1
|
Pereto C, Baudrimont M, Coynel A. Global natural concentrations of Rare Earth Elements in aquatic organisms: Progress and lessons from fifty years of studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171241. [PMID: 38417499 DOI: 10.1016/j.scitotenv.2024.171241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Rare Earth Elements (REEs) consist of a coherent group of elements with similar physicochemical properties and exhibit comparable geochemical behaviors in the environment, making them excellent tracers of environmental processes. For the past 50 years, scientific communities investigated the REE concentrations in biota through various types of research (e.g. exploratory studies, environmental proxies). The extensive development of new technologies over the past two decades has led to the increased exploitation and use of REEs, resulting in their release into aquatic ecosystems. The bioaccumulation of these emerging contaminants has prompted scientific communities to explore the fate of anthropogenic REEs within aquatic ecosystems. To achieve this, it is necessary to determine the natural concentration levels of REEs in aquatic organisms and the factors controlling REE dynamics. However, knowledge gaps still exist, and no comprehensive approach currently exists to assess the REE concentrations at the ecosystem scale or the factors controlling these concentrations in aquatic organisms. Based on a database comprising 102 articles, this study aimed to: i) provide a retrospective analysis of research topics over a 50-year period; ii) establish reference REE concentrations in several representative phyla of aquatic ecosystems; and iii) examine the global-scale influences of habitat and trophic position as controlling factors of REE concentrations in organisms. This study provides reference concentrations for 16 phyla of freshwater or marine organisms. An influence of habitat REE concentrations on organisms has been observed on a global scale. A trophic dilution of REE concentrations was highlighted, indicating the absence of biomagnification. Lastly, the retrospective approach of this study revealed several research gaps and proposed corresponding perspectives to address them. Embracing these perspectives in the coming years will lead to a better understanding of the risks of anthropogenic REE exposure for aquatic organisms.
Collapse
Affiliation(s)
- Clément Pereto
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France.
| | - Magalie Baudrimont
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France.
| | - Alexandra Coynel
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France.
| |
Collapse
|
2
|
Aljahdali MO, Alhassan AB. The use of marine sponge species as a bioindicator to monitor metal pollution in Red Sea, Saudi Arabia. MARINE POLLUTION BULLETIN 2023; 197:115618. [PMID: 37890318 DOI: 10.1016/j.marpolbul.2023.115618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/13/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
The existing data on trace elements of benthic sea organisms is scarce. Yet, the pressing issue of environmental contamination has spurred a surge in the use of organisms as biomonitors. In this study, sediment cores were sampled with the sponges, and metal concentrations were determined in both samples using ICP-MS. The mean concentrations of metals in benthic sediments and sponge species analyzed in this study differed significantly (Sediment > Phorbas species > Negombata magnifica > Callyspongia species > Amphimedon chloros). This could be due to the varying capacity of each sponge species to accumulate a particular metal by different means. Negombata magnifica and Phorbas species appear to be indicators, accumulators, or hyper-accumulators of Cu and Mn, while Callyspongia species is an indicator, accumulator, or hyper-accumulator of Cu only due to bioconcentration factor > 1 for the aforementioned metals. Concentrations of Cu and As in sediment were below the Effects Range Median but above the Effects Range Low threshold, hence the need to give more attention to these metals. This research provides a baseline dataset for designing monitoring strategies on this ecosystem and using sponge species for biomonitoring.
Collapse
Affiliation(s)
- Mohammed Othman Aljahdali
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O Box 80203, Jeddah 21589, Saudi Arabia.
| | - Abdullahi Bala Alhassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O Box 80203, Jeddah 21589, Saudi Arabia; Department of Biology, Faculty of Life Sciences, Ahmadu Bello University, Zaria 810001, Nigeria.
| |
Collapse
|
3
|
Marginson H, MacMillan GA, Grant E, Gérin-Lajoie J, Amyot M. Rare earth element bioaccumulation and cerium anomalies in biota from the Eastern Canadian subarctic (Nunavik). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163024. [PMID: 36965735 DOI: 10.1016/j.scitotenv.2023.163024] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 05/17/2023]
Abstract
Recent increases in the demand for rare earth elements (REE) have contributed to various countries' interest in exploration of their REE deposits, including within Canada. Current limited knowledge of REE distribution in undisturbed subarctic environments and their bioaccumulation within northern species is addressed through a collaborative community-based environmental monitoring program in Nunavik (Quebec, Canada). This study provides background REE values (lanthanides + yttrium) and investigates REE anomalies (i.e., deviations from standard pattern) across terrestrial, freshwater, and marine ecosystems in an area where a REE mining project is in development. Results are characteristic of a biodilution of REE, with the highest mean total REE concentrations (ΣREE) reported in sediments (102 nmol/g) and low trophic level organisms (i.e., biofilm, macroalgae, macroinvertebrates, common mussels, and reindeer lichens; 101-102 nmol/g), and the lowest mean concentrations in higher-level consumers (i.e., goose, ptarmigan, char, whitefish, cod, sculpin and seal; 10-2 - 101 nmol/g). The animal tissues are of importance to northern villages and analyses demonstrate a species-specific bioaccumulation of REE, with mean concentrations up to 40 times greater in liver compared to muscle, with bones and kidneys presenting intermediate concentrations and the lowest in blubber. Further, a tissue-specific fractionation was presented, with significant light REE (LREE) enrichment compared to heavy REE (HREE) in consumer livers (LREE/HREE ≅ 101) and the most pronounced negative cerium (Ce) anomalies (<0.80) in liver and bones of fish species. These fractionation patterns, along with novel negative relationships presented between fish size (length, mass) and Ce anomalies suggest metabolic, ecological, and/or environmental influences on REE bioaccumulation and distribution within biota. Background concentration data will be useful in the establishment of REE guidelines; and the trends discussed support the use of Ce anomalies as biomarkers for REE processing in animal species, which requires further investigation to better understand their controlling factors.
Collapse
Affiliation(s)
- Holly Marginson
- GRIL, Département de sciences biologiques, Complexe des Sciences, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Gwyneth A MacMillan
- GRIL, Département de sciences biologiques, Complexe des Sciences, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Eliane Grant
- Université du Québec en Abitibi-Témiscamingue, Québec, Canada
| | - José Gérin-Lajoie
- Université du Québec à Trois-Rivières, Québec, Canada; Centre d'Études Nordiques, Québec, Canada
| | - Marc Amyot
- GRIL, Département de sciences biologiques, Complexe des Sciences, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada; Centre d'Études Nordiques, Québec, Canada.
| |
Collapse
|
4
|
Krikech I, Ranjbar Jafarabadi A, Leermakers M, Le Pennec G, Cappello T, Ezziyyani M. Insights into bioaccumulation and bioconcentration of potentially toxic elements in marine sponges from the Northwestern Mediterranean coast of Morocco. MARINE POLLUTION BULLETIN 2022; 180:113770. [PMID: 35635883 DOI: 10.1016/j.marpolbul.2022.113770] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/28/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The present research aimed to investigate the concentrations and patterns of six potentially toxic elements (PTEs) in three common sponge species collected along the Moroccan Mediterranean coast, as well as their levels in ambient seawater and sediments. Distinct inter-species variability in PTEs bioaccumulation was observed among the three species, suggesting that sponges have distinct selectivity for assimilating PTEs from the surrounding environment. C. crambe had a higher enrichment capacity for Cu, As, Cr and Ni, while P. ficiformis and C. reniformis exhibited the highest concentration of Cd and Pb, respectively. Interestingly, a similar spatial distribution patterns of PTEs was observed in the three media, with high values occurring in Tangier and Al-Hoceima locations. Overall, our results confirm that sponges reliably reflect the bioavailability of PTEs in their immediate environment, especially C. crambe, whose PTE tissue contents were highly and positively correlated with the contents of all PTEs in the sediments.
Collapse
Affiliation(s)
- Imad Krikech
- Department of Life Sciences, Polydisciplinary Faculty of Larache, Abdelmalek Essaadi University, 745 BP, 92004 Larache, Morocco; Laboratoire de Biotechnologie et de Chimie Marines, Université de Bretagne Sud, EA 3884-IUEM, BP 92116, 56321 CS, Lorient, Brittany, France; Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Martine Leermakers
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Gaël Le Pennec
- Laboratoire de Biotechnologie et de Chimie Marines, Université de Bretagne Sud, EA 3884-IUEM, BP 92116, 56321 CS, Lorient, Brittany, France
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Mohammed Ezziyyani
- Department of Life Sciences, Polydisciplinary Faculty of Larache, Abdelmalek Essaadi University, 745 BP, 92004 Larache, Morocco.
| |
Collapse
|