1
|
Pasquier G, Doyen P, Chaïb I, Amara R. Do tidal fluctuations affect microplastics distribution and composition in coastal waters? MARINE POLLUTION BULLETIN 2024; 200:116166. [PMID: 38377863 DOI: 10.1016/j.marpolbul.2024.116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
The hydro-meteorological conditions in marine environments are recognized to have a major impact on the transport and dispersion of microplastics (MP), although their precise effects remain poorly understood. This study investigates the effects of tidal fluctuations on MP abundance and composition in a megatidal coastal water. Waters samples were collected every ninety minutes over the course of two complete tidal cycles - one during spring tide and another during neap tide. There were no significant disparities in term of abondance, size, and composition of MPs between the samples collected during the two tidal cycles. Nevertheless, MP abundance and characteristics (morphology, size and polymer types) can be influenced over the course of a complete tidal cycle due to the impact of tidal currents and water height. This study highlights the need to consider the fluctuations of the tidal cycle when planning in-situ surveys to better assess MP pollution in coastal environments.
Collapse
Affiliation(s)
- Gabriel Pasquier
- Univ. Littoral Côte d'Opale, CNRS, IRD, Univ. Lille, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-62930 Wimereux, France
| | - Périne Doyen
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, 62200 Boulogne-sur-Mer, France
| | - Iseline Chaïb
- Univ. Littoral Côte d'Opale, CNRS, IRD, Univ. Lille, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-62930 Wimereux, France
| | - Rachid Amara
- Univ. Littoral Côte d'Opale, CNRS, IRD, Univ. Lille, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-62930 Wimereux, France.
| |
Collapse
|
2
|
Chen X, Wu P, Chen X, Liu H, Li X. Source apportionment of heavy metal(loid)s in sediments of a typical karst mountain drinking-water reservoir and the associated risk assessment based on chemical speciations. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7585-7601. [PMID: 37394675 DOI: 10.1007/s10653-023-01676-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
As important place for water storage and supply, drinking-water reservoirs in karst mountain areas play a key role in ensuring human well-being, and its water quality safety has attracted much attention. Source apportionment and ecological risks of heavy metal(loid)s in sediments of drinking-water reservoir are important for water security, public health, and regional water resources management, especially in karst mountain areas where water resources are scarce. To expound the accumulation, potential ecological risks, and sources of heavy metal(loid)s in a drinking-water reservoir in Northwest Guizhou, China, the surface sediments were collected and analyzed based on the combined use of the geo-accumulation index (Igeo), sequential extraction (BCR), ratios of secondary phase and primary phase (RSP), risk assessment code (RAC), modified potential ecological risk index (MRI), as well as the positive matrix factorization methods. The results indicated that the accumulation of Cd in sediments was obvious, with approximately 61.9% of the samples showing moderate to high accumulation levels, followed by Pb, Cu, Ni, and Zn, whereas the As and Cr were at low levels. A large proportion of BCR-extracted acid extractable and reducible fraction were found in Cd (72.5%) and Pb (40.3%), suggesting high bioavailability. The combined results of RSP, RAC, and MRI showed that Cd was the major pollutant in sediments with high potential ecological risk, while the risk of other elements was low. Source apportionment results of heavy metal(loid)s indicated that Cd (75.76%) and Zn (23.1%) mainly originated from agricultural activities; As (69.82%), Cr (50.05%), Cu (33.47%), and Ni (31.87%) were associated with domestic sources related to residents' lives; Cu (52.36%), Ni (44.57%), Cr (34.33%), As (26.51%), Pb (24.77%), and Zn (23.80%) primarily came from natural geological sources; and Pb (47.56%), Zn (22.46%) and Cr (13.92%) might be introduced by mixed sources of traffic and domestic. The contribution ratios of the four sources were 18.41%, 36.67%, 29.48%, and 15.44%, respectively. Overall, priority control factors for pollution in relation to agricultural sources included Cd, while domestic sources are primarily associated with As. It is crucial to place special emphasis on the impacts of human activities when formulating pollution prevention and control measures. The results of this study can provide valuable reference and insights for water resources management and pollution prevention and control strategies in karst mountainous areas.
Collapse
Affiliation(s)
- Xue Chen
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Pan Wu
- Key Laboratory of Karst Georesources and Environment of Ministry of Education, Guizhou University, Guiyang, 550025, China
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Xue Chen
- Guiyang Rural Revitalization Service Center, Guiyang, 550025, Guizhou Province, China
| | - Hongyan Liu
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Xuexian Li
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Karst Georesources and Environment of Ministry of Education, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Tan M, Dong J, Qu J, Hao M. The Patterns of Migration of Potentially Toxic Elements from Coal Mining Subsidence Areas and Associated Soils to Waterlogged Areas. TOXICS 2023; 11:888. [PMID: 37999540 PMCID: PMC10675259 DOI: 10.3390/toxics11110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
It is crucial for effectively controlling potentially toxic element (PTE) pollution to understand the pollution situation, ecological risks, health risks, and migration patterns of PTEs. However, currently, no research has been conducted on the migration patterns of soil PTEs from coal mining subsidence areas to waterlogged areas under different restoration modes. In this study, a total of 15 sediment samples and 60 soil samples were collected from landscaped wetlands, aquaculture wetland, fish-photovoltaic complementary wetland, photovoltaic wetland, and waterlogged areas with untreated coal mining subsidence. The PTE pollution status, ecological risks, health risks, migration patterns, and the important factors influencing the migration were analyzed. The results indicated that the comprehensive pollution level of PTEs in waterlogged areas with coal mining subsidence can be reduced by developing them into landscaped wetlands, aquaculture wetlands, fish-photovoltaic complementary wetlands, and photovoltaic wetlands. Additionally, the closer to the waterlogged area, the higher the Cu content in the subsidence area soil is, reaching its peak in the waterlogged area. The Cd was influenced positively by SOC and pH. The research results were of great significance for formulating reclamation plans for waterlogged areas and controlling PTE pollution.
Collapse
Affiliation(s)
- Min Tan
- School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China;
| | - Jihong Dong
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China;
| | - Junfeng Qu
- Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China;
- Xuzhou Institute of Ecological Civilization Construction, Xuzhou 221008, China
| | - Ming Hao
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China;
| |
Collapse
|
4
|
Cai Y, Mao L, Deng X, Zhou C, Zhang Y. Trace elements in surface sediments from Xinyanggang River of Jiangsu Province, China: Spatial distribution, risk assessment and source appointment. MARINE POLLUTION BULLETIN 2023; 187:114550. [PMID: 36608478 DOI: 10.1016/j.marpolbul.2022.114550] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The Xinyanggang River in Yancheng City, one of the essential rivers entering the Yellow sea, has imported abundant pollutants to the coast of Jiangsu Province. Trace elements (Cr, Ni, Cu, Zn, As, Rb, Sr, Mo, Pb, Th, U, Sc, Ga, Se, Zr, Nb, and Sn) in surface sediments in the Xinyanggang River were measured to analyze the spatial distribution, risk assessment, and source appointment. The results showed that the parts of 17 trace elements presented high average values in river sediments, such as Zr (309.19 mg/kg), Sr (182.72 mg/kg), Zn (77.67 mg/kg), and Cr (70.63 mg/kg). Compared with some coastal rivers, the Xinyanggang River was polluted by certain trace elements, such as Cr, Zn, and As. Based on the analysis of the enrichment factor (EF), the contamination factor (CF), the pollution load index (PLI), and the geoaccumulation index (Igeo), trace elements in sediments showed unpolluted to moderate contamination and mild to moderate enrichment. Among them, Zn, Pb, and Sn were highly polluted. The multivariate analysis, the principal component analysis-multiple linear regression (APCS-MLR) model, and the Unmix model identified four contributing trace element sources. Cr, Th, U, Se, Zr, and Nb originated from manufacturing industries and hydrodynamic transport erosion. Ni, Rb, Sc, and Ga were attributed to natural source. Cu, Zn, Mo, Pb, and Sn were contributed from mixed sources including industrial wastewater and transportation emissions. As and Sr were associated mainly with mixed sources of agriculture and combustion. These four sources of metals accounted for 22.5 %, 5.7 %, 15.3 %, and 11.1 % by using the APCS-MLR model, whereas 22.9 %, 39.7 %, 17.5 %, and 19.9 % by using the Unmix model, respectively.
Collapse
Affiliation(s)
- Yuqi Cai
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Longjiang Mao
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Xiaoqian Deng
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chaofan Zhou
- Jiangsu Provincial Environmental Monitoring Center, Nanjing 210019, China
| | - Yuanzhi Zhang
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
5
|
Ni X, Zhao G, Ye S, Li G, Yuan H, He L, Su D, Ding X, Xie L, Pei S, Laws EA. Spatial distribution and sources of heavy metals in the sediment and soils of the Yancheng coastal ecosystem and associated ecological risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18843-18860. [PMID: 36219297 DOI: 10.1007/s11356-022-23295-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Studies of heavy metal pollution are essential for the protection of coastal environments. In this study, positive matrix factorization (PMF) and a GeoDetector model were used to evaluate the sources of heavy metal contamination and associated ecological risks along the Yancheng Coastal Wetland. The distribution of heavy metals was shown to be greatly affected by clay content, except for Cr in shoal. Components from 6.5 to 9φ have the strongest ability to absorb heavy metals, where the effects of Cd and Zn sequestration in the wetlands were most apparent. The abilities of various wetland environments to sequester heavy metals were shown to be Spartina alterniflora wetland > woodland > Phragmites australis wetland > aquaculture pond > shoal > paddy > meadow > dry land. The sources of the heavy metals included parent soil material (59%), agriculture (15%), and industrial pollutants (26%). According to the single-factor pollution index, there was no evidence of pollution except Cr and Pb. In general, the heavy metal pollution was insignificant. The order of pollution loading index was shoal > paddy field > dry land > Spartina Alterniflora wetland > aquaculture ponds > woodland > meadow > Phragmites australis wetland. The ecological harm of heavy metal exposure was slight except for Cd and Hg, where vehicle emissions appeared to be the main cause of heavy metal pollution.
Collapse
Affiliation(s)
- Xin Ni
- College of Marine Geosciences, Ocean University of China, Qingdao, 266100, People's Republic of China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
| | - Guangming Zhao
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China.
- The Key Laboratory of Coastal Wetlands Biogeosciences, Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, 266071, People's Republic of China.
- Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China.
| | - Siyuan Ye
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China.
- The Key Laboratory of Coastal Wetlands Biogeosciences, Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, 266071, People's Republic of China.
| | - Guangxue Li
- College of Marine Geosciences, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Hongming Yuan
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
- The Key Laboratory of Coastal Wetlands Biogeosciences, Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, 266071, People's Republic of China
| | - Lei He
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
- The Key Laboratory of Coastal Wetlands Biogeosciences, Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, 266071, People's Republic of China
| | - Dapeng Su
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
- The Key Laboratory of Coastal Wetlands Biogeosciences, Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, 266071, People's Republic of China
| | - Xigui Ding
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
- The Key Laboratory of Coastal Wetlands Biogeosciences, Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, 266071, People's Republic of China
| | - Liujuan Xie
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
- The Key Laboratory of Coastal Wetlands Biogeosciences, Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, 266071, People's Republic of China
| | - Shaofeng Pei
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
- The Key Laboratory of Coastal Wetlands Biogeosciences, Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, 266071, People's Republic of China
| | - Edward A Laws
- College of the Coast & Environment, Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, 70803-4110, USA
| |
Collapse
|
6
|
Wang Q, Xu H, Yin J, Du S, Liu C, Li JY. Significance of the great protection of the Yangtze River: Riverine input contributes primarily to the presence of PAHs and HMs in its estuary and the adjacent sea. MARINE POLLUTION BULLETIN 2023; 186:114366. [PMID: 36436271 DOI: 10.1016/j.marpolbul.2022.114366] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
The Yangtze River protection strategies are expected to improve the water quality and ecological function of the Yangtze River Estuary (YRE). The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) and 6 heavy metals (HMs) in the YRE were measured and the riverine fluxes were calculated subsequently. In particular, the concentrations of low molecular weight PAHs (LMW-PAHs), arsenic (As) and mercury (Hg) in seawater decreased over time, while those of other studied pollutants did not change a lot. In sediments, the concentration changes for all the pollutants were insignificant. For the present pollutants, the river input is the dominant source, and the flux decreased after the protection. The contribution of the discharge from wastewater treatment plants (WWTPs) was quantified. Its influence cannot be ignored. The seafood quality remained stable and the risk via diet was insignificant. Long-term monitoring is necessary, and the positive impact of the Protection Strategy is gradually emerging.
Collapse
Affiliation(s)
- Qian Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China
| | - Hanwen Xu
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China
| | - Jie Yin
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China
| | - Shengnan Du
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China
| | - Caicai Liu
- Key Laboratory of Marine Ecological Monitoring and Restoration Technologies, The Ministry of Nature Resources, Pudong, Shanghai, China
| | - Juan-Ying Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China.
| |
Collapse
|
7
|
Rezapour S, Asadzadeh F, Nouri A, Khodaverdiloo H, Heidari M. Distribution, source apportionment, and risk analysis of heavy metals in river sediments of the Urmia Lake basin. Sci Rep 2022; 12:17455. [PMID: 36261490 PMCID: PMC9582006 DOI: 10.1038/s41598-022-21752-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2023] Open
Abstract
The anthropogenic heavy metal dissemination in the natural environment through riverine sediments is a major ecological and public health concern around the world. This study gives insight into the source apportionment and potential ecological and health risks of heavy metals in river sediments of the Urmia Lake basin, a natural world heritage located in northwestern Iran. A comprehensive sediment sampling was conducted in seven major rivers feeding the basin during the summer and winter of 2021. Samples were analyzed for zinc (Zn), copper (Cu), cadmium (Cd), lead (Pb), and nickel (Ni) contents and a suite of chemical and physical properties. Subsequently, Pollution Index (PI), Pollution Load Index (PLI), Ecological Risk (ER), Hazard Quotients (HQ), Hazard Index (HI), and Carcinogenic Risk (CR) indices were determined. The mean concentration of heavy metals in all rivers' sediments exhibited the descending order of Ni > Zn > Pb > Cu > Cd during both summer and winter. Multivariate analysis suggested that Zn was primarily initiated from natural processes, Cd and Pb were affected by human activities, and Cu along Ni were derived from natural and anthropogenic factors. The PI unveiled that most sediment samples were unpolluted to slightly polluted by Zn, Cu, and Pb, and slightly to moderately polluted by Cd. PLI and ER indices demonstrated that the sediment poses non to moderate pollution and low to moderate ecological risk, respectively. Using a human health risk approach, we found that the HI values of all heavy metals and THI were less than one for children and adults implying non-carcinogenic risk in the analyzed sediments. Carcinogenic effects of Cd and Pb at all rivers sediments via ingestion, inhalation, and dermal contact were almost within tolerable risks (1 × 10-6 to 1 × 10-4) for children and adults. PI, PLI, ER, HQ, HI, and CR index values of sediment samples during the summer were higher than those during the winter. This is attributed to the greater heavy metal concentrations and the lower water flow during summer. Our results provide practical information for better management and control of heavy metal pollution in aquatic-sedimentary ecosystems.
Collapse
Affiliation(s)
- Salar Rezapour
- grid.412763.50000 0004 0442 8645Soil Science Department, Urmia University, P.O. Box 165, Urmia, 57134 Islamic Republic of Iran
| | - Farrokh Asadzadeh
- grid.412763.50000 0004 0442 8645Soil Science Department, Urmia University, P.O. Box 165, Urmia, 57134 Islamic Republic of Iran
| | - Amin Nouri
- grid.4391.f0000 0001 2112 1969Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR 97838 USA
| | - Habib Khodaverdiloo
- grid.412763.50000 0004 0442 8645Soil Science Department, Urmia University, P.O. Box 165, Urmia, 57134 Islamic Republic of Iran
| | - Mohammad Heidari
- grid.412763.50000 0004 0442 8645Department of Epidemiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
8
|
Sun Y, Yang J, Gong J, Duan Z. Contamination and source of metals in surface sediments from the Nandu River of Hainan Island, China. MARINE POLLUTION BULLETIN 2022; 182:114037. [PMID: 35969904 DOI: 10.1016/j.marpolbul.2022.114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Concentrations of eight metals, organic carbon (Corg), and eight oxides were measured in 33 river sediment samples from the Nandu River. Sediment quality guidelines (SQGs) showed no severe pollution at all stations. However, according to the geo-accumulation index (Igeo), enrichment factor (EF), and potential ecological risk index (EI and RI), As and Cd were the primary pollutants in the survey area and caused low to moderate potential ecological risk. The positive correlations between Al2O3, TFe2O3, Mn, Corg, and metals indicated that clay, FeMn oxides, and organic carbon content were the main factors for metal accumulation in the study area. From the results of correlation (CA) and principal component analysis (PCA), we inferred that Cr, Ni, Cu, and Zn were mainly from natural sources, while As, Cd, Hg, and Pb were from anthropogenic activities in the Nandu River basin. This was the first study of metal pollution in the surface sediments of the Nandu River, which will serve as a reference for future research.
Collapse
Affiliation(s)
- Yanling Sun
- School of Earth Sciences, China University of Geoscience, Wuhan 430074, PR China
| | - Jianzhou Yang
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, PR China; Key Laboratory of Geochemical Exploration Technology, Ministry of Natural Resources, Langfang 065000, PR China.
| | - Jingjing Gong
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, PR China; Key Laboratory of Geochemical Exploration Technology, Ministry of Natural Resources, Langfang 065000, PR China
| | - Zhuang Duan
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, PR China; Key Laboratory of Geochemical Exploration Technology, Ministry of Natural Resources, Langfang 065000, PR China
| |
Collapse
|
9
|
Li Y, Sun Z, Mao L, Hu X, Chen B, Li Y. Spatial variation and ecological risk assessment for heavy metals in marsh sediments in Fuzhou reach of the Min River, Southeast China. MARINE POLLUTION BULLETIN 2022; 180:113757. [PMID: 35596999 DOI: 10.1016/j.marpolbul.2022.113757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
To explore the pollution levels, sources and risks of heavy metals in sediments in Fuzhou reach of the Min River, the sediments involving in seven marsh types were sampled. Results showed that the concentrations of Pb, Zn and Cd in sediments declined from freshwater segment to estuarine segment. Higher levels of Cu, Cr and Ni in sediments generally occurred in estuarine segment. The highest levels of Pb and Cd were observed in bush swamp, while those of Cr, Ni, Zn and Cu occurred in mudflat. Cr, Cu, Zn and Ni probably shared common source, while Pb and Cd originated from another source. Pb and Cd were identified as heavy metals of primary concerns and the former showed high potential toxicity and high contributions to ΣTUs. Next step, the metal pollutions in sediments might be more serious if effective measures were not taken to control the loading of pollutants.
Collapse
Affiliation(s)
- Yajin Li
- Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350007, PR China
| | - Zhigao Sun
- Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350007, PR China; Institute of Geography, Fujian Normal University, Fuzhou 350007, PR China.
| | - Li Mao
- Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350007, PR China
| | - Xingyun Hu
- Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350007, PR China
| | - Bingbing Chen
- Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350007, PR China
| | - Yanzhe Li
- Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350007, PR China
| |
Collapse
|
10
|
Chen J, Liu J, Hong H, Liang S, Zhao W, Jia H, Lu H, Li J, Yan C. Coastal reclamation mediates heavy metal fractions and ecological risk in saltmarsh sediments of northern Jiangsu Province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154028. [PMID: 35217055 DOI: 10.1016/j.scitotenv.2022.154028] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 05/25/2023]
Abstract
Coastal reclamation has created enormous extra land for the rapidly growing economy, but it has also caused serious environmental pollution problems and threatened the sustainable development of coastal areas. However, there are few studies focusing on the distribution patterns, geochemical speciation and ecological risks of heavy metals along the land-to-sea belt, as well as the differences between reclamation and non-reclamation. Here, we collected 69 sediment samples from four sediment types along the land-to-sea sampling belts in the reclaimed and non-reclaimed tidal flats of Jiangsu, China. Geochemical speciation and contents of heavy metals were determined to investigate their spatial distributions, ecological risks and effect factors. Results showed that As, Cd, Cr and Ni in the sediments posed considerable or moderate ecological risk according to the Ontario guidelines and sediment quality guidelines (SQGs) of USEPA, but they were lower than the SQGs of China. Higher geoaccumulation index and potential ecological risk index suggested that the sediments were moderately to heavily polluted by Cd and As. Generally, reclaimed sediments exhibited higher metal pollution levels. Additionally, reclaimed areas showed a unimodal pattern of metal content along the direction of land-to-sea, suggesting that Spartina alterniflora could accelerate the deposition and accumulation of metal pollutants caused by reclamation, and ultimately control the transfer of terrigenous metals to marine environment. We found that residual fraction was the dominant geochemical fraction for the metals determined. Reclamation processes have changed the composition of heavy metal fractions, especially Cd, Pb, Zn, and Ni. Approximately 20% of Cd existed in the acid extractable/exchangeable fraction and posed medium ecological risk according to the risk assessment code. The principal component analysis and correlation matrix further indicate that organic matter and particle size of sediment could be the major factors regulating the metal distribution, and Cd and Zn might be anthropogenic sources.
Collapse
Affiliation(s)
- Jingyan Chen
- Key Laboratory of the Ministry of Education for Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, Guangxi, China; College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingchun Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Hualong Hong
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Shichu Liang
- Key Laboratory of the Ministry of Education for Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Weiwei Zhao
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Hui Jia
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haoliang Lu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Junwei Li
- Key Laboratory of the Ministry of Education for Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, Guangxi, China; Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China.
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
11
|
Gao S, Zhang R, Zhang H, Zhang S. The seasonal variation in heavy metal accumulation in the food web in the coastal waters of Jiangsu based on carbon and nitrogen isotope technology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118649. [PMID: 34902527 DOI: 10.1016/j.envpol.2021.118649] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Research on food web structures in marine ecosystems is an important field in ecology where the interaction of structure and function contributes to understanding biodiversity. The coastal waters of Jiangsu are one of the important fishing bases in China. In recent years, with the development of industry in the coastal waters of Jiangsu, heavy metal (HM) pollution in this region has become more serious. In this study, all samples (including macroalgae, bivalves, cephalopods, gastropods, crustaceans and fish) were collected in the coastal waters of Jiangsu in spring, summer and autumn. Based on the construction of the food web structure using carbon and nitrogen isotope technology, the main methods of material circulation and energy flow were quantified, and the accumulation regularity and seasonal variation characteristics of HMs in the food web were analysed. The results showed that (1) among all the trophic groups, bivalves had the highest enrichment level of HMs, while fish had the lowest. However, fish have a strong ability to enrich Hg, and the main source of Hg enrichment in the human body is edible fish, so more attention should be given to Hg concentrations in fish. (2) In spring, the mean HM concentrations of marine organisms in the coastal waters of Jiangsu were Zn > Cu > As > Cd > Cr > Pb > Ni > Hg, and they were Zn > Cu > As > Pb > Cd > Ni > Cr > Hg in summer and Zn > Cu > As > Pb > Cd > Cr > Ni > Hg in autumn. In total, the concentrations of Zn, Cu and As were the highest, while the mean concentration of Hg in organisms was the lowest. (3) No significant biomagnification of HMs was found in the three seasons. We speculated that overfishing leads to miniaturization and a younger age of organisms, which makes the concentration of highly enriched HMs in organisms with high trophic levels (TLs) lower.
Collapse
Affiliation(s)
- Shike Gao
- College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Rui Zhang
- College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Hu Zhang
- Jiangsu Research Institute of Marine Fisheries, Nantong, 226007, Jiangsu, China
| | - Shuo Zhang
- College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, China; Joint Laboratory for Monitoring and Conservation of Aquatic Living Resources in the Yangtze Estuary, Shanghai, 200000, China.
| |
Collapse
|
12
|
Factors Affecting Soil Organic Carbon Content between Natural and Reclaimed Sites in Rudong Coast, Jiangsu Province, China. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9121453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The physical and chemical properties of coastal soils in China have changed due to the development of reclaimed stretches of coastline, which has a significant impact on the dynamics of organic carbon (OC) in the soils. We evaluated changes in the physical and chemical properties of soils in both a natural area and a reclaimed area along the coast of Rudong County, China, as well as the effects that these changes had on the OC content of the soils. A partial least squares regression (PLSR) model was used to determine which factors are most important for driving changes in soil OC at four sites from each area. According to dominant vegetation types, there were significant differences in soil physical and chemical properties and OC content between the reclaimed area and natural coastal area. The mean grain size and pH increased gradually with depth, and values were highest in reclaimed areas. Mean total N (TN), P, and S, salinity, water content, and soil OC were highest in natural areas and decreased with depth. The PLSR model determined that TN, silt content, and sand content were the most important factors affecting soil OC in the reclaimed area, whereas TN, clay content, and water content were important factors affecting soil OC dynamics in the natural coastal areas. This study provides important reference data for correctly assessing the role and status of coastal areas in the global carbon cycle.
Collapse
|