1
|
Rodríguez-Villegas C, Pérez-Santos I, Díaz PA, Baldrich ÁM, Lee MR, Saldías GS, Mancilla-Gutiérrez G, Urrutia C, Navarro CR, Varela DA, Ross L, Figueroa RI. Deep Turbulence as a Novel Main Driver for Multi-Specific Toxic Algal Blooms: The Case of an Anoxic and Heavy Metal-Polluted Submarine Canyon That Harbors Toxic Dinoflagellate Resting Cysts. Microorganisms 2024; 12:2015. [PMID: 39458324 PMCID: PMC11510374 DOI: 10.3390/microorganisms12102015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Over the recent decades, an apparent worldwide rise in Harmful Algae Blooms (HABs) has been observed due to the growing exploitation of the coastal environment, the exponential growth of monitoring programs, and growing global maritime transport. HAB species like Alexandrium catenella-responsible for paralytic shellfish poisoning (PSP)-Protoceratium reticulatum, and Lingulaulax polyedra (yessotoxin producers) are a major public concern due to their negative socioeconomic impacts. The significant northward geographical expansion of A. catenella into more oceanic-influenced waters from the fjords where it is usually observed needs to be studied. Currently, their northern boundary reaches the 36°S in the Biobio region where sparse vegetative cells were recently observed in the water column. Here, we describe the environment of the Biobio submarine canyon using sediment and water column variables and propose how toxic resting cyst abundance and excystment are coupled with deep-water turbulence (10-7 Watt/kg) and intense diapycnal eddy diffusivity (10-4 m2 s-1) processes, which could trigger a mono or multi-specific harmful event. The presence of resting cysts may not constitute an imminent risk, with these resting cysts being subject to resuspension processes, but may represent a potent indicator of the adaptation of HAB species to new environments like the anoxic Biobio canyon.
Collapse
Affiliation(s)
- Camilo Rodríguez-Villegas
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile; (I.P.-S.); (P.A.D.); (Á.M.B.); (M.R.L.); (G.M.-G.); (D.A.V.)
- CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile
| | - Iván Pérez-Santos
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile; (I.P.-S.); (P.A.D.); (Á.M.B.); (M.R.L.); (G.M.-G.); (D.A.V.)
- Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción 4070386, Chile;
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Coyhaique 5950000, Chile
| | - Patricio A. Díaz
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile; (I.P.-S.); (P.A.D.); (Á.M.B.); (M.R.L.); (G.M.-G.); (D.A.V.)
- CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile
| | - Ángela M. Baldrich
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile; (I.P.-S.); (P.A.D.); (Á.M.B.); (M.R.L.); (G.M.-G.); (D.A.V.)
- CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile
| | - Matthew R. Lee
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile; (I.P.-S.); (P.A.D.); (Á.M.B.); (M.R.L.); (G.M.-G.); (D.A.V.)
| | - Gonzalo S. Saldías
- Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción 4070386, Chile;
- Departamento de Física, Facultad de Ciencias, Universidad del Bío-Bío, Concepción 4081112, Chile
| | - Guido Mancilla-Gutiérrez
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile; (I.P.-S.); (P.A.D.); (Á.M.B.); (M.R.L.); (G.M.-G.); (D.A.V.)
| | - Cynthia Urrutia
- Departamento de Recursos Naturales y Medio Ambiente, Universidad de Los Lagos, Chinquihue km. 6, Puerto Montt 5480000, Chile; (C.U.); (C.R.N.)
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Claudio R. Navarro
- Departamento de Recursos Naturales y Medio Ambiente, Universidad de Los Lagos, Chinquihue km. 6, Puerto Montt 5480000, Chile; (C.U.); (C.R.N.)
| | - Daniel A. Varela
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile; (I.P.-S.); (P.A.D.); (Á.M.B.); (M.R.L.); (G.M.-G.); (D.A.V.)
| | - Lauren Ross
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, USA;
| | - Rosa I. Figueroa
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain
| |
Collapse
|
2
|
Meng R, Du X, Ge K, Wu C, Zhang Z, Liang X, Yang J, Zhang H. Does climate change increase the risk of marine toxins? Insights from changing seawater conditions. Arch Toxicol 2024; 98:2743-2762. [PMID: 38795135 DOI: 10.1007/s00204-024-03784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024]
Abstract
Marine toxins produced by marine organisms threaten human health and impose a heavy public health burden on coastal countries. Lately, there has been an emergence of marine toxins in regions that were previously unaffected, and it is believed that climate change may be a significant factor. This paper systematically summarizes the impact of climate change on the risk of marine toxins in terms of changes in seawater conditions. From our findings, climate change can cause ocean warming, acidification, stratification, and sea-level rise. These climatic events can alter the surface temperature, salinity, pH, and nutrient conditions of seawater, which may promote the growth of various algae and bacteria, facilitating the production of marine toxins. On the other hand, climate change may expand the living ranges of marine organisms (such as algae, bacteria, and fish), thereby exacerbating the production and spread of marine toxins. In addition, the sources, distribution, and toxicity of ciguatoxin, tetrodotoxin, cyclic imines, and microcystin were described to improve public awareness of these emerging marine toxins. Looking ahead, developing interdisciplinary cooperation, strengthening monitoring of emerging marine toxins, and exploring more novel approaches are essential to better address the risks of marine toxins posed by climate change. Altogether, the interrelationships between climate, marine ecology, and marine toxins were analyzed in this study, providing a theoretical basis for preventing and managing future health risks from marine toxins.
Collapse
Affiliation(s)
- Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunrui Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao Liang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Fuenzalida G, Yarimizu K, Norambuena L, Fujiyoshi S, Perera IU, Rilling JI, Campos M, Ruiz-Gil T, Vilugrón J, Sandoval-Sanhueza A, Ortiz M, Espinoza-González O, Guzmán L, Acuña JJ, Jorquera MA, Maruyama F. Environmental evaluation of the Reloncaví estuary in southern Chile based on lipophilic shellfish toxins as related to harmful algal blooms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172374. [PMID: 38615760 DOI: 10.1016/j.scitotenv.2024.172374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
The Reloncaví estuary in southern Chile is famous for its aquaculture. However, recurring harmful algal blooms have adversely affected mussel production. Therefore, regular monitoring of algal toxins is urgently needed to better understand the contamination status of the estuary. In this study, we quantified 15 types of lipophilic shellfish toxins in Metri Bay in the Reloncaví estuary on a biweekly basis for 4 years. We identified algal species using microscopy and metabarcoding analysis. We also measured water temperature, salinity, chlorophyll-a, and dissolved oxygen to determine the potential relationships of these parameters with algal toxin production. Our results revealed the presence of a trace amount of pectenotoxin and the causal phytoplankton Dinophysis, as well as yessotoxin and the causal phytoplankton Protoceratium. Statistical analysis indicated that fluctuations in water temperature affected the detection of these toxins. Additionally, metabarcoding analysis detected the highly toxic phytoplankton Alexandrium spp. in some samples. Although our results suggest that the level of lipophilic shellfish toxins in Metri Bay during the study period was insignificantly low using our current LC-MS method, the confirmed presence of highly toxic algae in Metri Bay raises concerns, given that favorable environmental conditions could cause blooms.
Collapse
Affiliation(s)
- Gonzalo Fuenzalida
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Padre Harter 547, Puerto Montt 5480000, Chile; Departamento de Ciencias Basicas, Facultad de Ciencias, Universidad Santo Tomas, Buena Vecindad #91, Puerto Montt 5480000, Chile.
| | - Kyoko Yarimizu
- Microbial Genomics and Ecology, The IDEC Institute, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8511, Japan.
| | - Luis Norambuena
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Padre Harter 547, Puerto Montt 5480000, Chile.
| | - So Fujiyoshi
- Microbial Genomics and Ecology, The IDEC Institute, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8511, Japan.
| | - Ishara Uhanie Perera
- Microbial Genomics and Ecology, The IDEC Institute, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8511, Japan.
| | - Joaquin-Ignacio Rilling
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Quimicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco 4780000, Chile.
| | - Marco Campos
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Quimicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco 4780000, Chile; Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Manuel Montt 056, Temuco 4780000, Chile
| | - Tay Ruiz-Gil
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Quimicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco 4780000, Chile
| | - Jonnathan Vilugrón
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Padre Harter 547, Puerto Montt 5480000, Chile.
| | - Alondra Sandoval-Sanhueza
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Padre Harter 547, Puerto Montt 5480000, Chile
| | - Mario Ortiz
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Padre Harter 547, Puerto Montt 5480000, Chile
| | - Oscar Espinoza-González
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Padre Harter 547, Puerto Montt 5480000, Chile.
| | - Leonardo Guzmán
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Padre Harter 547, Puerto Montt 5480000, Chile.
| | - Jacqueline J Acuña
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Quimicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco 4780000, Chile.
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Quimicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco 4780000, Chile.
| | - Fumito Maruyama
- Microbial Genomics and Ecology, The IDEC Institute, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8511, Japan.
| |
Collapse
|
4
|
Norambuena-Subiabre L, Carbonell P, Salgado P, Zamora C, Espinoza-González O. Sources and profiles of toxins in shellfish from the south-central coast of Chile (36°‒ 43° S). HARMFUL ALGAE 2024; 133:102608. [PMID: 38485442 DOI: 10.1016/j.hal.2024.102608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
The study of marine toxins in shellfish is of the utmost importance to ensure people's food safety. Marine toxins in shellfish and microalgae in the water column off the south-central coast of Chile (36°‒43° S) were studied in a network of 64 stations over a 14-month period. The relative abundance of harmful species Alexandrium catenella, Alexandrium ostenfeldii, Protoceratium reticulatum, Dinophysis acuminata, Dinophysis acuta, Pseudo-nitzschia seriata group and P. delicatissima group was analyzed. The detection and quantification of lipophilic toxins and domoic acid (DA) in shellfish was determined by UHPLC-MS/MS, and for Paralytic Shellfish Toxins (PSTs) by HPLC-FD with post-column oxidation, while for a culture of A. ostenfeldii a Hylic-UHPLC-MS/MS was used. Results showed that DA, gonyautoxin (GTX)-2, GTX-3 and pectenotoxin (PTX)-2 were detected below the permitted limits, while Gymnodimine (GYM)-A and 13-desmethylespirolide C (SPX-1) were below the limit of quantitation. According to the distribution and abundance record of microalgae, DA would be associated to P. seriata and P. delicatissima-groups, PTX-2 to D. acuminata, and GTX-2, GTX-3, GYM-A, and SPX-1 to A. ostenfeldii. However, the toxin analysis of an A. ostenfeldii culture from the Biobío region only showed the presence of the paralytic toxins C2, GTX-2, GTX-3, GTX-5 and saxitoxin, therefore, the source of production of GYM and SPX is still undetermined.
Collapse
Affiliation(s)
- Luis Norambuena-Subiabre
- Instituto de Fomento Pesquero (IFOP), Centro de Estudios de Algas Nocivas (CREAN), Padre Harter 574, Puerto Montt, Chile.
| | - Pamela Carbonell
- Instituto de Fomento Pesquero (IFOP), Centro de Estudios de Algas Nocivas (CREAN), Padre Harter 574, Puerto Montt, Chile
| | - Pablo Salgado
- Instituto de Fomento Pesquero (IFOP), Centro de Estudios de Algas Nocivas (CREAN), Enrique Abello 0552, Punta Arenas, Chile
| | - Claudia Zamora
- Instituto de Fomento Pesquero (IFOP), Centro de Estudios de Algas Nocivas (CREAN), Enrique Abello 0552, Punta Arenas, Chile
| | - Oscar Espinoza-González
- Instituto de Fomento Pesquero (IFOP), Centro de Estudios de Algas Nocivas (CREAN), Padre Harter 574, Puerto Montt, Chile
| |
Collapse
|
5
|
Mafra LL, Sunesen I, Pires E, Nascimento SM, Álvarez G, Mancera-Pineda JE, Torres G, Carnicer O, Huamaní Galindo JA, Sanchez Ramirez S, Martínez-Goicoechea A, Morales-Benavides D, Valerio-González L. Benthic harmful microalgae and their impacts in South America. HARMFUL ALGAE 2023; 127:102478. [PMID: 37544678 DOI: 10.1016/j.hal.2023.102478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
Public awareness about Benthic Harmful Algal Blooms (BHABs) and their negative impacts has increased substantially over the past few decades. Even so, reports of BHABs remain relatively scarce in South America (SA). This paper provides a comprehensive overview of the current state of knowledge on BHABs in the continent, by integrating data from published articles, books, and technical reports. We recorded ∼300 different occurrences of potentially toxic BHAB species over the Caribbean, Atlantic and Pacific coasts, mostly in marine (>95%) but also in estuarine areas located from 12⁰36' N to 54⁰53' S. Over 70% of the data was published/released within the past 10 years, and ∼85% were concentrated in Brazil, Venezuela, Ecuador and Colombia. Benthic species were mainly associated with macroalgae, seagrass and sediment. Incidental detection in the plankton was also relevant, mainly in places where studies targeting BHAB species are still rare, like Argentina, Uruguay, Chile and Peru. The study listed 31 infrageneric taxa of potentially toxic benthic dinoflagellates and eight of estuarine cyanobacteria occurring in SA, with the greatest species diversity recorded in the equatorial-tropical zone, mainly in northeastern Brazil (Atlantic), Venezuela and Colombia (Caribbean), and the Galapagos Islands, Ecuador (Pacific). Local strains of Amphidinium, Gambierdiscus, Coolia and Prorocentrum spp. produced toxic compounds of emerging concern. Prorocentrum lima species complex was the most common and widely distributed taxon, followed by Ostreopsis cf. ovata. In fact, these two dinoflagellates were associated with most BHAB events in SA. Whereas the former has caused the contamination of multiple marine organisms and cases of Diarrhetic Shellfish Poisoning in subtropical and temperate areas, the latter has been associated with faunal mortalities and is suspected of causing respiratory illness to beach users in tropical places. Ciguatera Poisoning has been reported in Colombia (∼240 cases; no deaths) and Venezuela (60 cases; two deaths), and may be also a risk in other places where Gambierdiscus spp. and Fukuyoa paulensis have been reported, such as the Galapagos Islands and the tropical Brazilian coast. Despite the recent advances, negative impacts from BHABs in SA are intensified by limited research/training funding, as well as the lack of official HAB monitoring and poor analytical capability for species identification and toxin detection in parts of the continent.
Collapse
Affiliation(s)
- Luiz L Mafra
- Centro de Estudos do Mar, Universidade Federal do Paraná, Av. Anibal Khury, 2033 - P.O. Box 61, Pontal do Paraná, PR, 83255-976, Brazil.
| | - Inés Sunesen
- División Ficología Dr. Sebastián Guarrera, FCNyM, Paseo del Bosque s/n, 1900, La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Godoy Cruz 2290, Buenos Aires, Argentina
| | - Estela Pires
- Centro de Estudos do Mar, Universidade Federal do Paraná, Av. Anibal Khury, 2033 - P.O. Box 61, Pontal do Paraná, PR, 83255-976, Brazil
| | - Silvia Mattos Nascimento
- Laboratório de Microalgas Marinhas, Universidade Federal do Estado do Rio de Janeiro - UNIRIO, Av. Pasteur, 458, Urca, Rio de Janeiro, 22290-240, RJ, Brazil
| | - Gonzalo Álvarez
- Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1281, Chile
| | - Josè Ernesto Mancera-Pineda
- Universidad Nacional de Colombia, sede Bogotá.Departamento de Biología, Facultad de Ciencias. Carrera 45 No. 26-85, Bogotá, Colombia
| | - Gladys Torres
- Instituto Oceanográfico y Antártico de la Armada (INOCAR), Vía Puerto Marítimo, Av. 25 de Julio, Guayaquil, Ecuador
| | - Olga Carnicer
- Departamento de Ingeniería Química y Ambiental, Universidad Politécnica de Cartagena, Spain
| | - José Alexis Huamaní Galindo
- Instituto del Mar del Perú, Laboratorio de Fitoplancton y Producción Primaria. Esq Gamarra y Gral Valle s/n Chucuito- Callao, Peru
| | - Sonia Sanchez Ramirez
- Instituto del Mar del Perú, Laboratorio de Fitoplancton y Producción Primaria. Esq Gamarra y Gral Valle s/n Chucuito- Callao, Peru
| | | | | | | |
Collapse
|
6
|
Díaz PA, Álvarez G, Pizarro G, Blanco J, Reguera B. Lipophilic Toxins in Chile: History, Producers and Impacts. Mar Drugs 2022; 20:122. [PMID: 35200651 PMCID: PMC8874607 DOI: 10.3390/md20020122] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/27/2023] Open
Abstract
A variety of microalgal species produce lipophilic toxins (LT) that are accumulated by filter-feeding bivalves. Their negative impacts on human health and shellfish exploitation are determined by toxic potential of the local strains and toxin biotransformations by exploited bivalve species. Chile has become, in a decade, the world's major exporter of mussels (Mytilus chilensis) and scallops (Argopecten purpuratus) and has implemented toxin testing according to importing countries' demands. Species of the Dinophysis acuminata complex and Protoceratium reticulatum are the most widespread and abundant LT producers in Chile. Dominant D. acuminata strains, notwithstanding, unlike most strains in Europe rich in okadaic acid (OA), produce only pectenotoxins, with no impact on human health. Dinophysis acuta, suspected to be the main cause of diarrhetic shellfish poisoning outbreaks, is found in the two southernmost regions of Chile, and has apparently shifted poleward. Mouse bioassay (MBA) is the official method to control shellfish safety for the national market. Positive results from mouse tests to mixtures of toxins and other compounds only toxic by intraperitoneal injection, including already deregulated toxins (PTXs), force unnecessary harvesting bans, and hinder progress in the identification of emerging toxins. Here, 50 years of LST events in Chile, and current knowledge of their sources, accumulation and effects, are reviewed. Improvements of monitoring practices are suggested, and strategies to face new challenges and answer the main questions are proposed.
Collapse
Affiliation(s)
- Patricio A. Díaz
- Centro i~mar (CeBiB), Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile;
| | - Gonzalo Álvarez
- Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1781421, Chile;
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 17811421, Chile
| | - Gemita Pizarro
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Enrique Abello 0552, Punta Arenas 6200000, Chile;
| | - Juan Blanco
- Centro de Investigacións Mariñas (Xunta de Galicia), Apto. 13, 36620 Vilanova de Arousa, Pontevedra, Spain;
| | - Beatriz Reguera
- Centro Oceanográfico de Vigo (IEO, CSIC), Subida a Radio Faro 50, 36390 Vigo, Pontevedra, Spain
| |
Collapse
|
7
|
Sandoval-Sanhueza A, Aguilera-Belmonte A, Basti L, Figueroa RI, Molinet C, Álvarez G, Oyanedel S, Riobó P, Mancilla-Gutiérrez G, Díaz PA. Interactive effects of temperature and salinity on the growth and cytotoxicity of the fish-killing microalgal species Heterosigma akashiwo and Pseudochattonella verruculosa. MARINE POLLUTION BULLETIN 2022; 174:113234. [PMID: 34922228 DOI: 10.1016/j.marpolbul.2021.113234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Fish-killing blooms of Heterosigma akashiwo and Pseudochattonella verruculosa have been devastating for the farmed salmon industry, but in Southern Chile the conditions that promote the growth and toxicity of these microalgae are poorly understood. This study examined the effects of different combinations of temperature (12, 15, 18 °C) and salinity (10, 20, 30 psu) on the growth of Chilean strains of these two species. The results showed that the optimal growth conditions for H. akashiwo and P. verruculosa differed, with a maximum rate of 0.99 day-1 obtained at 15 °C and a salinity of 20 psu for H. akashiwo, and a maximum rate of 1.06 day-1 obtained at 18 °C and a salinity of 30 psu for P. verruculosa. Cytotoxic assays (2 × 101 - 2 × 105 cell mL-1; cells, filtrates, and cell lysates) performed at salinities of 20 and 30 psu showed a 100% reduction in the viability of embryonic fish cells exposed to intact cells of H. akashiwo and a 39% reduction following exposure to culture filtrates of P. verruculosa. Differences in the fish-killing mechanisms (direct cell contact vs. extracellular substances) and physiological traits of H. akashiwo and P. verruculosa explain the recent occurrence of very large blooms under contrasting (cold-brackish vs. hot-salty) extreme climate conditions in Chile.
Collapse
Affiliation(s)
| | - Alejandra Aguilera-Belmonte
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lago Panguipulli 1390, Puerto Montt 5501842, Chile
| | - Leila Basti
- Faculty of Marine Environment and Resources, Tokyo University of Marine Science and Technology, 108-8477 Tokyo, Japan
| | - Rosa I Figueroa
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Carlos Molinet
- Programa de Investigación Pesquera, Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile; Programa Integrativo, Centro Interdisciplinario para la Investigación Acuícola (INCAR), Universidad de Concepción, Chile
| | - Gonzalo Álvarez
- Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile; Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Larrondo 1281, Universidad Católica del Norte, Coquimbo, Chile
| | - Sandra Oyanedel
- Fraunhofer Chile Research - Fundación Chile, Quillaipe Aquaculture Center, Km 23.8 Quillaipe, Puerto Montt, Chile
| | - Pilar Riobó
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), 36208 Vigo, Spain
| | | | - Patricio A Díaz
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile.
| |
Collapse
|
8
|
Díaz PA, Peréz-Santos I, Álvarez G, Garreaud R, Pinilla E, Díaz M, Sandoval A, Araya M, Álvarez F, Rengel J, Montero P, Pizarro G, López L, Iriarte L, Igor G, Reguera B. Multiscale physical background to an exceptional harmful algal bloom of Dinophysis acuta in a fjord system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145621. [PMID: 33582350 DOI: 10.1016/j.scitotenv.2021.145621] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/30/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
Dinophysis acuta produces diarrhetic shellfish poisoning (DSP) toxins and pectenotoxins (PTX). It blooms in thermally-stratified shelf waters in late summer in temperate to cold temperate latitudes. Despite its major contribution to shellfish harvesting bans, little effort has been devoted to study its population dynamics in Chilean Patagonia. In 2017-2018, mesoscale distribution of harmful algal species (75 monitoring stations) revealed the initiation (late spring) and seasonal growth of a dense D. acuta population in the Aysén region, with maximal values at Puyuhuapi Fjord (PF). Vertical phytoplankton distribution and fine-resolution measurements of physical parameters along a 25-km transect in February 16th identified a 15-km (horizontal extension) subsurface thin layer of D. acuta from 4 to 8 m depth. This layer, disrupted at the confluence of PF with the Magdalena Sound, peaked at the top of the pycnocline (6 m, 15.9 °C, 23.4 psu) where static stability was maximal. By February 22nd, it deepened (8 m, 15.5 °C; 23.62 psu) following the excursions of the pycnocline and reached the highest density ever recorded (664 × 103 cells L-1) for this species. Dinophysis acuta was the dominant Dinophysis species in all microplankton net-tows/bottle samples; they all contained DSP toxins (OA, DTX-1) and PTX-2. Modeled flushing rates showed that Puyuhuapi, the only fjord in the area with 2 connections with the open sea, had the highest water residence time. Long term climate variability in the Southern hemisphere showed the effects of a Southern Annular Mode (SAM) in positive mode (+1.1 hPa) overwhelming a moderate La Niña. These effects included positive spring precipitation anomalies with enhanced salinity gradients and summer drought with positive anomalies in air (+1 °C) and sea surface (+2 °C) temperature. Locally, persistent thermal stratification in PF seemed to provide an optimal physical habitat for initiation and bloom development of D. acuta. Thus, in summer 2018, a favourable combination of meteorological and hydrographic processes of multiple scales created conditions that promoted the development of a widespread bloom of D. acuta with its epicentre at the head of Puyuhuapi fjord.
Collapse
Affiliation(s)
- Patricio A Díaz
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile.
| | - Iván Peréz-Santos
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile; Centro de Investigaciones en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile
| | - Gonzalo Álvarez
- Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile; Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Larrondo 1281, Universidad Católica del Norte, Coquimbo, Chile
| | - René Garreaud
- Departamento de Geofísica, Universidad de Chile, Santiago 8370449, Región Metropolitana, Chile; Center for Climate and Resilience Research, CR2, Santiago 8370449, Región Metropolitana, Chile
| | - Elías Pinilla
- Instituto de Fomento Pesquero (IFOP), Putemun, Castro, Chile
| | - Manuel Díaz
- Instituto de Acuicultura & Programa de Investigación Pesquera, Universidad Austral de Chile, Los Pinos s/n, Puerto Montt, Chile
| | - Alondra Sandoval
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| | - Michael Araya
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Larrondo 1281, Universidad Católica del Norte, Coquimbo, Chile
| | - Francisco Álvarez
- Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile
| | - José Rengel
- Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile
| | - Paulina Montero
- Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile; Centro de Investigaciones en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile
| | - Gemita Pizarro
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Enrique Abello 0552, Punta Arenas, Chile
| | - Loreto López
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Padre Harter 574, Puerto Montt, Chile
| | - Luis Iriarte
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Sargento Aldea 431, Puerto Aysén, Chile
| | - Gabriela Igor
- Centro de Investigaciones en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile
| | - Beatriz Reguera
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain
| |
Collapse
|
9
|
Baldrich ÁM, Pérez-Santos I, Álvarez G, Reguera B, Fernández-Pena C, Rodríguez-Villegas C, Araya M, Álvarez F, Barrera F, Karasiewicz S, Díaz PA. Niche differentiation of Dinophysis acuta and D. acuminata in a stratified fjord. HARMFUL ALGAE 2021; 103:102010. [PMID: 33980449 DOI: 10.1016/j.hal.2021.102010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Dinophysis acuta and D. acuminata are associated with lipophilic toxins in Southern Chile. Blooms of the two species coincided during summer 2019 in a highly stratified fjord system (Puyuhuapi, Chilean Patagonia). High vertical resolution measurements of physical parameters were carried out during 48 h sampling to i) explore physiological status (e.g., division rates, toxin content) and ii) illustrate the fine scale distribution of D. acuta and D. acuminata populations with a focus on water column structure and co-occurring plastid-bearing ciliates. The species-specific resources and regulators defining the realized niches (sensu Hutchinson) of the two species were identified. Differences in vertical distribution, daily vertical migration and in situ division rates (with record values, 0.76 d-1, in D. acuta), in response to the environmental conditions and potential prey availability, revealed their niche differences. The Outlying Mean Index (OMI) analysis showed that the realized niche of D. acuta (cell maximum 7 × 103 cells L-1 within the pycnocline) was characterized by sub-surface estuarine waters (salinity 23 - 25), lower values of turbulence and PAR, and a narrow niche breath. In contrast, the realized niche of D. acuminata (cell maximum 6.8 × 103 cells L-1 just above the pycnocline) was characterized by fresher (salinity 17 - 20) outflowing surface waters, with higher turbulence and light intensity and a wider niche breadth. Results from OMI and PERMANOVA analyses of co-occurring microplanktonic ciliates were compatible with the hypothesis of species such as those from genera Pseudotontonia and Strombidium constituting an alternative ciliate prey to Mesodinium. The D. acuta cell maximum was associated with DSP (OA and DTX-1) toxins and pectenotoxins; that of D. acuminata only with pectenotoxins. Results presented here contribute to a better understanding of the environmental drivers of species-specific blooms of Dinophysis and management of their distinct effects in Southern Chile.
Collapse
Affiliation(s)
- Ángela M Baldrich
- Programa de Doctorado en Ciencias, mención Conservación y Manejo de Recursos Naturales, Universidad de Los Lagos, Camino Chinquihue km 6, Puerto Montt, Chile; CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile.
| | - Iván Pérez-Santos
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Chile
| | - Gonzalo Álvarez
- Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile; Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Universidad Católica del Norte, Coquimbo, Chile
| | - Beatriz Reguera
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Vigo, Spain
| | | | - Camilo Rodríguez-Villegas
- Programa de Doctorado en Ciencias, mención Conservación y Manejo de Recursos Naturales, Universidad de Los Lagos, Camino Chinquihue km 6, Puerto Montt, Chile; CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| | - Michael Araya
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Universidad Católica del Norte, Coquimbo, Chile
| | - Francisco Álvarez
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Universidad Católica del Norte, Coquimbo, Chile
| | - Facundo Barrera
- Center for Climate and Resilience Research (CR2), Facultad de Ciencias Naturales y Oceanográficas Universidad de Concepción & Departamento de Química Ambiental Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Stéphane Karasiewicz
- Laboratory of Environment Resources, Boulogne- sur- Mer, French Research Institute for the Exploitation of the Sea (IFREMER), Issy-les-Moulineaux, France
| | - Patricio A Díaz
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| |
Collapse
|
10
|
Díaz PA, Fernández-Pena C, Pérez-Santos I, Baldrich Á, Díaz M, Rodríguez F. Dinophysis Ehrenberg (Dinophyceae) in Southern Chile harbours red cryptophyte plastids from Rhodomonas/Storeatula clade. HARMFUL ALGAE 2020; 99:101907. [PMID: 33218433 DOI: 10.1016/j.hal.2020.101907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/26/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Photosynthetic species of the dinoflagellate genus Dinophysis are known to retain temporary cryptophyte plastids of the Teleaulax/Plagioselmis/Geminigera clade after feeding the ciliate Mesodinium rubrum. In the present study, partial plastid 23S rDNA sequences were retrieved in Southern Chilean waters from oceanic (Los Lagos region), and fjord systems (Aysén region), in single cells of Dinophysis and accompanying organisms (the heliozoan Actinophrys cf. sol and tintinnid ciliates), identified by means of morphological discrimination under the light microscope. All plastid 23S rDNA sequences (n = 23) from Dinophysis spp. (Dinophysis acuta, D. caudata, D. tripos and D. subcircularis) belonged to cryptophytes from clade V (Rhinomonas, Rhodomonas and Storeatula), although they could not be identified at genus level. Moreover, five plastid sequences obtained from heliozoans (Actinophryida, tentatively identified as Actinophrys cf. sol), and tintinnid ciliates, grouped together with those cryptophyte sequences. In contrast, two additional sequences from tintinnids belonged to other taxa (chlorophytes and cyanobacteria). Overall, the present study represents the first time that red cryptophyte plastids outside of the Teleaulax/Plagioselmis/Geminigera clade dominate in wild photosynthetic Dinophysis spp. These findings suggest that either Dinophysis spp. are able to feed on other ciliate prey than Mesodinium and/or that cryptophyte plastids from clade V prevail in members of the M. rubrum species complex in the studied area.
Collapse
Affiliation(s)
- Patricio A Díaz
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile.
| | - Concepción Fernández-Pena
- Centro Oceanográfico de A Coruña, (IEO), Paseo Marítimo Alcalde Francisco Vázquez, 10, Coruña 15001, Spain
| | - Iván Pérez-Santos
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; Centro de Investigación Oceanográfica COPAS Sur-Austral, Campus Concepción, Universidad de Concepción, Concepción 4030000, Chile
| | - Ángela Baldrich
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; Programa de Doctorado en Ciencias, mención Manejo y Conservación de Recursos Naturales, Universidad de Los Lagos, Puerto Montt, Chile
| | - Manuel Díaz
- Programa de Investigación Pesquera & Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Chile
| | - Francisco Rodríguez
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, Vigo 36390, Spain
| |
Collapse
|