind of munitions, including mines, bombs and torpedoes have been dumped after World War II in the marine environment and do now pose a new threat to the seas worldwide. Beside the acute risk of unwanted detonation, there is a chronic risk of contamination, because the metal vessels corrode and the toxic and carcinogenic explosives (trinitrotoluene (TNT) and metabolites) leak into the environment. While the mechanism of toxicity and carcinogenicity of TNT and its derivatives occurs through its capability of inducing oxidative stress in the target biota, we had the idea if TNT can induce the gene expression of carbonyl reductase in blue mussels. Carbonyl reductases are members of the short-chain dehydrogenase/reductase (SDR) superfamily. They metabolize xenobiotics bearing carbonyl functions, but also endogenous signal molecules such as steroid hormones, prostaglandins, biogenic amines, as well as sugar and lipid peroxidation derived reactive carbonyls, the latter providing a defence mechanism against oxidative stress and reactive oxygen species (ROS). Here, we identified and cloned the gene coding for carbonyl reductase from the blue mussel Mytilus spp. by a bioinformatics approach. In both laboratory and field studies, we could show that TNT induces a strong and concentration-dependent induction of gene expression of carbonyl reductase in the blue mussel. Carbonyl reductase may thus serve as a biomarker for TNT exposure on a molecular level which is useful to detect TNT contaminations in the environment and to perform a risk assessment both for the ecosphere and the human seafood consumer.
Collapse
Affiliation(s)
- Jennifer S Strehse
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Brunswiker Str. 10, 24105, Kiel, Germany
| | - Matthias Brenner
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Michael Kisiela
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Brunswiker Str. 10, 24105, Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Brunswiker Str. 10, 24105, Kiel, Germany.
| |
Collapse
|
21
|
Strehse JS, Maser E. Marine bivalves as bioindicators for environmental pollutants with focus on dumped munitions in the sea: A review. MARINE ENVIRONMENTAL RESEARCH 2020; 158:105006. [PMID: 32501270 DOI: 10.1016/j.marenvres.2020.105006] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
The seas worldwide are threatened by a "new" source of pollution. Munitions dumped into the seas worldwide will corrode and start to leak. Their impacts on the environment and on human health are now more than ever subject of scientific research. Bivalves are a first choice bioindicator and their importance is demonstrated in numerous worldwide studies as well as their integration in important monitoring programs. In this review, the use of mussels in context with marine pollutants in recent years is pointed out in general but with a special focus on dumped conventional and chemical munitions. Monitoring experiments with mussels are able to generate large data sets, which should be mandatory included in decision support tools to increase their weight of evidence. The usefulness of mussels with regard to dumped munitions has clearly been documented in recent years and the further application of this important biomonitoring system is strongly recommended.
Collapse
Affiliation(s)
- Jennifer S Strehse
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany.
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany.
| |
Collapse
|