1
|
Liu Y, Han B, Wang G, Zheng L, Lu Z. Distribution characteristics, source analysis and ecological risk assessment of polycyclic aromatic hydrocarbons in surface sediments from the western Honghai Bay of China. MARINE POLLUTION BULLETIN 2024; 208:117001. [PMID: 39303551 DOI: 10.1016/j.marpolbul.2024.117001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
The distribution characteristics and risk levels of PAHs in surface sediment in the Honghai Bay of China are studied in this paper. The results showed that the concentration of total PAHs in this area ranged from 100.65 ng·g-1 to 241.31 ng·g-1, with an average concentration of 158.83 ng·g-1. The tricyclic PAHs were the main components in the detected PAHs. PAH pollution levels in this region were low and moderate as compared with adjacent areas. Traceability results showed that the sediment PAHs mainly originate from coal and biomass combustion. PAHs concentrations at some stations were above the Environmental Quality Reference Level. The PAHs toxicity and ecological risk level in surface sediments in the area was determined to be low to moderate by toxicity equivalence testing and risk entropy value assessment.
Collapse
Affiliation(s)
- Yinghui Liu
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266500, China; Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Bin Han
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266500, China; Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China.
| | - Gui Wang
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266500, China; Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Li Zheng
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266500, China; Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Zheng Lu
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266500, China
| |
Collapse
|
2
|
Ji D, Ma J, Xue J, Wu X, Wang Z, Wei S. Identifying groundwater characteristics and controlling factors in Jiaozhou Bay's northern coastal region, China: a combined approach of multivariate statistics, isotope analysis, and field empirical investigations. Sci Rep 2024; 14:23856. [PMID: 39394428 PMCID: PMC11470051 DOI: 10.1038/s41598-024-75425-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024] Open
Abstract
Explicit identification of hydrochemical processes and their controlling factors within groundwater systems is critical for the sustainable utilization of water resources in coastal urban areas. This study was undertaken in the North Coastal Region of Jiaozhou Bay (NCRJB), located in the eastern part of Shandong Province, China, an area grappling with significant issues of groundwater quality degradation and water scarcity. A total of 105 groundwater samples and 34 surface water samples, collected from 2020 to 2024, were analyzed and studied using various hydrogeological tools, multivariate statistical analyses, and water quality assessment methods. These include the Piper diagram, hydrochemical facies evolution diagram (HFE-D), Principal Components Analysis (PCA), correlation analysis, stable isotope analysis, Water Quality Index (WQI), and USSL diagrams. The results indicated that all surface water and pore groundwater samples were categorized as Na-Cl type, exhibiting high Total Dissolved Solids (TDS) and Electrical Conductivity (EC) values, characteristics that render them poor to unsuitable for drinking and irrigation purposes. The fracture groundwater is predominantly of the Ca-Na-Cl mixed type, with average suitability for irrigation and a limited proportion (22.5%) deemed suitable for drinking. Seawater intrusion, primarily through the surface water system, and the impact of human activities were identified as the predominant controlling factors con-tributing to the degradation of the local groundwater environment. Field empirical investigations further validated the results derived from hydrogeological assessments, multivariate statistical analyses, and isotopic approaches. The long-term shifts in hydrochemical properties, along with the latent threat of seawater intrusion, exhibit an upward trend during the dry season and show a certain degree of mitigation during the wet season. This study highlights that field investigations, in conjunction with hydrochemical tools, multivariate statistical analyses, and stable isotope analysis, can successfully furnish reliable insights into the predominant mechanisms governing regional groundwater evolution within the context of long-term and intricate envi-ronmental settings.
Collapse
Affiliation(s)
- Dong Ji
- College of Civil Engineering and Transport, Weifang University, Weifang, 261061, China.
- Qingdao Surveying and Mapping Institute, Qingdao, 266032, China.
| | - Jian Ma
- Key Laboratory of Coastal Zone Geological Environment Protection, Shandong Geology and Mineral Exploration and Development Bureau, Weifang, 261021, China
| | - Junzhuo Xue
- Qingdao Surveying and Mapping Institute, Qingdao, 266032, China
| | - Xinghui Wu
- School of City and Architecture Engineering, Zaozhuang University, Zaozhuang, 277160, China.
| | - Zeyong Wang
- Qingdao Surveying and Mapping Institute, Qingdao, 266032, China
| | - Shuai Wei
- College of Civil Engineering and Transport, Weifang University, Weifang, 261061, China
| |
Collapse
|
3
|
Alghamdi MA, Hassan SK, Shetaya WH, Al Sharif MY, Nawab J, Khoder MI. Polycyclic aromatic hydrocarbons in indoor mosques dust in Saudi Arabia: Levels, source apportionment, human health and carcinogenic risk assessment for congregators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174331. [PMID: 38945247 DOI: 10.1016/j.scitotenv.2024.174331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Mosques are important places for Muslims where they perform their prayers. The congregators are exposed to hazardous pollutants such as polycyclic aromatic hydrocarbons (PAHs) associated with dust. However, studies on PAHs exposure in religious places are scarce. Air-condition filter (ACF) dust can correspond to air quality to a certain extent, since dust particles derived from indoor and outdoor places stick to it. Therefore, the present study aimed to evaluate the 16 EPA PAHs in ACF dust from mosques to determine their levels, profiles, sources and risks. Average Σ16 PAHs concentrations were 1039, 1527, 2284 and 5208 ng/g in AC filter dust from mosques in residential (RM), suburban (SM), urban (UM) and car repair workshop (CRWM), respectively, and the differences were statistically significant (p < 0.001). Based on the molecular diagnostic PAH ratios, PAHs in mosques dust is emitted from local incomplete fuel combustion, as well as complete fossil fuels combustion sources (pyrogenic), petroleum spills, crude and fuel oil, traffic emissions, and other possible sources of industrial emissions in different functional areas. The incremental lifetime cancer risks (ILCRs) values for children and adults across the different types of mosques follow the order: CRWM > UM > SM > RM. ILCRs values for both children and adults were found in order: dermal contact > ingestion > inhalation. The cancer risk levels via ingestion for children were relatively higher than the adults. The values of cancer risk for children and adults via dermal contact and ingestion (except in RM) were categorized in the 'potentially high risk' category (> 10-4). The mean values of total cancer risks (CR) for children (5.74 × 10-3) and adults (5.07 × 10-3) in mosques also exceeded the accepted threat value (>10-4). Finally, it is recommended that regular and frequent monitoring of PAHs should be carried out in mosques to improve the quality and maintain the health of congregators around the globe.
Collapse
Affiliation(s)
- Mansour A Alghamdi
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia.
| | - Salwa K Hassan
- Air Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, El Behooth Str., Dokki, Giza 12622, Egypt
| | - Waleed H Shetaya
- Air Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, El Behooth Str., Dokki, Giza 12622, Egypt
| | - Marwan Y Al Sharif
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia
| | - Javed Nawab
- Department of Environmental Sciences, Kohat University of Science & Technology, Kohat, Pakistan
| | - Mamdouh I Khoder
- Air Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, El Behooth Str., Dokki, Giza 12622, Egypt
| |
Collapse
|
4
|
Hemati S, Heidari M, Momenbeik F, Khodabakhshi A, Fadaei A, Farhadkhani M, Mohammadi-Moghadam F. Co-occurrence of polycyclic aromatic hydrocarbons and heavy metals in various environmental matrices of a chronic petroleum polluted region in Iran; Pollution characterization, and assessment of ecological and human health risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135504. [PMID: 39154473 DOI: 10.1016/j.jhazmat.2024.135504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Oil spills from pipeline accidents can result in long-lasting health effect in the people living in a polluted region. In this study, the level of the 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) have been analyzed in environmental matrices of a region with frequent oil pipeline accidents in Iran. The results showed that the mean concentration of ΣPAHs and ΣHMs decreased from the upstream to the downstream and also the levels were higher in the wet season than those in the dry season. The average concentration of HMs in sediments was higher than that in other environments. The 3-ring and 4-ring PAHs were dominant in all of the studied matrices with the average values of 32.61 % and 45.85 %, respectively. The ecological risks of PAHs and HMs were medium and high in all matrices, respectively. In wet season, the total cancer risk (TCR) related to PAHs in agricultural soil was greater than 10-4, whereas it's very close to the threshold for HMs in water. This study offers a reference for assessing the long-term impact of oil spills in contaminated environmental matrices. The results are crucial for developing effective strategies to mitigate oil pollution impacts and protect environmental and public health.
Collapse
Affiliation(s)
- Sara Hemati
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Mohsen Heidari
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Abbas Khodabakhshi
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Abdolmajid Fadaei
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Marzieh Farhadkhani
- Assistant Professor of Environmental Health, Educational Development Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Fazel Mohammadi-Moghadam
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
5
|
Teixeira J, Sousa G, Azevedo R, Almeida A, Delerue-Matos C, Wang X, Santos-Silva A, Rodrigues F, Oliveira M. Characterization of Wildland Firefighters' Exposure to Coarse, Fine, and Ultrafine Particles; Polycyclic Aromatic Hydrocarbons; and Metal(loid)s, and Estimation of Associated Health Risks. TOXICS 2024; 12:422. [PMID: 38922102 PMCID: PMC11209316 DOI: 10.3390/toxics12060422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024]
Abstract
Firefighters' occupational activity causes cancer, and the characterization of exposure during firefighting activities remains limited. This work characterizes, for the first time, firefighters' exposure to (coarse/fine/ultrafine) particulate matter (PM) bound polycyclic aromatic hydrocarbons (PAHs) and metal(loid)s during prescribed fires, Fire 1 and Fire 2 (210 min). An impactor collected 14 PM fractions, the PM levels were determined by gravimetry, and the PM-bound PAHs and metal(loid)s were determined by chromatographic and spectroscopic methodologies, respectively. Firefighters were exposed to a total PM level of 1408.3 and 342.5 µg/m3 in Fire 1 and Fire 2, respectively; fine/ultrafine PM represented more than 90% of total PM. Total PM-bound PAHs (3260.2 ng/m3 in Fire 1; 412.1 ng/m3 in Fire 2) and metal(loid)s (660.8 ng/m3 versus 262.2 ng/m3), distributed between fine/ultrafine PM, contained 4.57-24.5% and 11.7-12.6% of (possible/probable) carcinogenic PAHs and metal(loid)s, respectively. Firefighters' exposure to PM, PAHs, and metal(loid)s were below available occupational limits. The estimated carcinogenic risks associated with the inhalation of PM-bound PAHs (3.78 × 10-9 - 1.74 × 10-6) and metal(loid)s (1.50 × 10-2 - 2.37 × 10-2) were, respectively, below and 150-237 times higher than the acceptable risk level defined by the USEPA during 210 min of firefighting activity and assuming a 40-year career as a firefighter. Additional studies need to (1) explore exposure to (coarse/fine/ultrafine) PM, (2) assess health risks, (3) identify intervention needs, and (4) support regulatory agencies recommending mitigation procedures to reduce the impact of fire effluents on firefighters.
Collapse
Affiliation(s)
- Joana Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
- REQUIMTE/UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Gabriel Sousa
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Rui Azevedo
- REQUIMTE/LAQV, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Agostinho Almeida
- REQUIMTE/LAQV, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Xianyu Wang
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Alice Santos-Silva
- REQUIMTE/UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Francisca Rodrigues
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| |
Collapse
|
6
|
Qian Y, Zheng H, Ouyang X, Lin Y, Cai M. Distinct anthropogenic signatures: A comparative analysis of polycyclic aromatic hydrocarbons in sediments from two southeastern Chinese bays. MARINE POLLUTION BULLETIN 2024; 203:116489. [PMID: 38759463 DOI: 10.1016/j.marpolbul.2024.116489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Sansha and Luoyuan Bay are influenced by different industrial structure, but the sources and pollution status of polycyclic aromatic hydrocarbons (PAHs), especially alkylated PAHs, are poorly understood. We studied 25 PAHs in surface sediments from the two bays. The results showed that PAHs concentrations in Sansha and Luoyuan Bay sediment range from 6.54 to 479.28 ng/g and 118.82 to 2984.09 ng/g, respectively. Alkylated PAHs dominated in Sansha (48.86 % of Σ25PAHs), while 3-ring PAHs dominated in Luoyuan (36.32 % of ∑25PAHs). Results of sources analysis indicated oil spills as the main PAHs source in Sansha, and domestic emissions and fossil fuel combustion in Luoyuan. Ecological risk assessment of showed low sediment risk, but in Luoyuan was higher than in Sansha. Compared with Luoyuan Bay, Sansha Bay emits less industrial pollutants, so the pollution is lower than Luoyuan Bay. Increased attention to protecting Luoyuan Bay is recommended.
Collapse
Affiliation(s)
- Yingying Qian
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361021, China; Xiamen Key Laboratory of Membrane Research and Application, Xiamen 361024, China
| | - Haowen Zheng
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Xiamen Marine Vocational and Technical College, Xiamen 361102, China; Key Laboratory of Marine Chemistry and Application Technology, Xiamen University, Xiamen 361102, China; College of Oceanography and Environmental Science, Xiamen University, Xiamen 361005, China
| | - Xia Ouyang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Xiamen Marine Vocational and Technical College, Xiamen 361102, China; Key Laboratory of Marine Chemistry and Application Technology, Xiamen University, Xiamen 361102, China; College of Oceanography and Environmental Science, Xiamen University, Xiamen 361005, China
| | - Yan Lin
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361021, China; Xiamen Key Laboratory of Membrane Research and Application, Xiamen 361024, China.
| | - Minggang Cai
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Xiamen Marine Vocational and Technical College, Xiamen 361102, China; Key Laboratory of Marine Chemistry and Application Technology, Xiamen University, Xiamen 361102, China; College of Oceanography and Environmental Science, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
7
|
Grmasha RA, Al-Sareji OJ, Meiczinger M, Al-Juboori RA, Stenger-Kovács C, Lengyel E, Sh Majdi H, AlKhaddar R, Mohammed SJ, Hashim KS. Seasonal variation and concentration of PAHs in Lake Balaton sediment: A study on molecular weight distribution and sources of pollution. MARINE POLLUTION BULLETIN 2024; 202:116333. [PMID: 38579446 DOI: 10.1016/j.marpolbul.2024.116333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The temporal and spatial variations of 16 Polycyclic Aromatic Hydrocarbons (PAHs) were examined at multiple sites around Lake Balaton from February 2023 to January 2024. The results indicated that the concentrations of PAHs in sediment were high during the winter months, 448.35 to 619.77 ng/g dry weight, and low during the summer months, 257.21 to 465.49 ng/g dry weight. The concentration of high molecular weight PAHs (HMWPAHs), consisting of 5-6 rings, was greater than that of low molecular weight PAHs (LMWPAHs), which had 2-3 rings. The total incremental lifetime cancer risk (ILCR) for both dermal and ingestion pathways was high for both adults and children during the four seasons, with the highest records as the following: winter > spring > summer > autumn. The ecological effects of the 16 PAHs were negligible except for acenaphthylene (Acy) and fluorene (Fl), which displayed slightly higher concentrations during the autumn and spring, respectively.
Collapse
Affiliation(s)
- Ruqayah Ali Grmasha
- University of Pannonia, Faculty of Engineering, Center for Natural Science, Research Group of Limnology, H-8200 Veszprem, Egyetem u. 10, Hungary; Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, Veszprém H 8200, Hungary; Environmental Research and Studies Center, University of Babylon, Al-Hillah, Babylon 51001, Iraq.
| | - Osamah J Al-Sareji
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, Veszprém H 8200, Hungary; Research Centre of Engineering Sciences, Department of Materials Sciences and Engineering, University of Pannonia, PO Box 158, H-8201 Veszprém, Hungary; Environmental Research and Studies Center, University of Babylon, Al-Hillah, Babylon 51001, Iraq
| | - Mónika Meiczinger
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, Veszprém H 8200, Hungary
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University-Abu Dhabi Campus, PO Box 129188, Abu Dhabi, United Arab Emirates; Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, P.O. Box 15200, Aalto, FI-00076, Espoo, Finland
| | - Csilla Stenger-Kovács
- University of Pannonia, Faculty of Engineering, Center for Natural Science, Research Group of Limnology, H-8200 Veszprem, Egyetem u. 10, Hungary; HUN-REN-PE Limnoecology Research Group, Egyetem utca 10, H-8200 Veszprém, Hungary
| | - Edina Lengyel
- University of Pannonia, Faculty of Engineering, Center for Natural Science, Research Group of Limnology, H-8200 Veszprem, Egyetem u. 10, Hungary
| | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University, Al-Hillah, Babylon 51001, Iraq
| | - Rafid AlKhaddar
- School of Civil Engineering and Built Environment, Liverpool John Moores University, UK
| | | | - Khalid S Hashim
- School of Civil Engineering and Built Environment, Liverpool John Moores University, UK; Environmental Research and Studies Center, University of Babylon, Al-Hillah, Babylon 51001, Iraq; Dijlah University College, Baghdad, Iraq
| |
Collapse
|
8
|
Grmasha RA, Stenger-Kovács C, Al-Sareji OJ, Al-Juboori RA, Meiczinger M, Andredaki M, Idowu IA, Majdi HS, Hashim K, Al-Ansari N. Temporal and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in the Danube River in Hungary. Sci Rep 2024; 14:8318. [PMID: 38594356 PMCID: PMC11004153 DOI: 10.1038/s41598-024-58793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
The Danube is a significant transboundary river on a global scale, with several tributaries. The effluents from industrial operations and wastewater treatment plants have an impact on the river's aquatic ecosystem. These discharges provide a significant threat to aquatic life by deteriorating the quality of water and sediment. Hence, a total of 16 Polycyclic Aromatic Hydrocarbons (PAHs) compounds were analyzed at six locations along the river, covering a period of 12 months. The objective was to explore the temporal and spatial fluctuations of these chemicals in both water and sediment. The study revealed a significant fluctuation in the concentration of PAHs in water throughout the year, with levels ranging from 224.8 ng/L during the summer to 365.8 ng/L during the winter. Similarly, the concentration of PAHs in sediment samples varied from 316.7 ng/g in dry weight during the summer to 422.9 ng/g in dry weight during the winter. According to the Europe Drinking Water Directive, the levels of PAHs exceeded the permitted limit of 100 ng/L, resulting in a 124.8% rise in summer and a 265.8% increase in winter. The results suggest that the potential human-caused sources of PAHs were mostly derived from pyrolytic and pyrogenic processes, with pyrogenic sources being more dominant. Assessment of sediment quality standards (SQGs) showed that the levels of PAHs in sediments were below the Effect Range Low (ERL), except for acenaphthylene (Acy) and fluorene (Fl) concentrations. This suggests that there could be occasional biological consequences. The cumulative Individual Lifetime Cancer Risk (ILCR) exceeds 1/104 for both adults and children in all sites.
Collapse
Affiliation(s)
- Ruqayah Ali Grmasha
- Limnology Research Group, Center for Natural Science, University of Pannonia, Egyetem Utca 10, 8200, Veszprém, Hungary
- Environmental Research and Studies Center, University of Babylon, Al-Hillah, 51001, Iraq
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, 8200, Veszprém, Hungary
| | - Csilla Stenger-Kovács
- Limnology Research Group, Center for Natural Science, University of Pannonia, Egyetem Utca 10, 8200, Veszprém, Hungary
- HUN-REN-PE Limnoecology Research Group, Egyetem Utca 10, 8200, Veszprém, Hungary
| | - Osamah J Al-Sareji
- Environmental Research and Studies Center, University of Babylon, Al-Hillah, 51001, Iraq
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, 8200, Veszprém, Hungary
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University-Abu Dhabi Campus, Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, Aalto, PO Box 15200, 00076, Espoo, Finland
| | - Mónika Meiczinger
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, 8200, Veszprém, Hungary
| | - Manolia Andredaki
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool, UK
| | - Ibijoke A Idowu
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool, UK
| | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Hillah, Iraq
| | - Khalid Hashim
- Environmental Research and Studies Center, University of Babylon, Al-Hillah, 51001, Iraq.
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool, UK.
- Dijlah University College, Baghdad, Iraq.
| | - Nadhir Al-Ansari
- Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, Lulea, Sweden.
| |
Collapse
|
9
|
Monjezi SD, Bakhtiyari AR, Alavi-Yeganeh MS. Sourcing aliphatic and polycyclic aromatic hydrocarbons (PAHs) in Jinga shrimp (Metapenaeus affinis) muscle tissues and surface sediments (study case: Northwest Persian Gulf). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28644-28657. [PMID: 38558344 DOI: 10.1007/s11356-024-32738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
This study addresses the sources of aliphatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs) in the surface sediments of the northwestern Persian Gulf and the muscle tissues of Jinga shrimp (Metapenaeus affinis), a commercially important aquatic species. In November 2018, 28 Jinga shrimp samples were systematically collected from four key fishing areas in Behrgan and Khormusi: Imam Khomeini Port (S1), Mahshahr Port (S2), Sejafi (S3), and Behrgan Wharf (S4). Additionally, sediment samples were collected from these locations, and AHs and PAHs concentrations were analyzed using gas chromatography-mass spectrometry (GC-MS). The average aliphatic concentration in Jinga shrimp was 4800.32 (μg g-1 DW), exceeding the sediment samples' 2496.69 (μg g-1 DW) estimate. Hydrocarbon component analysis revealed EPA priority list (PAH-16) and measured PAHs (PAH-29) concentrations in Jinga shrimp ranging from 1095.8 to 2698.3 (ng g-1 DW) and in sediments from 653.6 to 1019.5 (ng g-1 DW). Elevated AHs and PAHs in Jinga shrimp, compared to sediments, suggest a petrogenic source, notably at station S4 near Behrgansar and Nowruz oil fields. Low molecular weight (LMW) compounds dominated in both shrimp and sediment PAHs. Aliphatic composition profiles in shrimps closely mirrored sediment profiles, illustrating an even-to-odd carbon dominance gradient. Diagnostic ratio examinations of hydrocarbons indicated pervasive petroleum derivatives in the environment. This study establishes a direct correlation between hydrocarbon concentrations in shrimp and sediment samples and the corresponding aliphatic groups, PAH-16, and PAH-29. The findings underscore the potential of Jinga shrimp as a reliable indicator of hydrocarbon pollution in the northwestern Persian Gulf.
Collapse
Affiliation(s)
- Shaghayegh Davodi Monjezi
- Department of Environmental Science, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, Noor, Iran
| | - Alireaza Riyahi Bakhtiyari
- Department of Environmental Science, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, Noor, Iran.
| | - Mohammad Sadegh Alavi-Yeganeh
- Department of Marine Biology, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, Noor, Iran
| |
Collapse
|
10
|
Moon HG, Bae S, Chae Y, Kim YJ, Kim HM, Song M, Bae MS, Lee CH, Ha T, Seo JS, Kim S. Assessment of potential ecological risk for polycyclic aromatic hydrocarbons in urban soils with high level of atmospheric particulate matter concentration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116014. [PMID: 38295737 DOI: 10.1016/j.ecoenv.2024.116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/06/2023] [Accepted: 01/21/2024] [Indexed: 02/25/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are known to be representative carcinogenic environmental pollutants with high toxicity. However, information on the potential ecological and environmental risks of PAH contamination in soil remains scarce. Thus, this study was evaluated the potential ecological risks of PAHs in soils of five Korean areas (Gunsan (GS), Gwangju, Yeongnam, Busan, and Gangwon) using organic carbon (OC)-normalized analysis, mean effect range-median quotient (M-ERM-Q), toxic equivalent quantity (TEQ) analysis, and risk quotient (RQ) derived by the species sensitivity distribution model. In this study, atmospheric particulate matter has a significant effect on soil pollution in GS through the presence of hopanes and the similar pattern of PAHs in soil and atmospheric PAHs. From analysis of source identification, combustion sources in soils of GS were important PAH sources. For PAHs in soils of GS, the OC-normalized analysis, M-ERM-Q, and TEQ analysis have 26.78 × 105 ng/g-OC, 0.218, and 49.72, respectively. Therefore, the potential ecological risk assessment results showed that GS had moderate-high ecological risk and moderate-high carcinogenic risk, whereas the other regions had low ecological risk and low-moderate carcinogenic risk. The risk level (M-ERM-Q) of PAH contamination in GS was similar to that in Changchun and Xiangxi Bay in China. The Port Harcourt City in Nigeria for PAH has the highest risk (M-ERM-Q = 4.02 and TEQ = 7923). Especially, compared to China (RQPhe =0.025 and 0.05), and Nigeria (0.059), phenanthrene showed the highest ecological risk in Korea (0.001-0.18). Korea should focus on controlling the release of PAHs originating from the PM in GS.
Collapse
Affiliation(s)
- Hi Gyu Moon
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea
| | - Seonhee Bae
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea
| | - Yooeun Chae
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea
| | - Yong-Jae Kim
- Medical Industry Venture Center, Korea Testing Laboratory, Wonju 26495, the Republic of Korea
| | - Hyung-Min Kim
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea
| | - Mijung Song
- Department of Earth and Environmental Sciences, Jeonbuk National University, the Republic of Korea
| | - Min-Suk Bae
- Department of Environmental Engineering, Mokpo National University, Muan 58554, the Republic of Korea
| | - Chil-Hyoung Lee
- Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology, Gwangju 61012, the Republic of Korea
| | - Taewon Ha
- Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology, Gwangju 61012, the Republic of Korea
| | - Jong-Su Seo
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea.
| | - Sooyeon Kim
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea.
| |
Collapse
|
11
|
Liu J, Zhang A, Yang Z, Wei C, Yang L, Liu Y. Distribution characteristics, source analysis and risk assessment of polycyclic aromatic hydrocarbons in sediments of Kuye River: a river in a typical energy and chemical industry zone. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:89. [PMID: 38367204 DOI: 10.1007/s10653-023-01802-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/08/2023] [Indexed: 02/19/2024]
Abstract
This study systematically analyzed the distribution characteristics, sources, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in Kuye River sediments, located in an energy and chemical industry base in northern Shaanxi, China. The results that revealed the concentrations of 16 PAHs in the sediment ranged from 1090.04 to 32,175.68 ng∙g-1 dw, with the four-ring PAHs accounting for the highest proportion. Positive matrix factorization analysis (PMF) revealed the main sources of PAHs as incomplete fossil fuel combustion, biomass combustion, and traffic emissions. The total toxic equivalent concentration of BaP, risk quotient, and lifetime carcinogenic risk of PAHs suggested moderate to high contamination of PAHs in the area. The higher incremental lifetime carcinogenic risk (ILCR) indicated that PAH ingestion was the primary route of impact on public health, with children potentially being more susceptible to PAH exposure. This study can provide valuable theoretical support for implementing pollution prevention measures and ecological restoration strategies for rivers in energy and chemical industry areas.
Collapse
Affiliation(s)
- Jinhui Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China.
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Zhuangzhuang Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chunxiao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
12
|
Zeng Y, Li J, Zhao Y, Yang W. Community ecological response to polycyclic aromatic hydrocarbons in Baiyangdian Lake based on an ecological model. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:34-46. [PMID: 38182933 PMCID: PMC10830818 DOI: 10.1007/s10646-023-02722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/07/2024]
Abstract
The dynamic response of a single population to chemicals can be represented by a Weibull function. However, it is unclear whether the overall response can still be represented in this manner when scaled up to the community level. In this study, we investigated the responses of biological communities to polycyclic aromatic hydrocarbons by using an ecological model of Baiyangdian Lake in northern China. The community dynamics process was divided into the following three stages. In the first stage, toxicity, played a dominant role and strong, medium, and weak species responses were observed according to the toxicity sensitivity. In the second stage, the dynamic process was dominated by the interaction strength with three alternative dynamic pathways comprising of direct response, no response, or inverse response. In the third stage, the toxicity was again dominant, and the biomasses of all species decreased to extinction. The toxicological dynamics were far more complex at the community level than those at the single species level and they were also influenced by the interaction strength as well as toxicity. The toxicological dynamic process in the community was constantly driven by the competing effects of these two forces. In addition to the total biomass, the interaction strength was identified as a suitable community-level signal because it exhibited good indicator properties regarding ecosystem steady-state transitions. However, we found that food web stability indicators were not suitable for use as community-level signals because they were not sensitive to changes in the ecosystem state. Some ecological management suggestions have been proposed, including medium to long-term monitoring, and reduction of external pollution loads and bioindicators. The results obtained in this study increase our understanding of how chemicals interfere with community dynamics, and the interaction strength and total biomass were identified as useful holistic indicators.
Collapse
Affiliation(s)
- Yong Zeng
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, China.
| | - Jiaxin Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, China
| | - Yanwei Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
13
|
Yang G, Li Y, Wang B, Zhang Y. Lighting Up Fluorescence: Precise Recognition of Halogenated Solvents Through Effective Fluorescence Detection Using Chalcone Derivatives as a D-A-D-A-type Fluorescent Chemosensor. J Fluoresc 2023:10.1007/s10895-023-03527-2. [PMID: 38055140 DOI: 10.1007/s10895-023-03527-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
In this paper, we report a D-A-D-A-type fluorescence sensor, FX, composed of triphenylamine and pyrazine units as electron donors, pyridine units, and α-β unsaturated carbon-based structures as electron acceptors. FX exhibits typical ICT characteristics. As a dual-emission material, FX undergoes acid-base-induced color changes and displays mechanofluorochromic properties in the solid state. In solution, FX, as an AIE material, shows significant fluorescence enhancement behavior in most halogenated solvents. Notably, it achieves a high quantum yield of 0.672 in a chloroform solution. We utilized this phenomenon to quantitatively detect chloroform through fluorescence titration analysis, with a detection limit of 0.061%. Additionally, we developed a test paper to verify the practical applicability of the sensor for detecting halogenated solvents. The fluorescence enhancement behavior was confirmed through DFT calculations. The results indicate that FX is not only a multifunctional dual-state emission material but also provides valuable references for the fluorescence detection of halogenated solvents.
Collapse
Affiliation(s)
- Guo Yang
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637000, China
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province of China, Nanchong, 637000, China
| | - Yuanwei Li
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637000, China
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province of China, Nanchong, 637000, China
| | - Bin Wang
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637000, China.
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province of China, Nanchong, 637000, China.
| | - Ying Zhang
- Sichuan University of Science & Engineering, GongZi, 634002, China
| |
Collapse
|
14
|
Lu J, Li M, Tan J, He M, Wu H, Kang Y, Hu Z, Zhang J, Guo Z. Distribution, sources, ecological risk and microbial response of polycyclic aromatic hydrocarbons in Qingdao bays, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122687. [PMID: 37797927 DOI: 10.1016/j.envpol.2023.122687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Bay ecosystem has garnered significant attention due to the severe threat posed by organic pollutants, particularly polycyclic aromatic hydrocarbons (PAHs). However, there is a dearth of information regarding the extent of PAHs pollutant risk and its impact on microbial communities and metabolism within this environment. In this study, the distribution, sources, ecological risk, and microbial community and metabolic response of PAHs in Jiaozhou Bay, Aoshan Bay, and Lingshan Bay in Qingdao, China were investigated. The results showed that the average concentration of ∑PAHs ranged from 120 to 614 ng/L across three bays, with Jiaozhou and Aoshan Bay exhibiting a higher risk than Lingshan Bay due to an increased concentration of high-molecular-weight PAHs. Further analysis revealed a negative correlation between dissolved organic carbon concentration and ∑PAHs concentration in water. Metagenomic analysis demonstrated that higher levels of PAHs can lead to decreased microbial diversity, while the abundance of PAHs-degrading bacteria is enhanced. Additionally, the Erythrobacter, Jannaschia and Ruegeria genera were found to have a significant correlation with low-molecular-weight PAH concentrations. In terms of microbial metabolism, higher PAH concentrations were beneficial for carbohydrate metabolic pathway but unfavorable for amino acid metabolic pathways and membrane transport pathways in natural bay environments. These findings provide a foundation for controlling PAHs pollution and offer insights into the impact of PAHs on bacterial communities and metabolism in natural bay environments.
Collapse
Affiliation(s)
- Jiaxing Lu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Mengting Li
- Yantai Geological Survey Center of Coastal Zone, China Geological Survey, Yantai, 264004, China
| | - Jingchu Tan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Mingyu He
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yan Kang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
15
|
Wang H, Li C, Yan G, Zhang Y, Wang H, Dong W, Chu Z, Chang Y, Ling Y. Seasonal distribution characteristics and ecological risk assessment of phthalate esters in surface sediment of Songhua River basin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122567. [PMID: 37717898 DOI: 10.1016/j.envpol.2023.122567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Phthalic acid esters (PAEs) are typical industrial chemicals used in China. PAEs have received considerable attention because of their ubiquity and potential hazard to humans and the ecology. The spatiotemporal distributions of six PAEs in the surface sediments of the Songhua River in the spring (March), summer (July), and autumn (September) are investigated in this study. The total concentration of phthalic acid esters (∑6PAEs) ranges from 1.62 × 102 ng g-1 dry weight (dw) to 3.63 × 104 ng g-1·dw, where the amount in the spring is substantially higher (p < 0.01) than those in the autumn and summer. Seasonal variations in PAEs may be due to rainfall and temperature. The ∑6PAEs in the Songhua River's upper reaches are significantly higher than those in the middle and lower reaches (p < 0.05). Dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) are the two most abundant PAEs. The ecological hazard of five PAEs is assessed using the hazard quotient method. DBP and DEHP pose moderate or high ecological risks to aquatic organisms at various trophic levels. PAEs originate primarily from industrial, agricultural, and domestic sources. Absolute principal components-multiple linear regression results indicate that agricultural sources are the most dominant contributor to the ∑6PAEs (53.7%). Guidelines for controlling PAEs pollution in the Songhua River are proposed.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Congyu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Guokai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Yanjie Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| | - Weiyang Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Zhaosheng Chu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Yang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Yu Ling
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| |
Collapse
|
16
|
Zhao Y. Spatial distribution, source, and ecological risk of PAHs in the sediment of the Fenhe River Basin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112397-112408. [PMID: 37831238 DOI: 10.1007/s11356-023-30171-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/05/2023] [Indexed: 10/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent toxic substances that have ubiquitous presence in water, air, soil, and sediment environments. The growth of PAH toxicities and related ecotoxicology risk in sediment has been a serious concern. Present study examined the PAH concentration, sources, and ecological risk from the selected sites in sediment of Fenhe River. The characteristic molecular ratio (CMR) and principal component analysis (PCA) were applied to analyze the sources. The ecological risk assessment was conducted based on the sediment quality guidelines, the mean effects range median quotient, as well as the toxic equivalent quantity values. The results showed that the mean values of total contents of the 16 individual PAHs were 3.66 mg/kg and 3.16 mg/kg in wet and dry seasons, which were relatively high when compared with other rivers worldwide. Their spatial distribution presented the lower contents in the upstream, while higher concentrations in the middle and down streams of the river. The low molecular weight PAHs were major constituents, and 3-ring PAHs have the highest contents. The results of source analysis indicated that PAHs were primarily from the burning of oil, coal, and biomass. The ecological risk evaluations suggested that the possible adverse biological effects, the low to medium comprehensive risks, and the minor carcinogenic risks existed in the study area. This investigation might provide useful baseline data and technical support for policy-makers and researchers.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Chemistry and Chemical Engineering, Jinzhong University, Yuci, 030619, China.
| |
Collapse
|
17
|
Wang Z, Liu YJ, Yang L, Yang ZZ, Zhang AN, Li ZH, Liu Z. Distribution, sources, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in Kaokaowusu river sediments near a coal industrial zone. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6853-6867. [PMID: 36566469 DOI: 10.1007/s10653-022-01454-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
This study systematically analyzed the contents, compositions, and sources of polycyclic aromatic hydrocarbons (PAHs) in river sediments near an important energy and chemical base in northwest China. In addition, their possible adverse effects on the ecology and human health were assessed. The PAH concentrations in this study area ranged from 2641.28 to 16783.72 (ng/g dw). PAHs of medium molecular weight (3-ring and 4-ring) showed the largest proportion, followed by PAHs of higher molecular weight (5-ring and 6-ring). The results of molecular diagnostic ratios and principal component analysis revealed that PAHs in the region have complex sources, with incomplete combustion of local fossil fuels and traffic exhaust factors being the main sources. The total toxic equivalent concentration of PAHs varied from 10.05 to 760.26 ng/g, and according to the sediment quality guidelines, PAHs have high potential ecological risk in the lower reaches of the river. The mean effect range-median quotient for the region was 0.46, and the combined ecological risk was at moderate to high levels (21% probability of toxicity). The lifetime carcinogenic risks for adults and children exposed to PAHs were 2.95 × 10-3 and 1.87 × 10-2, respectively, which are much higher than the limit of 10-4, indicating moderate to high potential cancer risks. Therefore, the local government should consider taking some environmental remediation measures. This study can provide theoretical support for pollution prevention measures and ecological restoration strategies for rivers in resource-rich areas.
Collapse
Affiliation(s)
- Zhu Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yong Jun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China.
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Lu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhuang Zhuang Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ai Ning Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhi Hua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
18
|
Fu L, Sun Y, Li H, Chen Y, Du H, Liang SX. Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in sediments from Baiyang Lake, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1035. [PMID: 37572161 DOI: 10.1007/s10661-023-11607-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/14/2023] [Indexed: 08/14/2023]
Abstract
The issue of polycyclic aromatic hydrocarbons (PAHs) has been an environmental focus worldwide. In this study, the contents, sources, and ecological risks of sixteen PAHs in the sediment of Baiyang Lake were estimated, and a list of priority pollutants was established. The total PAH contents ranged from 114 to 1010 ng·g-1. The composition of PAHs indicated that 4- to 6-ring PAHs predominated in the sediment samples. The diagnostic ratio analysis showed that combustion sources were predominant for PAHs in Baiyang Lake. Specifically, the positive matrix factorization model indicated that diesel engine emissions, gasoline engine emissions, wood combustion sources, and coal combustion sources contributed 22, 32, 24, and 22% of ∑PAHs, respectively. Based on the sediment quality guidelines, mean effects range median quotient, ecological risk quotient, and toxicity equivalent quotient methods, the comprehensive assessment results of PAHs in Baiyang Lake sediments indicated that the ecological risks were at medium and low levels. The priority pollutant list showed that benzo[b]fluoranthene and benzo[a]pyrene were the highest-priority pollutants and thus should be given more attention.
Collapse
Affiliation(s)
- Liguo Fu
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, People's Republic of China
| | - Yaxue Sun
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, People's Republic of China
| | - Hongbo Li
- Baiyangdian Basin Eco-environmental Support Center, Shijiazhuang, 050056, China
| | - Yan Chen
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, People's Republic of China
| | - Hui Du
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, People's Republic of China
| | - Shu-Xuan Liang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, People's Republic of China.
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People's Republic of China.
| |
Collapse
|
19
|
Wang Q, Tan L, Sun S, Lu X, Luo Y. Land-derived wastewater facilitates antibiotic resistance contamination in marine sediment of semi-closed bay: A case study in Jiaozhou Bay, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117870. [PMID: 37084540 DOI: 10.1016/j.jenvman.2023.117870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
The emergence of antibiotic resistance is a severe threat to public health. There are few studies on the effects of sewage discharge on antibiotics and antibiotic resistance genes (ARGs) contamination in Jiaozhou Bay sediment. Herein, a total of 281 ARG subtypes, 10 mobile genetic elements (MGEs), 10 antibiotics and bacterial communities in marine sediments from Jiaozhou Bay were characterized. Similar bacterial community structures and ARG profiles were identified between the various sampling sites inside the bay, which were both dominated by multidrug and (fluoro)quinolone resistance genes and harbored lower relative abundances of ARGs than those in the sampling sites near the bay exit. Compared with antibiotics and MGEs, bacterial community composition was a more important driver of ARG diversity and geographic distribution. The abundance of pathogens carrying genetic information increased dramatically in southern Jiaozhou Bay is affected by sewage discharge, which indicating that wastewater discharge facilitated ARG contamination of marine sediments. This study highlights the risk of disseminating antibiotic resistance-influencing factors from treated wastewater discharge into marine environment there is an urgent need to optimize or improve wastewater treatment processes to enhance the removal of antibiotics and ARGs. This study has necessary implications for filling the gap in information on antibiotic resistance in Jiaozhou Bay and developing future pollution regulation and control measures.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China; College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan, 056038, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Shaojing Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan, 056038, China
| | - Xueqiang Lu
- Tianjin International Joint Research Center for Environmental Biogeochemical Technology and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
20
|
Sujitha SB, Lopez-Hernandez JF, García-Alamilla P, Morales-García SS, Márquez-Rocha FJ. Evaluation of polycyclic aromatic hydrocarbons in sediments of Balsas River Mouth, Pacific Coast, Mexico: Sources, risks, and genotoxicity. CHEMOSPHERE 2023; 332:138898. [PMID: 37169094 DOI: 10.1016/j.chemosphere.2023.138898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) were assessed in sediments (n = 7) collected from the mouth of the Balsas River, Pacific Coast, Mexico. The total PAH levels ranged between 142.1 and 3944.07 μg kg-1 in the summer and 137.65-3967.38 μg kg-1 in the winter, probably reflecting the anthropogenic activities of the region. Calculation of the four analytical ratios of [Anthracene/(Anthracene + Phenanthrene)]: [Fluoranthene/(Fluoranthene + Pyrene)], [Fluoranthene/Pyrene: Fluoranthene/(Fluoranthene + Pyrene)], [Indeno [123-cd]Pyrene/(Indeno [123-cd]Pyrene + Benzo [ghi]Perylene)]: [Benzo [a]anthracene/(Benzo [a]Anthracene + Chrysene)], and [Anthracene/Phenanthrene]: [Fluoranthene/(Fluoranthene + Pyrene)] revealed a mixed PAH source, from petroleum and biomass combustion. Significant statistical correlations (r2 = 0.90) between the 4 and 5 ringed PAHs denote that adsorption is the principal mechanism for accumulation in sedimentary archives. Ecotoxicological indices (Mean Effect Range Medium Quotient and Mean Probable Effect Level Quotient) indicated moderate pollution with adverse biological impacts on ambient benthonic organisms. The calculations of Toxicity Equivalent Quotient and Mutagen Equivalent Quotient values proposed that the region is highly polluted by mutagenic and carcinogenic PAH compounds. The genotoxic evaluation of Lutjanus guttatus (Spotted rose snapper) presented significant DNA damage and discrepancies in Ethoxyresorufin-O-Deethylase activity. Based on the toxicological and genotoxicological evaluation of PAHs in sediments, the region was observed to be largely impacted from biological damage.
Collapse
Affiliation(s)
- S B Sujitha
- Escuela Superior de Ingeniería y Arquitectura (ESIA), Unidad Ticoman, Instituto Politécnico Nacional (IPN), Calz. Ticomán 600, Delg. Gustavo A. Madero, C.P. 07340, Ciudad de México (CDMX), Mexico
| | - Jenny-Fabiola Lopez-Hernandez
- Centro Mexicano para La Producción Más Limpia-Unidad Tabasco, Instituto Politécnico Nacional, Cunduacán, Tabasco, CP 86691, Mexico
| | - Pedro García-Alamilla
- Divison Académica de Ciencias Agropecuaria, Universidad Autónoma Juárez de Tabasco, Carretera Villahermosa -Teapa Km 25, Ranchería La Huasteca 2da Sección, C.P. 86298 Villahermosa, Tabasco, Mexico
| | - S S Morales-García
- Centro Mexicano para La Producción Más Limpia, Instituto Politécnico Nacional, Av. Acueducto S/n, Col. Barrio La Laguna Ticomán, Del Gustavo A. Madero, C.P. 07340, Ciudad de México (CDMX), Mexico
| | - Facundo J Márquez-Rocha
- Centro Mexicano para La Producción Más Limpia-Unidad Tabasco, Instituto Politécnico Nacional, Cunduacán, Tabasco, CP 86691, Mexico.
| |
Collapse
|
21
|
Areguamen OI, Calvin NN, Gimba CE, Okunola OJ, Abdulkadir AT, Elebo A. Assessment of seasonal variation in distribution, source identification, and risk of polycyclic aromatic hydrocarbon (PAH)-contaminated sediment of Ikpoba River, South-South Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:302. [PMID: 36645518 DOI: 10.1007/s10661-023-10927-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The study aims to assess the seasonal variation in distribution, source identification, and risk of 20 polycyclic aromatic hydrocarbons (20 PAHs) in the sediment of the Ikpoba River, south-south Nigeria. The PAHs were extracted in an ultrasonic bath with a mixture of n-hexane and dichloromethane (1:1 v/v). The extract was cleaned by silica-alumina gel mixed with anhydrous Na2SO4 in a chromatography column, eluted by n-hexane, and analysed by gas chromatography-mass spectrometry. The range of the average PAHs in mg.kg-dw was 0.15 (Nap)-0.54 (Acy) and 0.13 (D.al.P)-0.99 (Acy) in wet and dry periods correspondingly, indicating an increase in concentration from wet to dry period. However, the rings of the average concentration of the PAHs show 6 and 3 rings to be the highest values during the wet and dry seasons, respectively. Based on the human health risk analysis, the hazard quotient (HQ) and hazard index (HI), and carcinogenic risk indices showed low non-carcinogenic and carcinogenic risk for both seasons. The ecological risk analysis showed the mean effect range median quotient (mERMQ) recorded a medium-low effect on the biota of the locations, except in AS3 during the wet season and also in WS8 and WS9 during the dry season. The minimum value of the toxic equivalent quotient (TEQ) was > 0.2 mg/kg, which indicated a recommendation for the clean-up of the Ikpoba River. The isomer ratio and the principal component analysis (PCA) revealed the sources of the PAHs to be majorly combustion, followed by pyrolytic and petrogenic sources for both seasons.
Collapse
Affiliation(s)
| | | | | | | | | | - Abuchi Elebo
- Chemistry Department, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| |
Collapse
|
22
|
Barbosa F, Rocha BA, Souza MCO, Bocato MZ, Azevedo LF, Adeyemi JA, Santana A, Campiglia AD. Polycyclic aromatic hydrocarbons (PAHs): Updated aspects of their determination, kinetics in the human body, and toxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:28-65. [PMID: 36617662 DOI: 10.1080/10937404.2022.2164390] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are legacy pollutants of considerable public health concern. Polycyclic aromatic hydrocarbons arise from natural and anthropogenic sources and are ubiquitously present in the environment. Several PAHs are highly toxic to humans with associated carcinogenic and mutagenic properties. Further, more severe harmful effects on human- and environmental health have been attributed to the presence of high molecular weight (HMW) PAHs, that is PAHs with molecular mass greater than 300 Da. However, more research has been conducted using low molecular weight (LMW) PAHs). In addition, no HMW PAHs are on the priority pollutants list of the United States Environmental Protection Agency (US EPA), which is limited to only 16 PAHs. However, limited analytical methodologies for separating and determining HMW PAHs and their potential isomers and lack of readily available commercial standards make research with these compounds challenging. Since most of the PAH kinetic data originate from animal studies, our understanding of the effects of PAHs on humans is still minimal. In addition, current knowledge of toxic effects after exposure to PAHs may be underrepresented since most investigations focused on exposure to a single PAH. Currently, information on PAH mixtures is limited. Thus, this review aims to critically assess the current knowledge of PAH chemical properties, their kinetic disposition, and toxicity to humans. Further, future research needs to improve and provide the missing information and minimize PAH exposure to humans.
Collapse
Affiliation(s)
- Fernando Barbosa
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Bruno A Rocha
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Marília C O Souza
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Mariana Z Bocato
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Lara F Azevedo
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Joseph A Adeyemi
- Department of Biology, School of Sciences, Federal University of Technology, Akure, Nigeria
| | - Anthony Santana
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Andres D Campiglia
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
23
|
Sun H, Chen Q, Chen W, Qu C, Mo J, Song J, Guo J, Tian Y. Assessment of biological community in riparian zone contaminated by PAHs: Linking source apportionment to biodiversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158121. [PMID: 35988620 DOI: 10.1016/j.scitotenv.2022.158121] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Riparian zone, an important land-water interface, plays an essential role in maintaining the ecological health of rivers, whereas the effects of Polycyclic aromatic hydrocarbons (PAHs) on the health of biological communities in riparian groundwater remain undetermined. To understand the responses of multiple communities to environmental variables, the distribution and ecosystem risk of 16 PAHs have been investigated in the Beiluo River, China. The distribution of multiple communities in riparian groundwater was investigated by environmental DNA metabarcoding, including 16S rRNA, 18S rRNA, and COI gene sequencing for bacteria, microbial eukaryotes (including algae, fungi, and protozoa), and metazoan, respectively, followed by correlation analysis between multiple communities and PAH contamination levels. The concentration of PAHs in the Beiluo River ranged largely from 35.32 to 728.59 ng/L. Here, the Shannon's diversity index of bacteria (Firmicutes) decreased possibly due to the occurrence of Pyrene, which mainly derives from coal and biomass combustion. Furthermore, the reduced richness of fungi (Ascomycota, Basidiomycota) and algae (Chlorophyta, Chrysophyceae) can be attributed to the presence of medium molecular weight (MMW) PAHs (Pyrene, Benz(a)anthracene, Chrysene), and low molecular weight (LMW) PAHs (Naphthalene, Fluorene, Phenanthrene). The richness and Shannon's diversity index of metazoan (Arthropoda) were promoted owing to MMW PAHs (Chrysene, Fluoranthene) generated from coal and biomass combustion and traffic emission. The ecological risk of PAHs in the groundwater environment of the Beiluo River was characterized as low to medium, where LMW and MMW PAHs posed higher risk than the high molecular weight (HMW) compounds. Overall, this study provides insights into the structures of riparian multi-biological communities altered by PAHs.
Collapse
Affiliation(s)
- Haotian Sun
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Qiqi Chen
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Wenwu Chen
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jiezhang Mo
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jinxi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| | - Yulu Tian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|
24
|
Han B, Gao W, Li Q, Liu A, Gong J, Zheng Y, Wang N, Zheng L. Residues of persistent toxic substances in surface soils of Ny-Ålesund in the arctic: Occurrence, source, and ecological risk assessment. CHEMOSPHERE 2022; 303:135092. [PMID: 35636608 DOI: 10.1016/j.chemosphere.2022.135092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/09/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
In this paper, the characteristics of persistent toxic substances (PTSs) in soil of Ny-Ålesund in the Arctic during the 10th Chinese Arctic (Arctic Ocean) scientific investigation were quantitatively analyzed. The sources and toxicity risks of polycyclic aromatic hydrocarbons (PAHs) in the soil was also analyzed. No obvious spatial distribution of PAHs was identified in the study area. LMW-PAHs are the main PAHs in this region, mainly tricyclic PAHs. The results of characteristic ratio method and PCA showed that the PAHs in soil mainly came from petroleum source and petroleum combustion source, and incomplete combustion of coal and wood, and atmospheric transport contributed to some extent. Ecological risk assessment results showed that the PAHs in soil did not bring toxicity risk, and the possibility of ecological risk was very low in Ny-Ålesund in the Arctic.
Collapse
Affiliation(s)
- Bin Han
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Wei Gao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Qian Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Ang Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Jinwen Gong
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Yunchao Zheng
- China University of Geosciences, Beijing, 100083, China
| | - Nengfei Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Li Zheng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
25
|
Ma X, Yang H, Huang C, Huang T, Li S. One-century sedimentary record, sources, and ecological risk of polycyclic aromatic hydrocarbons in Dianchi Lake, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33427-33442. [PMID: 35029834 DOI: 10.1007/s11356-022-18497-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
In this study, the sedimentary records, sources, and ecological risks of polycyclic aromatic hydrocarbons (PAHs) in Dianchi Lake were analyzed. The concentrations of ΣPAH16 in the sediments of Dianchi Lake ranged from 368 to 990 ng/g, with an average value of 572 ng/g, peaking in 1988. Economic development, rapid population growth, and rapid growth of coal consumption have a greater impact on the HMW (high molecular weight) PAHs than on the LMW (low molecular weight) PAHs in the sedimentary environment. The results of the diagnostic ratios and PCA (principal component analysis) model show that the main sources of PAHs were coal and biomass combustion, as well as the fossil fuel combustion in individual years. The risk assessment results showed that the PAH concentrations in the sediment were within a safe range. In the past 100 years of sediment pore water, other 2-3 ring LMW PAHs were within a safe range (except for Phe, which reached chronic toxic pollution levels in some years). With an increase in industrialization and urbanization, the burning of fossil fuels such as coal and petroleum has increased, and some of the 4-6 ring HMW PAHs have reached chronic toxicity or even acute toxicity in the sediment pore water.
Collapse
Affiliation(s)
- Xiaohua Ma
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Hao Yang
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, People's Republic of China
- State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, 210023, People's Republic of China
| | - Changchun Huang
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, People's Republic of China.
- State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, 210023, People's Republic of China.
| | - Tao Huang
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, People's Republic of China
- State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, 210023, People's Republic of China
| | - Shuaidong Li
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| |
Collapse
|
26
|
Živančev J, Antić I, Buljovčić M, Đurišić-Mladenović N. A case study on the occurrence of polycyclic aromatic hydrocarbons in indoor dust of Serbian households: Distribution, source apportionment and health risk assessment. CHEMOSPHERE 2022; 295:133856. [PMID: 35122819 DOI: 10.1016/j.chemosphere.2022.133856] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
This study was conducted in order to obtain the first insight into the occurrence, potential sources, and health risks of polycyclic aromatic hydrocarbons (PAHs) in indoor dust. Samples (n = 47) were collected from households in four settlements in the northern Serbian province of Vojvodina. Total concentrations of 16 EPA priority PAHs in the dust samples varied from 140 to 8265 μg kg-1. Mean and median values for all samples were 1825 and 1404 μg kg-1, respectively. According to the international guidelines for indoor environment, PAH content can be regarded as normal (<500 μg kg-1) for ∼6% of the samples, high (500-5000 μg kg-1) for ∼87% of the samples, and very high (5000-50000 μg kg1) for ∼6% of the samples. In all settlements, PAHs with 4 rings were the most prevalent (accounting for 40-53% of the total PAHs). They were followed by 3-ringed PAHs (29-40%), which indicates rather uniform PAH profiles in the analyzed dust. Based on diagnostic ratios, principal component analysis (PCA), and positive matrix factorization (PMF), pyrogenic sources, such as vehicle emissions and wood combustion were the dominant sources of PAHs in analyzed samples. Health risk assessment, which included incidental ingesting, inhaling and skin contact with PAHs in the analyzed dust, was evaluated by using the incremental lifetime cancer risk (ILCR) model. Median total ILCR was 3.88E-04 for children, and 3.73E-04 for adults. Results revealed that major contribution to quite high total ILCRs was brought by dermal contact and ingestion. Total cancer risk for indoor dust indicated that 85% of the studied locations exceeded 10-4. This implies risk of high concern, with potential adverse health effects. The results are valuable for future observation of PAHs in indoor environment. They are also useful for regional authorities who can use them to create policies which control sources of pollution.
Collapse
Affiliation(s)
- Jelena Živančev
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia.
| | - Igor Antić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia
| | - Maja Buljovčić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia
| | - Nataša Đurišić-Mladenović
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia
| |
Collapse
|