1
|
Sarti C, Cincinelli A, Bresciani R, Rizzo A, Chelazzi D, Masi F. Microplastic removal and risk assessment framework in a constructed wetland for the treatment of combined sewer overflows. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175864. [PMID: 39216754 DOI: 10.1016/j.scitotenv.2024.175864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/28/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Combined sewer overflows (CSOs) release a significant amount of pollutants, including microplastics (MPs), due to the discharge of untreated water into receiving water bodies. Constructed Wetlands (CWs) offer a promising strategy for CSO treatment and have recently attracted attention as a potential solution for MP mitigation. Nevertheless, limited research on MP dynamics within CSO events and MP removal performance in full-scale CW systems poses a barrier to this frontier of application. This research aims to address both these knowledge gaps, representing the first investigation of a multi-stage CSO-CW for MP removal. The study presents one year of seasonal data from the CSO-CW upstream of the WWTP in Carimate (Italy), evaluating the correlation of MP abundance with different water quality/quantity parameters and associated ecological risks. The results show a clear trend in MP abundance, which increases with rainfall intensity. The strong correlation between MP concentration, flow rate, and total suspended solids (TSS) validates the first flush phenomenon hypothesis and its impact on MP release during CSOs. Chemical characterization identifies acrylonitrile-butadiene-styrene (ABS), polyethylene (PE), and polypropylene (PP) as predominant polymers. The first vertical subsurface flow (VF) stage showed removal rates ranging from 40 % to 77 %. However, the unexpected increase in MP concentrations after the second free water surface (FWS) stage suggests the stochasticity of CSO events and the different hydraulic characteristics of the CW units have diverse effects on MP retention. These data confirm filtration as the main retention mechanism for MP within CW systems. The MP ecological risk assessment indicates a high-risk category for most of the water samples, mainly related to the frequent presence of ABS fragments. The results contribute to the current understanding of MPs released by CSOs and provide insights into the performance of different treatment units within a large-scale CSO-CW system, suggesting the requirement for further attention.
Collapse
Affiliation(s)
- Chiara Sarti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; Iridra Srl, Via La Marmora 51, 50121 Florence, Italy.
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | | | | | - David Chelazzi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Fabio Masi
- Iridra Srl, Via La Marmora 51, 50121 Florence, Italy
| |
Collapse
|
2
|
Mehboob M, Dris R, Tassin B, Gasperi J, Khan MU, Malik RN. Microplastic assessment in remote and high mountain lakes of Gilgit Baltistan, Pakistan. CHEMOSPHERE 2024; 365:143283. [PMID: 39255855 DOI: 10.1016/j.chemosphere.2024.143283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Microplastic (MP) pollution is a critical environmental challenge worldwide, however limited research is reported in remote lakes of Pakistan. This study assessed MPs (>5 mm) prevalence, distribution and risk perspective in water and sediment of eight remote and high-altitude lakes (>1500 m above sea level) of Gilgit Baltistan, Pakistan. The lakes exhibited an average abundance of 152.6 ± 104.6 to 12.1 ± 7 MP/kg of dry sediments and 2 ± 0.9 to 17.1 ± 17.2 MP/L of surface water. MPs <200 μm dominated in both matrices. Surface water predominantly contained polyester and polypropylene, while polypropylene and polyethylene dominated in sediments. The gradient of elevation did not show any pronounced impact on the fiber loading or MP count in both matrices. Backward air mass trajectory revealed that air masses vastly travelled from western-Asia, Arabian sea and Bay of Bengal with an average transmission distance of 2500-3500 km (500 m a.s.l) that can be a potential deposition MP source in the area. Pollution Load Index of the lakes were >1 exhibiting pollution. All other lakes except Batura and Borith manifested a moderate hazard index. Naltar lake along with aforementioned two lakes also manifested high polymer toxicity. Further research should emphasize understanding the mechanisms and biotic interactions in high-mountain ecosystems.
Collapse
Affiliation(s)
- Maryem Mehboob
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Rachid Dris
- LEESU, Ecole des Ponts, Université Paris Est Creteil, F-94010, Creteil, France
| | - Bruno Tassin
- LEESU, Ecole des Ponts, Université Paris Est Creteil, F-94010, Creteil, France
| | - Johnny Gasperi
- GERS-LEE, Universite Gustave Eiffel, F-44344, Bouguenais, France
| | - Muhammad Usman Khan
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Riffat N Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
3
|
Essoufi C, Santini S, Sforzi L, Martellini T, Chelazzi D, Ayari R, Chelazzi L, Cincinelli A, Hamdi N. First evidence of microplastics and their characterization in yellow-legged gull (Larus michahellis michahellis, Naumann, 1840) pellets collected from the Sfax salina, southeastern Tunisia. MARINE POLLUTION BULLETIN 2024; 205:116628. [PMID: 38917492 DOI: 10.1016/j.marpolbul.2024.116628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
The aim of this work was to provide evidence on the presence of microplastics (MPs) in regurgitated Yellow-legged Gull pellets (n = 18) from Sfax salina (south-eastern Tunisia). This artificial area is subject to high anthropogenic pressure and hosts Yellow-legged Gulls, which are at the top of the trophic chain and can be used as sentinel species to monitor litter in the environment, including plastic pollution. The total number of MPs found in the samples was 309, 63.8 % fibres (4.95 ± 3.51 MPs/g) and 36.2 % fragments (2.87 ± 1.74 MPs/g). Micro-FTIR analysis evidenced that a large proportion of the fibres was attributed to artificial cellulose (40.7 %). Ethylene vinyl acetate (EVA) and polyethylene (PE) were found in the fragments.
Collapse
Affiliation(s)
- Chayma Essoufi
- University of Tunis El Manar, Faculty of Sciences, Department of Biology, Laboratory of Diversity, Management and Conservation of Biological Systems, LR18ES06 Tunis, Tunisia; Department of Chemistry "Ugo Schiff", University of Florence - Via della Lastruccia, 3-50019 Sesto F.no, Florence, Italy
| | - Saul Santini
- Department of Chemistry "Ugo Schiff", University of Florence - Via della Lastruccia, 3-50019 Sesto F.no, Florence, Italy.
| | - Laura Sforzi
- Department of Chemistry "Ugo Schiff", University of Florence - Via della Lastruccia, 3-50019 Sesto F.no, Florence, Italy
| | - Tania Martellini
- Department of Chemistry "Ugo Schiff", University of Florence - Via della Lastruccia, 3-50019 Sesto F.no, Florence, Italy; CSGI, University of Florence, Via della Lastruccia 3-50019 Sesto F.no, Florence, Italy
| | - David Chelazzi
- Department of Chemistry "Ugo Schiff", University of Florence - Via della Lastruccia, 3-50019 Sesto F.no, Florence, Italy; CSGI, University of Florence, Via della Lastruccia 3-50019 Sesto F.no, Florence, Italy
| | - Rihab Ayari
- University of Tunis El Manar, Faculty of Sciences, Department of Biology, Laboratory of Diversity, Management and Conservation of Biological Systems, LR18ES06 Tunis, Tunisia
| | - Laura Chelazzi
- Department of Chemistry "Ugo Schiff", University of Florence - Via della Lastruccia, 3-50019 Sesto F.no, Florence, Italy
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff", University of Florence - Via della Lastruccia, 3-50019 Sesto F.no, Florence, Italy; CSGI, University of Florence, Via della Lastruccia 3-50019 Sesto F.no, Florence, Italy.
| | - Nabil Hamdi
- University of Tunis El Manar, Faculty of Sciences, Department of Biology, Laboratory of Diversity, Management and Conservation of Biological Systems, LR18ES06 Tunis, Tunisia
| |
Collapse
|
4
|
Roy AK, Mondal R, Roy A, Bhattacharyya S, Chaudhuri P. A quantitative comparison of macro-plastic debris between undisturbed and populous coastal ecosystems of West Bengal, India. MARINE POLLUTION BULLETIN 2024; 202:116340. [PMID: 38598930 DOI: 10.1016/j.marpolbul.2024.116340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Unmanaged plastic debris from both terrestrial and aquatic sources is causing havoc on Indian coastlines. Tajpur Beach and Haliday Island were selected as two distinct coastal ecosystems in West Bengal for inventorying sighted macro-plastics, aiming to assess their distribution and compare pollution levels. This study employs a comprehensive methodological approach, integrating field-based observations along with lab-based measurements, and information derived from geospatial analysis. Total 34 random points across two study sites were considered for the physical, chemical, and biological characterization of macro-plastics to assess their relative abundance. Areas with higher human footfalls exhibited greater accumulation of plastic debris, with polypropylene, either alone or in combination with polyurethane and polystyrene, identified as highly toxic. Fragmented plastic debris was prevalent at both test sites, yet undisturbed Haliday Island exhibited an abundance of less fragmented materials. Emphasis was also given on implementing appropriate management regimes to achieve plastic-free diverse coastal landscapes.
Collapse
Affiliation(s)
- Asit Kumar Roy
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India
| | - Riashree Mondal
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Anirban Roy
- Virology Laboratory, DAC Regional Research Institute (CCRH), Kolkata 700035, India
| | | | - Punarbasu Chaudhuri
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
5
|
Xie J, Gowen A, Xu W, Xu J. Analysing micro- and nanoplastics with cutting-edge infrared spectroscopy techniques: a critical review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2177-2197. [PMID: 38533677 DOI: 10.1039/d3ay01808c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The escalating prominence of micro- and nanoplastics (MNPs) as emerging anthropogenic pollutants has sparked widespread scientific and public interest. These minuscule particles pervade the global environment, permeating drinking water and food sources, prompting concerns regarding their environmental impacts and potential risks to human health. In recent years, the field of MNP research has witnessed the development and application of cutting-edge infrared (IR) spectroscopic instruments. This review focuses on the recent application of advanced IR spectroscopic techniques and relevant instrumentation to analyse MNPs. A comprehensive literature search was conducted, encompassing articles published within the past three years. The findings revealed that Fourier transform infrared (FTIR) spectroscopy stands as the most used technique, with focal plane array FTIR (FPA-FTIR) representing the cutting edge in FTIR spectroscopy. The second most popular technique is quantum cascade laser infrared (QCL-IR) spectroscopy, which has facilitated rapid analysis of plastic particles. Following closely is optical photothermal infrared (O-PTIR) spectroscopy, which can furnish submicron spatial resolution. Subsequently, there is atomic force microscopy-based infrared (AFM-IR) spectroscopy, which has made it feasible to analyse MNPs at the nanoscale level. The most advanced IR instruments identified in articles covered in this review were compared. Comparison metrics encompass substrates/filters, data quality, spatial resolution, data acquisition speed, data processing and cost. The limitations of these IR instruments were identified, and recommendations to address these limitations were proposed. The findings of this review offer valuable guidance to MNP researchers in selecting suitable instrumentation for their research experiments, thereby facilitating advancements in research aimed at enhancing our understanding of the environmental and human health risks associated with MNPs.
Collapse
Affiliation(s)
- Junhao Xie
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Aoife Gowen
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Wei Xu
- Department of Life Sciences, Center for Coastal Studies, College of Sciences, Texas A&M University-Corpus Christi, USA
| | - Junli Xu
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
6
|
Soliveres S, Casado-Coy N, Martínez JE, Sanz-Lázaro C. Anthropogenic and environmental factors partly co-determine the level, composition and temporal variation of beach debris. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133843. [PMID: 38394899 DOI: 10.1016/j.jhazmat.2024.133843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
The accumulation of human-derived waste on our coasts is an escalating phenomenon, yet the relative importance and potential interactions among its main drivers are not fully understood. We used citizen-science standardized collections to investigate how anthropogenic and environmental factors influence the level, composition, and temporal variation of beach debris. An average of 58 kg and 803 items/100 m, dominated by single-use items of land (rather than sea) origin, were collected in the 881 beaches sampled. Interactions between anthropogenic and environmental factors (e.g., human use × beach substrate) were the strongest predictors of beach debris, accounting for 34% of the variance explained in its amount and composition. Beach debris showed a highly stochastic temporal variation (adjusted R2 = 0.05), partly determined by interactions between different local and landscape anthropogenic pressures. Our results show that both environmental and anthropogenic factors (at the local and landscape scale) co-determine the level and composition of beach debris. We emphasize the potential of citizen-science to inform environmental policy, showing that land-originated single-use items dominate beach debris, and the importance of considering their multiple anthropogenic and environmental drivers to improve our low predictive power regarding their spatio-temporal distribution.
Collapse
Affiliation(s)
- Santiago Soliveres
- Department of Ecology, University of Alicante, Spain; Institute of multidisciplinary environmental studies "Ramón Margalef", University of Alicante, Spain.
| | - Nuria Casado-Coy
- Institute of multidisciplinary environmental studies "Ramón Margalef", University of Alicante, Spain
| | | | - Carlos Sanz-Lázaro
- Department of Ecology, University of Alicante, Spain; Institute of multidisciplinary environmental studies "Ramón Margalef", University of Alicante, Spain
| |
Collapse
|
7
|
Key S, Ryan PG, Gabbott SE, Allen J, Abbott AP. Influence of colourants on environmental degradation of plastic litter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123701. [PMID: 38432345 DOI: 10.1016/j.envpol.2024.123701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/05/2024]
Abstract
Plastic degradation and the resultant production of microplastics has an important effect on the environment and fauna across the world. This paper shows that the colourant incorporated into plastic formulations has a significant effect on the stability of plastics. A static experimental exposure of differently coloured polypropylene bottle tops from the same manufacturer to a moderate climate over 3 years showed that black, white and silver plastics were almost unaffected whereas the specific blue, green and especially red pigments used in this study were significantly degraded. The second part of the study collected littered HDPE plastic containers from a remote South African beach and analysed their condition as a function of the given manufacturing date stamp. Most items were black or white and samples up to 45 years old were found with relatively little environmental degradation other than mild abrasion. It appears that carbon and titanium dioxide colourants protect the HDPE polymer from photolytic degradation. While anthraquinone, phthalocyanine and diketopyrrolopyrrole pigments were found to enable UV light to degrade the polymer leading to brittle plastics, promoting the formation of microplastics, it is likely that other pigments that do not strongly absorb in the UV will result in similar degradation.
Collapse
Affiliation(s)
- Sarah Key
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - Peter G Ryan
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch 7701, South Africa
| | - Sarah E Gabbott
- School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, UK
| | - Jack Allen
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - Andrew P Abbott
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
8
|
Zheng L, Wang M, Li Y, Xiong Y, Wu C. Recycling and Degradation of Polyamides. Molecules 2024; 29:1742. [PMID: 38675560 PMCID: PMC11052090 DOI: 10.3390/molecules29081742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
As one of the five major engineering plastics, polyamide brings many benefits to humans in the fields of transportation, clothing, entertainment, health, and more. However, as the production of polyamide increases year by year, the pollution problems it causes are becoming increasingly severe. This article reviews the current recycling and treatment processes of polyamide, such as chemical, mechanical, and energy recovery, and degradation methods such as thermal oxidation, photooxidation, enzyme degradation, etc. Starting from the synthesis mechanism of polyamide, it discusses the advantages and disadvantages of different treatment methods of polyamide to obtain more environmentally friendly and economical treatment schemes. Finding enzymes that can degrade high-molecular-weight polyamides, exploring the recovery of polyamides under mild conditions, synthesizing environmentally degradable polyamides through copolymerization or molecular design, and finally preparing degradable bio-based polyamides may be the destination of polyamide.
Collapse
Affiliation(s)
- Lin Zheng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (L.Z.); (M.W.); (Y.L.); (Y.X.)
| | - Mengjin Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (L.Z.); (M.W.); (Y.L.); (Y.X.)
| | - Yaoqin Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (L.Z.); (M.W.); (Y.L.); (Y.X.)
| | - Yan Xiong
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (L.Z.); (M.W.); (Y.L.); (Y.X.)
- Hubei Longzhong Laboratory, Xiangyang 441000, China
| | - Chonggang Wu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (L.Z.); (M.W.); (Y.L.); (Y.X.)
- Hubei Longzhong Laboratory, Xiangyang 441000, China
| |
Collapse
|
9
|
Galli M, Baini M, Panti C, Tepsich P, Rosso M, Giannini F, Galgani F, Fossi MC. Paraffin waxes in the North-Western Mediterranean Sea: A comprehensive assessment in the Pelagos Sanctuary, a Specially Protected Area of Mediterranean Importance. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133677. [PMID: 38340565 DOI: 10.1016/j.jhazmat.2024.133677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Paraffin waxes are widely recognized as emerging marine pollutants, even their classification by the recent monitoring programs and the knowledge of their occurrence, and sources of contamination in marine ecosystems are poorly defined and reported. Wax presence and distribution have been evaluated in different environmental compartments in the Pelagos Sanctuary (Mediterranean Sea) floating on the sea surface and stranded on beaches, focussing on their characterization, accumulation areas and pollution inputs. More than 2500 yellow paraffin residues were detected and analysed in the study area showing a prevailing dimension smaller than 5 mm. The Genoa Canyon and the waters facing Gorgona Island resulted in the more polluted areas representing two distinct hotspots of wax accumulation potentially related to the high density of tanker vessels sailing to and from the harbour of Genova and Livorno. Higher concentrations of beached particles were found along the Tuscan coast (11 items/100 m) and on Pianosa Island (110 items/m2). This study gives valuable insights into paraffin wax pollution in the Pelagos Sanctuary, emphasizing the need for harmonized monitoring and detection methods to elucidate the potential impacts on marine organisms. Moreover, mitigating actions are crucial to prevent and curb the waxes pollution of marine ecosystems.
Collapse
Affiliation(s)
- M Galli
- Department of Physical, Earth and Environmental Sciences, University of Siena, Italy
| | - M Baini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy.
| | - C Panti
- Department of Physical, Earth and Environmental Sciences, University of Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - P Tepsich
- NBFC, National Biodiversity Future Center, Palermo, Italy; CIMA Research Foundation, 17100 Savona, Italy
| | - M Rosso
- NBFC, National Biodiversity Future Center, Palermo, Italy; CIMA Research Foundation, 17100 Savona, Italy
| | - F Giannini
- National Park of the Tuscan Archipelago, 57037 Portoferraio, Italy
| | - F Galgani
- IFREMER, Unit RMPF, Vairao, Tahiti, French Polynesia
| | - M C Fossi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
10
|
Santucci L, Fernández-Severini MD, Rimondino GN, Colombo CV, Prieto G, Forero-López AD, Carol ES. Assessment of meso- and microplastics distribution in coastal sediments and waters at the middle estuary of the Rio De La Plata, Argentina (SW Atlantic Ocean). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170026. [PMID: 38218486 DOI: 10.1016/j.scitotenv.2024.170026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Estuarine coastal water and sediments collected from multiple locations within the middle Río de la Plata (RDLP) estuary were analyzed in order to identify the presence of microplastics (MPs, <5 mm) and mesoplastics (MePs, 5-25 mm) in one of the most significant estuaries in the Southwestern Atlantic. The present study represents one of the first researches to survey MPs and MePs contamination in key stations at RDLP estuary. Average concentrations of 14.17 ± 5.50 MPs/L and 10.00 MePs/L were detected in water samples, while 547.83 ± 620.06 MPs/kg (dry weight) and 74.23 ± 47.29 MePs/kg d.w. were recorded in sediments. The greatest abundances were observed in the more anthropized areas, near urban settlements. Fibers were the most conspicuous plastic items in water and sediments, followed by fragments. On the other hand, surface sediments, and 50 cm and 100 cm-depth sediments also presented MPs and MePs indicating they could serve as a stratigraphic indicator for recently formed sediments. The main polymer type identified were acrylic fibers, followed by polypropylene (PP) and polyethylene terephthalate (PET). Besides, SEM-EDX detected the presence of Si, Fe, Ti, Al and Cl onto the plastics' surface. These elements may serve as additives to enhance the plastics' properties, such as in the case of Ti, or they could originate from the environment, like biogenic Si or Fe, and Al possibly as a component of the suspended particles or sediments adhered to the micro or meso plastics. Finally, the results of the present study showed that MPs and MePs are commonly found in waters and also tend to be trapped in sediments of the RDLP estuary supporting the assertion that these areas play a substantial role in influencing the transport, dispersion, and buildup of MPs in estuarine regions.
Collapse
Affiliation(s)
- L Santucci
- Centro de Investigaciones Geológicas (CIG), CONICET/UNLP, CCT-La Plata, Buenos Aires, Argentina.
| | - M D Fernández-Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Buenos Aires, Argentina
| | - G N Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - C V Colombo
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Buenos Aires, Argentina
| | - G Prieto
- Departamento de Ingeniería, Universidad Nacional del Sur, Bahía Blanca, Argentina (IFISUR), Universidad Nacional del Sur, CONICET, Bahía Blanca, Argentina
| | - A D Forero-López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Buenos Aires, Argentina
| | - E S Carol
- Centro de Investigaciones Geológicas (CIG), CONICET/UNLP, CCT-La Plata, Buenos Aires, Argentina
| |
Collapse
|
11
|
Wohlschläger M, Versen M, Löder MG, Laforsch C. A promising method for fast identification of microplastic particles in environmental samples: A pilot study using fluorescence lifetime imaging microscopy. Heliyon 2024; 10:e25133. [PMID: 38322960 PMCID: PMC10844045 DOI: 10.1016/j.heliyon.2024.e25133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Microplastic pollution of the environment has been extensively studied, with recent studies focusing on the prevalence of microplastics in the environment and their effects on various organisms. Identification methods that simplify the extraction and analysis process to the point where the extraction can be omitted are being investigated, thus enabling the direct identification of microplastic particles. Currently, microplastic samples from environmental matrices can only be identified using time-consuming extraction, sample processing, and analytical methods. Various spectroscopic methods are currently employed, such as micro Fourier-transform infrared, attenuated total reflectance, and micro Raman spectroscopy. However, microplastics in environmental matrices cannot be directly identified using these spectroscopic methods. Investigations using frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) to identify and differentiate plastics from environmental materials have yielded promising results for directly identifying microplastics in an environmental matrix. Herein, two artificially prepared environmental matrices that included natural soil, grass, wood, and high-density polyethylene were investigated using FD-FLIM. Our first results showed that we successfully identified one plastic type in the two artificially prepared matrices using FD-FLIM. However, further research must be conducted to improve the FD-FLIM method and explore its limitations for directly identifying microplastics in environmental samples.
Collapse
Affiliation(s)
- Maximilian Wohlschläger
- Faculty of Engineering, Technical University of Applied Sciences Rosenheim, Hochschulstraße 1, 83024 Rosenheim, Germany
| | - Martin Versen
- Faculty of Engineering, Technical University of Applied Sciences Rosenheim, Hochschulstraße 1, 83024 Rosenheim, Germany
| | - Martin G.J. Löder
- Animal Ecology I and BayCEER, University Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Christian Laforsch
- Animal Ecology I and BayCEER, University Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
12
|
Liu K, Zhu L, Wei N, Li D. Underappreciated microplastic galaxy biases the filter-based quantification. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132897. [PMID: 37935065 DOI: 10.1016/j.jhazmat.2023.132897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/28/2023] [Indexed: 11/09/2023]
Abstract
Long-term environmental loading of microplastics (MPs) causes alarming exposure risks for a variety of species worldwide, considered a planetary threat to the well-being of ecosystems. Robust quantitative estimates of MP extents and featured diversity are the basis for comprehending their environmental implications precisely, and of these methods, membrane-based characterizations predominate with respect to MP inspections. However, though crucial to filter-based MP quantification, aggregation statuses of retained MPs on these substrates remain poorly understood, leaving us a "blind box" that exaggerates uncertainty in quantitive strategies of preselected areas without knowing overview loading structure. To clarify this uncertainty and estimate their impacts on MP counting, using MP imaging data assembled from peer-reviewed studies through a systematic review, here we analyze the particle-specific profiles of MPs retained on various substrates according to their centre of mass with a fast-random forests algorithm. We visualize the formation of distinct galaxy-like MP aggregation-similar to the solar system and Milky Way System comprised of countless stars-across the pristine and environmental samples by leveraging two spatial parameters developed in this study. This unique pattern greatly challenges the homogeneously or randomly distributed MP presumption adopted extensively for simplified membrane-based quantification purposes and selective ROI (region of interest) estimates for smaller-sized plastics down to the nano-range, as well as the compatibility theory using pristine MPs as the standard to quantify the presence of environmental MPs. Furthermore, our evaluation with exemplified numeration cases confirms these location-specific and area-dependent biases in many imaging analyses of a selective filter area, ascribed to the minimum possibility of reaching an ideal turnover point for the selective quantitive strategies. Consequently, disproportionate MP schemes on loading substrates yield great uncertainty in their quantification processing, highlighting the prompt need to include pattern-resolved calibration prior to quantification. Our findings substantially advance our understanding of the structure, behavior, and formation of these MP aggregating statuses on filtering substrates, addressing a fundamental question puzzling scientists as to why reproducible MP quantification is barely achievable even for subsamples. This study inspires the following studies to reconsider the impacts of aggregating patterns on the effective counting protocols and target-specific removal of retained MP aggregates through membrane separation techniques.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Lixin Zhu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Marine and Environmental Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Nian Wei
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Norwegian Institute for Water Research, 94 Økernveien, Oslo 0579, Norway
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
13
|
Zhu Z, Xiao X, Wu R, Jin C, Li T, Liu W. Fifty-year pollution history of microplastics and influencing factors in offshore sediments: A case study of Ningbo, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123137. [PMID: 38097157 DOI: 10.1016/j.envpol.2023.123137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/18/2023]
Abstract
Sediment cores are optimal mediums for investigating the historical presence of offshore microplastics (MPs). In this study, two sediment cores were collected at varying water depths, i.e., XS2 (10 m) and XS3 (20 m), from the Xiangshan offshore (XSO) in Ningbo. We focused on the spatiotemporal distribution characteristics of MPs within two sediment cores and explored the response differences of MPs abundance to natural factors and human activities. The results showed that the MPs abundance in sediments has gradually increased since the late 1960s, but with interannual fluctuations. MPs abundance in XS2 and XS3 were 1133-8700 and 633-11433 items/kg dry weight, respectively. The predominant polymers were PA, PU, PET and ACR, with fragmented particles being the most prevalent shape of MPs. The MPs abundance in XS2 and XS3 had a similar response to natural factors, mainly including (i) MPs abundance significantly correlated with the sediment load of the Qiantang River (p < 0.01), indicating that sediment load might be an important factor affecting the MPs abundance and that MPs transported by rivers had characteristics of near-source sedimentation; (ii) typhoons had the effect of weakening the MPs abundance; and (iii) geological activities might be potential contributing factors to variations in MPs' abundance in deep sediments. Correlation analyses demonstrated that MPs in XSO was the result of multiple sources, stemming from plastic production, sewage discharge, marine fisheries and shipping activities. Notably, XS3 exhibited higher sensitivity to human activities compared to XS2, owing to differences in sampling locations. This study underscores the significance of employing two sediment cores, rather than a single core, as it provides a more comprehensive insight into the overarching trends and disparities in the historical pollution of MPs. Our findings contribute to a deeper understanding of the history of offshore MPs pollution, shedding new light on this critical environmental issue.
Collapse
Affiliation(s)
- Zhenhong Zhu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Zhongyi Testing Research Institute Co., Ltd, Ningbo, 315040, China.
| | - Xuexi Xiao
- Zhejiang Zhongyi Testing Research Institute Co., Ltd, Ningbo, 315040, China
| | - Rong Wu
- Zhejiang Zhongyi Testing Research Institute Co., Ltd, Ningbo, 315040, China
| | - Chong Jin
- Zhejiang Institute of Geology and Mineral Resource, Hangzhou, 310007, China
| | - Tong Li
- Zhejiang Zhongyi Testing Research Institute Co., Ltd, Ningbo, 315040, China
| | - Weiping Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Şener İ, Yabanlı M. Macro- and microplastic abundance from recreational beaches along the South Aegean Sea (Türkiye). MARINE POLLUTION BULLETIN 2023; 194:115329. [PMID: 37499467 DOI: 10.1016/j.marpolbul.2023.115329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
This study aimed to evaluate the abundance and diversity of macro- and microplastics in sand samples collected during summer and winter from eight different beaches used for recreational purposes located on the South Aegean coasts of Türkiye. According to the results, microplastic in fiber shape was dominant on all the beaches. The highest microplastic abundance was determined at Ölüdeniz Kumburnu Beach (360.00 ± 237.66 particles kg-1 dw) in summer and at Aktur Beach (358.33 ± 397.24 particles kg-1 dw) in winter. A significant positive correlation was found in the winter between microplastic amounts and wind speed. The study area is an important touristic center faraway from major cities and industrial areas. Thus, plastic pollution in this area may be the result of tourism activities in the summer, discharge waters from wastewater treatment plants or transportation by meteorological factors (like waves, wind or river flows).
Collapse
Affiliation(s)
- İdris Şener
- Department of Aquatic Sciences, Faculty of Fisheries, Mugla Sitki Kocman University, Mugla, Turkey.
| | - Murat Yabanlı
- Department of Aquatic Sciences, Faculty of Fisheries, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
15
|
Villafañe AB, Ronda AC, Rodríguez Pirani LS, Picone AL, Lucchi LD, Romano RM, Pereyra MT, Arias AH. Microplastics and anthropogenic debris in rainwater from Bahia Blanca, Argentina. Heliyon 2023; 9:e17028. [PMID: 37383205 PMCID: PMC10293668 DOI: 10.1016/j.heliyon.2023.e17028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
Concern about atmospheric microplastic (MP) contamination has increased in recent years. This study assessed the abundance of airborne anthropogenic particles, including MPs, deposited in rainfall in Bahia Blanca, southwest Buenos Aires, Argentina. Rainwater samples were collected monthly from March to December 2021 using an active wet-only collector consisting of a glass funnel and a PVC pipe that is only open during rain events. Results obtained show that all rain samples contained anthropogenic debris. The term "anthropogenic debris" is used to refer to the total number of particles as not all the particles found could be determined as plastic. Among all the samples, an average deposition of 77 ± 29 items (anthropogenic debris) m-2d-1 was found. The highest deposition was observed in November (148 items m-2d-1) while the lowest was found in March (46 items m-2d-1). Anthropogenic debris ranged in size from 0.1 mm to 3.87 mm with the most abundant particles being smaller than 1 mm (77.8%). The dominant form of particles found were fibers (95%), followed by fragments (3.1%). Blue color predominated (37.2%) in the total number of samples, followed by light blue (23.3%) and black (21.7%). Further, small particles (<2 mm), apparently composed of mineral material and plastic fibers, were recognized. The chemical composition of suspected MPs was examined by Raman microscopy. The analysis of μ-Raman spectra confirmed the presence of polystyrene, polyethylene terephthalate, and polyethylene vinyl acetate fibers and provided evidence of fibers containing industrial additives such as indigo dye. This is the first assessment of MP pollution in rain in Argentina.
Collapse
Affiliation(s)
- A. Belén Villafañe
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), Camino La Carrindanga km 7.5, 8000, Bahía Blanca, Argentina
| | - Ana C. Ronda
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), Camino La Carrindanga km 7.5, 8000, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahía Blanca, Argentina
| | - Lucas S. Rodríguez Pirani
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. Blvd. 120 N° 1465, La Plata (1900), Argentina
| | - A. Lorena Picone
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. Blvd. 120 N° 1465, La Plata (1900), Argentina
| | - Leandro D. Lucchi
- Comité Técnico Ejecutivo, Municipalidad de Bahía Blanca, Av. Gral. San Martín 3474 , Bahía Blanca, Argentina
| | - Rosana M. Romano
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. Blvd. 120 N° 1465, La Plata (1900), Argentina
| | - Marcelo T. Pereyra
- INQUISUR-Departamento de Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, Bahía Blanca, Argentina
| | - Andrés H. Arias
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), Camino La Carrindanga km 7.5, 8000, Bahía Blanca, Argentina
- Departamento de Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, Bahía Blanca, Argentina
| |
Collapse
|
16
|
Corti A, La Nasa J, Biale G, Ceccarini A, Manariti A, Petri F, Modugno F, Castelvetro V. Microplastic pollution in the sediments of interconnected lakebed, seabed, and seashore aquatic environments: polymer-specific total mass through the multianalytical "PISA" procedure. Anal Bioanal Chem 2023:10.1007/s00216-023-04664-0. [PMID: 37071143 DOI: 10.1007/s00216-023-04664-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/19/2023]
Abstract
The total mass of individual synthetic polymers present as microplastic (MP < 2 mm) pollutants in the sediments of interconnected aquatic environments was determined adopting the Polymer Identification and Specific Analysis (PISA) procedure. The investigated area includes a coastal lakebed (Massaciuccoli), a coastal seabed (Serchio River estuarine), and a sandy beach (Lecciona), all within a natural park area in Tuscany (Italy). Polyolefins, poly(styrene) (PS), poly(vinyl chloride) (PVC), polycarbonate (PC), poly(ethylene terephthalate) (PET), and the polyamides poly(caprolactame) (Nylon 6) and poly(hexamethylene adipamide) (Nylon 6,6) were fractionated and quantified through a sequence of selective solvent extractions followed by either analytical pyrolysis or reversed-phase HPLC analysis of the products of hydrolytic depolymerizations under acidic and alkaline conditions. The highest concentrations of polyolefins (highly degraded, up to 864 µg/kg of dry sediment) and PS (up to 1138 µg/kg) MPs were found in the beach dune sector, where larger plastic debris are not removed by the cyclic swash action and are thus prone to further aging and fragmentation. Surprisingly, low concentrations of less degraded polyolefins (around 30 µg/kg) were found throughout the transect zones of the beach. Positive correlation was found between polar polymers (PVC, PC) and phthalates, most likely absorbed from polluted environments. PET and nylons above their respective LOQ values were found in the lakebed and estuarine seabed hot spots. The pollution levels suggest a significant contribution from riverine and canalized surface waters collecting urban (treated) wastewaters and waters from Serchio River and the much larger Arno River aquifers, characterized by a high anthropogenic pressure.
Collapse
Affiliation(s)
- Andrea Corti
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy
- CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, University of Pisa, 56124, Pisa, Italy
| | - Jacopo La Nasa
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy
- CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, University of Pisa, 56124, Pisa, Italy
| | - Greta Biale
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy
| | - Alessio Ceccarini
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy
- CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, University of Pisa, 56124, Pisa, Italy
| | - Antonella Manariti
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy
- CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, University of Pisa, 56124, Pisa, Italy
| | - Filippo Petri
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy
| | - Francesca Modugno
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy
- CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, University of Pisa, 56124, Pisa, Italy
| | - Valter Castelvetro
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy.
- CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, University of Pisa, 56124, Pisa, Italy.
| |
Collapse
|
17
|
Di Lorenzo T, Cabigliera SB, Martellini T, Laurati M, Chelazzi D, Galassi DMP, Cincinelli A. Ingestion of microplastics and textile cellulose particles by some meiofaunal taxa of an urban stream. CHEMOSPHERE 2023; 310:136830. [PMID: 36243082 DOI: 10.1016/j.chemosphere.2022.136830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) and textile cellulose are globally pervasive pollutants in freshwater. In-situ studies assessing the ingestion of MPs by freshwater meiofauna are few. Here, we evaluated MP and textile cellulose ingestion by some meiofaunal taxa and functional guilds of a first-order stream in the city of Florence (Italy) by using a tandem microscopy approach (fluorescence microscopy and μFTIR). The study targeted five taxa (nematodes, oligochaetes, copepods, ephemeropterans and chironomids), three feeding (scrapers, deposit-feeders, and predators), and three locomotion (crawlers, burrowers, and swimmers) guilds. Fluorescent particles related to both MPs and textile cellulose resulted in high numbers in all taxa and functional guilds. We found the highest number of particles in nematodes (5200 particles/ind.) and deposit-feeders (1693 particles/ind.). Oligochaetes and chironomids (burrowers) ingested the largest particles (medium length: 28 and 48 μm, respectively), whereas deposit-feeders ingested larger particles (medium length: 26 μm) than scrapers and predators. Pellets were abundant in all taxa, except for Chironomidae. Textile cellulose fibers were present in all taxa and functional guilds, while MP polymers (EVA, PET, PA, PE, PE-PP) differed among taxa and functional guilds. In detail: EVA and PET particles were found only in chironomids, PE particles occurred in chironomids, copepods and ephemeropterans, PA particles were found in all taxa except in nematodes, whereas particles made of PE-PP blend occurred in oligochaetes and copepods. Burrowers and deposit-feeders ingested EVA, PET, PA, PE and PE-PP, while crawlers and scrapers ingested PE and PA. Swimmers and predators ingested PE, PA and PE-PP. Our findings suggest a pervasive level of plastic and textile cellulose pollution consistent with an urban stream which propagates in the meiofaunal assemblage of the stream ecosystem.
Collapse
Affiliation(s)
- Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems of the National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy; Emil Racovita Institute of Speleology, Romanian Academy, Clinicilor 5, Cluj Napoca, 400006, Romania; cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| | | | - Tania Martellini
- Department of Chemistry "Ugo Schiff", Via della Lastruccia, 3 - 50019 Sesto Fiorentino, Firenze, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), University of Florence, Via della Lastruccia 3 - Sesto Fiorentino, 50019, Florence, Italy
| | - Marco Laurati
- Department of Chemistry "Ugo Schiff", Via della Lastruccia, 3 - 50019 Sesto Fiorentino, Firenze, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), University of Florence, Via della Lastruccia 3 - Sesto Fiorentino, 50019, Florence, Italy
| | - David Chelazzi
- Department of Chemistry "Ugo Schiff", Via della Lastruccia, 3 - 50019 Sesto Fiorentino, Firenze, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), University of Florence, Via della Lastruccia 3 - Sesto Fiorentino, 50019, Florence, Italy
| | - Diana Maria Paola Galassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff", Via della Lastruccia, 3 - 50019 Sesto Fiorentino, Firenze, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), University of Florence, Via della Lastruccia 3 - Sesto Fiorentino, 50019, Florence, Italy
| |
Collapse
|
18
|
Liu Y, Jiang WY, Liao Y, Sun R, Hu J, Lu Z, Chang M, Yang J, Dai Z, Zhou C, Hong P, Qian ZJ, Sun S, Ren L, Liang YQ, Zhang Y, Li C. Separation of false-positive microplastics and analysis of microplastics via a two-phase system combined with confocal Raman spectroscopy. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129803. [PMID: 36027743 DOI: 10.1016/j.jhazmat.2022.129803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
In the field of microplastics research, more accurate standardised methods and analytical techniques still need to be explored. In this study, a new method for the microplastics quantitatively and qualitatively analysis by two-phase (ethyl acetate-water) system combined with confocal Raman spectroscopy was developed. Microplastics can be separated from false-positive microplastics in beach sand and marine sediment, attributing to the hydrophobic-lipophilic interaction (HLI) of the two-phase system. Results show that the recovery rates of complex environment microplastics (polypropylene (PP), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyamide 66 (PA 66), polycarbonate (PC) and polyethylene (PE)) are higher than 92.98%. Moreover, the new technique can also be used to detect hydrophobic and lipophilic antibiotics, such as sulfamethoxazole (SMX), erythromycin (EM), madimycin (MD), and josamycin (JOS), which adsorbed on microplastics and are extracted based on the dissolving-precipitating mechanism. This innovative research strategy provides a new scope for further detection of marine environment microplastics and toxic compounds adsorbed on its surface.
Collapse
Affiliation(s)
- Yu Liu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Wen-Yan Jiang
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuying Liao
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ruikun Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiale Hu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zifan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Min Chang
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jie Yang
- School of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenqing Dai
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China.
| | - Chunxia Zhou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Pengzhi Hong
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhong-Ji Qian
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Shengli Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lei Ren
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yan-Qiu Liang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yueqin Zhang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China.
| |
Collapse
|
19
|
Tursi A, Baratta M, Easton T, Chatzisymeon E, Chidichimo F, De Biase M, De Filpo G. Microplastics in aquatic systems, a comprehensive review: origination, accumulation, impact, and removal technologies. RSC Adv 2022; 12:28318-28340. [PMID: 36320515 PMCID: PMC9531539 DOI: 10.1039/d2ra04713f] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Although the discovery of plastic in the last century has brought enormous benefits to daily activities, it must be said that its use produces countless environmental problems that are difficult to solve. The indiscriminate use and the increase in industrial production of cleaning, cosmetic, packaging, fertilizer, automotive, construction and pharmaceutical products have introduced tons of plastics and microplastics into the environment. The latter are of greatest concern due to their size and their omnipresence in the various environmental sectors. Today, they represent a contaminant of increasing ecotoxicological interest especially in aquatic environments due to their high stability and diffusion. In this regard, this critical review aims to describe the different sources of microplastics, emphasizing their effects in aquatic ecosystems and the danger to the health of living beings, while examining, at the same time, those few modelling studies conducted to estimate the future impact of plastic towards the marine ecosystem. Furthermore, this review summarizes the latest scientific advances related to removal techniques, evaluating their advantages and disadvantages. The final purpose is to highlight the great environmental problem that we are going to face in the coming decades, and the need to develop appropriate strategies to invert the current scenario as well as better performing removal techniques to minimize the environmental impacts of microplastics.
Collapse
Affiliation(s)
- Antonio Tursi
- Department of Chemistry and Chemical Technologies, University of Calabria Via P. Bucci, Cubo 15D, 87036 Arcavacata di Rende (CS) Italy
| | - Mariafrancesca Baratta
- Department of Chemistry and Chemical Technologies, University of Calabria Via P. Bucci, Cubo 15D, 87036 Arcavacata di Rende (CS) Italy
| | - Thomas Easton
- School of Engineering, Institute for Infrastructure and Environment, University of Edinburgh The King's Buildings Edinburgh EH9 3JL UK
| | - Efthalia Chatzisymeon
- School of Engineering, Institute for Infrastructure and Environment, University of Edinburgh The King's Buildings Edinburgh EH9 3JL UK
| | - Francesco Chidichimo
- Department of Environmental Engineering, University of Calabria Via P. Bucci, Cubo 42B, 87036 Arcavacata di Rende (CS) Italy
| | - Michele De Biase
- Department of Environmental Engineering, University of Calabria Via P. Bucci, Cubo 42B, 87036 Arcavacata di Rende (CS) Italy
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria Via P. Bucci, Cubo 15D, 87036 Arcavacata di Rende (CS) Italy
| |
Collapse
|
20
|
Jin M, Liu J, Yu J, Zhou Q, Wu W, Fu L, Yin C, Fernandez C, Karimi-Maleh H. Current development and future challenges in microplastic detection techniques: A bibliometrics-based analysis and review. Sci Prog 2022; 105:368504221132151. [PMID: 36263507 PMCID: PMC10306156 DOI: 10.1177/00368504221132151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Microplastics have been considered a new type of pollutant in the marine environment and have attracted widespread attention worldwide in recent years. Plastic particles with particle size less than 5 mm are usually defined as microplastics. Because of their similar size to plankton, marine organisms easily ingest microplastics and can threaten higher organisms and even human health through the food chain. Most of the current studies have focused on the investigation of the abundance of microplastics in the environment. However, due to the limitations of analytical methods and instruments, the number of microplastics in the environment can easily lead to overestimation or underestimation. Microplastics in each environment have different detection techniques. To investigate the current status, hot spots, and research trends of microplastics detection techniques, this review analyzed the papers related to microplastics detection using bibliometric software CiteSpace and COOC. A total of 696 articles were analyzed, spanning 2012 to 2021. The contributions and cooperation of different countries and institutions in this field have been analyzed in detail. This topic has formed two main important networks of cooperation. International cooperation has been a common pattern in this topic. The various analytical methods of this topic were discussed through keyword and clustering analysis. Among them, fluorescent, FTIR and micro-Raman spectroscopy are commonly used optical techniques for the detection of microplastics. The identification of microplastics can also be achieved by the combination of other techniques such as mass spectrometry/thermal cracking gas chromatography. However, these techniques still have limitations and cannot be applied to all environmental samples. We provide a detailed analysis of the detection of microplastics in different environmental samples and list the challenges that need to be addressed in the future.
Collapse
Affiliation(s)
- Meiqing Jin
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Jinsong Liu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, China
| | - Jie Yu
- Department of Environment Engineering, China Jiliang University, Hangzhou, China
| | - Qingwei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Weihong Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Chengliang Yin
- National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
- Medical Big Data Research Center, Medical Innovation Research Division of PLA General Hospital, Beijing, China
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, PR China
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
21
|
Falsini S, Colzi I, Chelazzi D, Dainelli M, Schiff S, Papini A, Coppi A, Gonnelli C, Ristori S. Plastic is in the air: Impact of micro-nanoplastics from airborne pollution on Tillandsia usneoides (L.) L. (Bromeliaceae) as a possible green sensor. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129314. [PMID: 35728311 DOI: 10.1016/j.jhazmat.2022.129314] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Due to the increasing evidence of widespread plastic pollution in the air, the impact on plants of airborne particles of polycarbonate (PC), polyethyleneterephthalate (PET), polyethylene (PE), and polyvinylchloride (PVC) was tested by administering pristine and aged airborne micro-nanoplastics (MNPs) to Tillandsia usneoides for two weeks. Here we showed that exposure to pristine MNPs, significantly reduced plant growth with respect to controls. Particularly, PVC almost halved plant development at the end of the treatment, while the other plastics exerted negative effects on growth only at the beginning of the exposure, with final stages comparable to those of controls. Plants exposed to aged MNPs showed significantly decreased growth at early stages with PC, later in the growth with PE, and even later with PET. Aged PVC did not exert a toxic effect on plants. When present, the plastic-mediated reduction in plant growth was coupled with a decrease in photosynthetic activity and alterations in the plant concentration of macro- and micronutrients. The plastic particles were showed to adhere to the plant surface and, preferentially, on the trichome wings. Our results reported, for the first time, evidence of negative effects of airborne plastic pollution on plant health, thus raising concerns for related environmental risks.
Collapse
Affiliation(s)
- Sara Falsini
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Ilaria Colzi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy.
| | - David Chelazzi
- Department of Chemistry and CSGI, Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Marco Dainelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Silvia Schiff
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Alessio Papini
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Andrea Coppi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Cristina Gonnelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Sandra Ristori
- Department of Chemistry and CSGI, Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
22
|
Cohen-Sánchez A, Solomando A, Pinya S, Tejada S, Valencia JM, Box A, Sureda A. First detection of microplastics in Xyrichtys novacula (Linnaeus 1758) digestive tract from Eivissa Island (Western Mediterranean). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65077-65087. [PMID: 35484455 PMCID: PMC9481491 DOI: 10.1007/s11356-022-20298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/12/2022] [Indexed: 05/14/2023]
Abstract
Plastic waste and its ubiquity in the oceans represent a growing problem for marine life worldwide. Microplastics (MPs) are ubiquitous in the sea and easily enter food webs. Xyrichtys novacula L. is one of the main target species of recreational fishing in the Balearic Islands, Spain. In the present study, the quantity of MPs in gastrointestinal tracts of X. novacula from two different areas (a marine protected area (MPA) and a non-protected area) of Eivissa Island (in the Balearic archipelago) has been assessed, as well as MPs evaluation within the sediment of both areas. The results showed that over 80% of sampled individuals had MPs in their gut with an average of 3.9 ± 4.3 plastic items/individual. Eighty percent of these plastics were fibres, while the rest were fragments. Although the sediment of the non-protected area had a significant higher presence of MPs, no significant differences in the number of MPs were observed in X. novacula from both areas. The µ-FT-IR analysis showed that the main polymers in the sediments were polycarbonate (PC) and polypropylene (PP), whereas in the digestive tract of fish PC, PP, polyethylene, polystyrene and polyester. In conclusion, practically all X. novacula specimens presented MPs in their digestive tract regardless if the capture zone was in a MPAs or not. These results highlight the ubiquity of MPs in coastal marine areas, and further studies might be necessary to evaluate further implications of MP presence in this species.
Collapse
Affiliation(s)
- Amanda Cohen-Sánchez
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Balearic Islands Spain
| | - Antònia Solomando
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Balearic Islands Spain
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Balearic Islands Spain
| | - Samuel Pinya
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Balearic Islands Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - José María Valencia
- LIMIA, Laboratori d’Investigacions Marines i Aqüicultura, 07157 Port d’Andratx, Spain
| | - Antonio Box
- Department of Agricultura, Ramaderia, Pesca, Caça i Cooperació Municipal, Consell Insular d’Eivissa, 07800 Eivissa, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Balearic Islands Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| |
Collapse
|
23
|
Soliño L, Vidal-Liñán L, Pérez P, García-Barcelona S, Baldó F, Gago J. Microplastic occurrence in deep-sea fish species Alepocephalus bairdii and Coryphaenoides rupestris from the Porcupine Bank (North Atlantic). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155150. [PMID: 35417727 DOI: 10.1016/j.scitotenv.2022.155150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Microplastic occurrence in marine biota has been reported in a wide range of animals, from marine mammals and seabirds to invertebrates. Commercial and shallow-water fish have been the subject of numerous works on microplastic ingestion, given their importance in human diet and accessibility. However, little is known about microlitter occurrence in fish species inhabiting the dark ocean, in the bathyal zone and there is a high degree of uncertainty about microplastic distribution in offshore areas and the deep sea. In this study, bathydemersal species Alepocephalus bairdii and Coryphaenoides rupestris from the Porcupine Bank caught between 985 and 1037 m depth were inspected for microdebris. The stomach contents were digested by the alkaline method plus ethanol addition to avoid clogging. A filament of Polyethylene Terephthalate (PET) was found in the stomach of a specimen of A. bairdii, representing 4% of the total sampled specimens of this species (i.e. prevalence in n = 25). However, when considering potential microplastics, the prevalence increased to 28% in both, A. bairdii and C. rupestris. This work provides the first baseline study of microplastic items in fish from such depths in the Atlantic and suggests these species might be used as biomonitors in future research.
Collapse
Affiliation(s)
- Lucía Soliño
- Centro Oceanográfico de Vigo (IEO, CSIC), 36390 Vigo, Spain.
| | | | - Patricia Pérez
- Centro Oceanográfico de Vigo (IEO, CSIC), 36390 Vigo, Spain
| | | | - Francisco Baldó
- Centro Oceanográfico de Cádiz (IEO, CSIC), 11006 Cádiz, Spain
| | - Jesús Gago
- Centro Oceanográfico de Vigo (IEO, CSIC), 36390 Vigo, Spain.
| |
Collapse
|
24
|
Editorial for the Special Issue “Microplastics in Aquatic Environments: Occurrence, Distribution and Effects”. TOXICS 2022; 10:toxics10070407. [PMID: 35878312 PMCID: PMC9324594 DOI: 10.3390/toxics10070407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023]
Abstract
The large production and widespread daily consumption of plastic materials—which began in the last century—together with the often-inadequate collection and recycling systems, have made plastics and, consequently, microplastics (MPs) ubiquitous pollutants [...]
Collapse
|
25
|
Jung JW, Kim S, Kim YS, Jeong S, Lee J. Tracing microplastics from raw water to drinking water treatment plants in Busan, South Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154015. [PMID: 35189238 DOI: 10.1016/j.scitotenv.2022.154015] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The increasing amount of plastic waste has raised concerns about microplastics (MPs) in aquatic environments. MPs can be fragmented into nanoplastics that can pass through water treatment processes and into tap water; potentially threatening human health because of their high adsorption capacity for hazardous organic materials and their intrinsic toxicity. This case study investigates the identification, fate, and removal efficiency of MPs in Korean drinking water treatment plants. Two sites on the Nakdong River, two lake reservoirs (raw water sources), and four corresponding drinking water treatment plants were targeted to trace the amounts, types, and sizes of MPs throughout the treatment process. Monthly quantitative and qualitative analyses were conducted by chemical image mapping using micro-Fourier-transform infrared spectroscopy. MPs larger than 20 μm were detected, and their sizes and types were quantified using siMPle software. Overall, the number of MPs in the river sites (January to April and October to November) exceeded those in the reservoirs, but only slight differences in the number of MPs between rivers and lake reservoirs were detected from June to October. The annual average number of MPs in River A, B and Lack C and D was not distinctively different (2.65, 2.48, 2.46 and 1.87 particles/L, respectively). The majority of MPs found in raw waters were polyethylene (PE)/polypropylene (PP) (> 60%) and polyethylene terephthalate (PET)/poly(methyl methacrylate) (PMMA) (20%), in addition to polyamide (<10%) in the river and polystyrene (<10%) in the lake reservoirs. Approximately 70-80% of the MPs were removed by pre-ozonation/sedimentation; 81-88% of PE/PP was removed by this process. PET/PMMA was removed by filtration. Correlation of MPs with water quality parameters showed that the Mn concentration was moderately correlated with the MP abundance in rivers and lake reservoirs, excluding the lake with the lowest Mn concentration, while the total organic carbon was negatively correlated with the MP abundance in both rivers (A and B) and lake reservoir C.
Collapse
Affiliation(s)
- Jae-Won Jung
- Water quality research institute, Busan Water Authority, Busan 47210, South Korea
| | - Siyoung Kim
- Water quality research institute, Busan Water Authority, Busan 47210, South Korea
| | - Yong-Soon Kim
- Water quality research institute, Busan Water Authority, Busan 47210, South Korea
| | - Sanghyun Jeong
- Department of Environmental Engineering, Pusan National University, Busan 46241, South Korea
| | - Jieun Lee
- Institute for Environment and Energy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
26
|
Scopetani C, Chelazzi D, Cincinelli A, Martellini T, Leiniö V, Pellinen J. Hazardous contaminants in plastics contained in compost and agricultural soil. CHEMOSPHERE 2022; 293:133645. [PMID: 35051512 DOI: 10.1016/j.chemosphere.2022.133645] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Macro-, meso- and microplastic (MAP, MEP, MP) occurrence in compost is an environmental issue whose extent and effects are not yet understood. Here, we studied the occurrence of MAPs, MEPs and MPs in compost samples, and the transfer of hazardous contaminants from plastics to compost and soil. MAPs/MEPs and MPs concentrations in compost were 6.5 g/kg and 6.6 ± 1.5 pieces/kg; from common recommendations for compost application, we estimated ∼4-23 × 107 pieces MPs and 4-29 × 104 g MAPs/MEPs ha-1 per year ending into agricultural soils fertilized with such compost. Regarding contaminants, bis(ethylhexyl) phthalate, acetyl tributyl citrate, dodecane and nonanal were extracted in higher concentrations from plastics and plastic-contaminated compost than from compost where MAPs/MEPs had been removed prior to extraction and analysis. However, some contaminants were present even after MAPs/MEPs removal, ascribable to short- and long-term release by MAPs/MEPs, and to the presence of MPs. DEHP concentration was higher in soils where compost was applied than in fields where it was not used. These results, along with estimations of plastic load to soil from the use of compost, show that compost application is a source of plastic pollution into agricultural fields, and that plastic might transfer hazardous contaminants to soil.
Collapse
Affiliation(s)
- Costanza Scopetani
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, FI-15140, Lahti, Finland.
| | - David Chelazzi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Tania Martellini
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Ville Leiniö
- Muovipoli Ltd, Niemenkatu 73, 15140, Lahti, Finland
| | - Jukka Pellinen
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, FI-15140, Lahti, Finland
| |
Collapse
|
27
|
Dai L, Wang Z, Guo T, Hu L, Chen Y, Chen C, Yu G, Ma LQ, Chen J. Pollution characteristics and source analysis of microplastics in the Qiantang River in southeastern China. CHEMOSPHERE 2022; 293:133576. [PMID: 35016956 DOI: 10.1016/j.chemosphere.2022.133576] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Microplastic pollution resulting from industrialization and urbanization is increasingly serious. Hangzhou is a city with high industrial/urban growth in Southeast China. Focusing on the microplastic pollution in the Hangzhou section Qiantang River, six samples were collected and analyzed during different hydrological periods (normal, wet, and dry periods) and the relationship between microplastic pollution and economic development was investigated. Results showed that more microplastics were found during the dry period than that of the wet period (49.8 vs. 13.2%). Microplastic abundance was 1.5-9.4 items L-1, showing significant spatial differences in sampling sites. Among the collecting microplastics, debris and fibers accounted for 36.4 and 30.9%. Polyethylene terephthalate and polyvinyl chloride were the main polymers, accounting for 48.3 and 31.8%, respectively. Microplastics with size <1 mm accounted for 60% of the microplastics in surface water samples. Spatially, microplastic abundance was the highest in the middle of the river. Redundant analysis revealed that the per capita GDP (p = 0.002), high-end equipment industry (p = 0.028) and fashion manufacturing (p = 0.006) influenced microplastic abundance. Urbanization coupled with rapid economic development led to increase in local microplastic pollution. Our results provide insight into microplastic distribution patterns in urban river systems in China.
Collapse
Affiliation(s)
- Luyao Dai
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Tianjiao Guo
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Liyong Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Cong Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Guogang Yu
- Bureau of Hangzhou Port and Navigation Administration, Hangzhou, 310005, China
| | - Lena Qiying Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environment & Resource Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China; College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
28
|
Rimondi V, Monnanni A, De Beni E, Bicocchi G, Chelazzi D, Cincinelli A, Fratini S, Martellini T, Morelli G, Venturi S, Lattanzi P, Costagliola P. Occurrence and Quantification of Natural and Microplastic Items in Urban Streams: The Case of Mugnone Creek (Florence, Italy). TOXICS 2022; 10:159. [PMID: 35448420 PMCID: PMC9025813 DOI: 10.3390/toxics10040159] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023]
Abstract
The terrestrial environment is an important contributor of microplastics (MPs) to the oceans. Urban streams, strictly interwoven in the city network and to the MPs' terrestrial source, have a relevant impact on the MP budget of large rivers and, in turn, marine areas. We investigated the fluxes (items/day) of MPs and natural fibers of Mugnone Creek, a small stream crossing the highly urbanized landscape of Florence (Italy) and ending in the Arno River (and eventually to the Tyrrhenian Sea). Measurements were done in dry and wet seasons for two years (2019-2020); stream sediments were also collected in 2019. The highest loads of anthropogenic particles were observed in the 2019 wet season (109 items/day) at the creek outlet. The number of items in sediments increased from upstream (500 items/kg) to urban sites (1540 items/kg). Fibers were the dominant shape class; they were mostly cellulosic in composition. Among synthetic items, fragments of butadiene-styrene (SBR), indicative of tire wear, were observed. Domestic wastewater discharge and vehicular traffic are important sources of pollution for Mugnone Creek, especially during rain events. The study of small creeks is of pivotal importance to limit the availability of MPs in the environment.
Collapse
Affiliation(s)
- Valentina Rimondi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence, Italy; (A.M.); (G.B.); (S.V.); (P.C.)
- IGG-CNR, Via G. La Pira 4, 50121 Florence, Italy; (G.M.); (P.L.)
| | - Alessio Monnanni
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence, Italy; (A.M.); (G.B.); (S.V.); (P.C.)
| | - Eleonora De Beni
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; (E.D.B.); (D.C.); (A.C.); (T.M.)
| | - Gabriele Bicocchi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence, Italy; (A.M.); (G.B.); (S.V.); (P.C.)
| | - David Chelazzi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; (E.D.B.); (D.C.); (A.C.); (T.M.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Alessandra Cincinelli
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; (E.D.B.); (D.C.); (A.C.); (T.M.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Sara Fratini
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy;
| | - Tania Martellini
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; (E.D.B.); (D.C.); (A.C.); (T.M.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Guia Morelli
- IGG-CNR, Via G. La Pira 4, 50121 Florence, Italy; (G.M.); (P.L.)
| | - Stefania Venturi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence, Italy; (A.M.); (G.B.); (S.V.); (P.C.)
- IGG-CNR, Via G. La Pira 4, 50121 Florence, Italy; (G.M.); (P.L.)
| | | | - Pilario Costagliola
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence, Italy; (A.M.); (G.B.); (S.V.); (P.C.)
- IGG-CNR, Via G. La Pira 4, 50121 Florence, Italy; (G.M.); (P.L.)
| |
Collapse
|