1
|
Chen X, Xu G, Xiong P, Peng J, Fang K, Wan S, Wang B, Gu F, Li J, Xiong H. Dry and wet seasonal variations of the sediment fungal community composition in the semi-arid region of the Dali River, Northwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123694-123709. [PMID: 37993647 DOI: 10.1007/s11356-023-31042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Microbial communities play an important role in water quality regulation and biogeochemical cycling in freshwater ecosystems. However, there has been a lack of research on the seasonal variation of sediment microorganisms in the sediments of small river basins in typical semi-arid region. In this study, high-throughput DNA sequencing was used to investigate the fungal community and its influencing factors in the sediment of the Dali River in the dry and wet seasons. The results showed that there were obvious seasonal differences in fungal alpha diversity. The diversity and richness of fungi in the dry season were greater than that in the wet season, but the evenness of fungi in the dry season was lower than that in the wet season. In addition, Ascomycota and Basidiomycota were the most important phyla in the Dali River fungal community, but their distributions showed clear seasonal differences. In the dry season, the relative abundance of Ascomycota and Basidiomycota were 12.34-46.42% and 17.59-27.20%, respectively. In the wet season, the relative abundances of these two phyla were 24.33-36.56% and 5.75-12.26%, respectively. PICRUSt2 was used to predict the metabolic function of fungal community in the sediment, and it was found that at the first level, the proportion of biosynthesis in the dry season was higher than that in the wet season. The ecological network structure showed that the fungal community in the wet season was more complex and stable than that in the dry season. The characteristic fungi in the dry season sediment were chytrid fungi in the family Rhizophydiaceae and the order Rhizophydiales, whereas those in the wet season sediment were in the orders Eurotiales and Saccharomycetales. Canonical correspondence analysis (CCA) showed that the physicochemical properties of water and sediment together explained a greater proportion of the dry-season fungal community changes than of the wet-season changes. In the dry season, temperature and ammonia nitrogen in the water were the main factors affecting the change of fungal community, whereas in the wet season, total nitrogen concentration of the water, electrical conductivity, total organic carbon and available phosphorus of the sediment, pH, and temperature were the main factors affecting the changes in fungal community composition. The results of this study enhanced our understanding of microbial communities in semi-arid river ecosystems, and highlight the importance of the management and protection in river ecosystems.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Guoce Xu
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China.
| | - Ping Xiong
- Shaanxi Forestry Survey and Planning Institute, Xi'an, 710082, Shaanxi, China
| | - Jianbo Peng
- Shaanxi Forestry Survey and Planning Institute, Xi'an, 710082, Shaanxi, China
| | - Kang Fang
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Shun Wan
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Bin Wang
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Fengyou Gu
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Jing Li
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Haijing Xiong
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| |
Collapse
|
2
|
Wu K, Liu Y, Liao X, Yang X, Chen Z, Mo L, Zhong S, Zhang X. Fungal Diversity and Its Relationship with Environmental Factors in Coastal Sediments from Guangdong, China. J Fungi (Basel) 2023; 9:jof9010101. [PMID: 36675922 PMCID: PMC9866456 DOI: 10.3390/jof9010101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
As one core of the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), Guangdong is facing some serious coastal environmental problems. Fungi are more vulnerable to changes in coastal environments than bacteria and archaea. This study investigated the fungal diversity and composition by high-throughput sequencing and detected basic parameters of seven environmental factors (temperature, dissolved oxygen, pH, salinity, total organic carbon, total nitrogen, and total phosphorus) at 11 sites. A total of 2056 fungal operational taxonomic units (OTUs) belonging to 147 genera in 6 phyla were recovered; Archaeorhizomyces (17.5%) and Aspergillus (14.19%) were the most dominant genera. Interestingly, a total of 14 genera represented the first reports of coastal fungi in this study. Furthermore, there were nine genera of fungi that were significantly correlated with environmental factors. FUNGuild analysis indicated that saprotrophs and pathogens were the two trophic types with the highest proportions. Saprotrophs were significantly correlated with total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP), while pathogens were significantly correlated with pH. This study provides new scientific data for the study of the diversity and composition of fungal communities in coastal ecosystems.
Collapse
Affiliation(s)
- Keyue Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongchun Liu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinyu Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinyue Yang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zihui Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Li Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Correspondence: (S.Z.); (X.Z.)
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: (S.Z.); (X.Z.)
| |
Collapse
|