1
|
Gallitelli L, Girard P, Andriolo U, Liro M, Suaria G, Martin C, Lusher AL, Hancke K, Blettler M, Garcia-Garin O, Napper IE, Corbari L, Cózar A, Morales-Caselles C, González-Fernández D, Gasperi J, Giarrizzo T, Cesarini G, De K, Constant M, Koutalakis P, Gonçalves G, Sharma P, Gundogdu S, Kumar R, Garello NA, Camargo ALG, Topouzelis K, Galgani F, Royer SJ, Zaimes GN, Rotta F, Lavender S, Nava V, Castro-Jiménez J, Mani T, Crosti R, Azevedo-Santos VM, Bessa F, Tramoy R, Costa MF, Corbau C, Montanari A, Battisti C, Scalici M. Monitoring macroplastics in aquatic and terrestrial ecosystems: Expert survey reveals visual and drone-based census as most effective techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176528. [PMID: 39332742 DOI: 10.1016/j.scitotenv.2024.176528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Anthropogenic litter, such as plastic, is investigated by the global scientific community from various fields employing diverse techniques. The goal is to assess and finally mitigate the pollutants' impacts on the natural environment. Plastic litter can accumulate in different matrices of aquatic and terrestrial ecosystems, impacting both biota and ecosystem functioning. Detection and quantification of macroplastics, and other litter, can be realized by jointly using visual census and remote sensing techniques. The primary objective of this research was to identify the most effective approach for monitoring macroplastic litter in riverine and marine environments through a comprehensive survey based on the experiences of the scientific community. Researchers involved in plastic pollution evaluated four litter occurrence and flux investigation methods (visual census, drone-based surveys, satellite imagery, and GPS/GNSS trackers) through a questionnaire. Traditional visual census and drone deployment were deemed as the most popular approaches among the 46 surveyed researchers, while satellite imagery and GPS/GNSS trackers received lower scores due to limited field validation and short performance ranges, respectively. On a scale from 0 to 5, visual census and drone-based surveys obtained 3.5 and 2.0, respectively, whereas satellite imagery and alternative solutions received scores lower than 1.2. Visual and drone censuses were used in high, medium and low-income countries, while satellite census and GPS/GNSS trackers were mostly used in high-income countries. This work provides an overview of the advantages and drawbacks of litter investigation techniques, contributing i) to the global harmonization of macroplastic litter monitoring and ii) providing a starting point for researchers and water managers approaching this topic. This work supports the selection and design of reliable and cost-effective monitoring approaches to mitigate the ambiguity in macroplastic data collection, contributing to the global harmonization of macroplastic litter monitoring protocols.
Collapse
Affiliation(s)
- L Gallitelli
- Department of Sciences, University Roma Tre, Viale Guglielmo Marconi 446, 00146 Rome, Italy.
| | - P Girard
- Biosciences Institute, Federal University of Mato Grosso, 78060-900 Cuiabá, MT, Brazil
| | - U Andriolo
- INESC Coimbra, Department of Electrical and Computer Engineering, Polo 2, 3030-290 Coimbra, Portugal.
| | - M Liro
- Institute of Nature Conservation, Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120 Kraków, Poland.
| | - G Suaria
- Istituto di Scienze Marine - Consiglio Nazionale delle Ricerche, CNR-ISMAR, Pozzuolo di Lerici, La Spezia, Italy.
| | - C Martin
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - A L Lusher
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - K Hancke
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - McM Blettler
- The National Institute of Limnology (INALI; CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina.
| | - O Garcia-Garin
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Biodiversity Research Institute (IRBio), Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - I E Napper
- International Marine Litter Research Unit, University of Plymouth, Plymouth, UK; School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - L Corbari
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Palermo, Italy.
| | - A Cózar
- Department of Biology, University Marine Research Institute INMAR, University of Cádiz and European University of the Seas SEA-EU, Puerto Real, Spain.
| | - C Morales-Caselles
- Department of Biology, University Marine Research Institute INMAR, University of Cádiz and European University of the Seas SEA-EU, Puerto Real, Spain.
| | - D González-Fernández
- Department of Biology, University Marine Research Institute INMAR, University of Cádiz and European University of the Seas SEA-EU, Puerto Real, Spain.
| | - J Gasperi
- Univ Gustave Eiffel, GERS-EE, Campus Nantes, France
| | - T Giarrizzo
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Fortaleza, Brazil
| | - G Cesarini
- National Research Council-Water Research Institute (CNR-IRSA), Corso Tonolli 50, 28922 Verbania Pallanza, Italy.
| | - K De
- Biological Oceanography Division, CSIR- National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - M Constant
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - P Koutalakis
- Geomorphology, Edaphology and Riparian Areas Laboratory (GERi Lab), Department of Forestry and Natural Environment Science, International Hellenic University, University Campus in Drama, 66100 Drama, Greece.
| | - G Gonçalves
- INESC Coimbra, Department of Electrical and Computer Engineering, Polo 2, 3030-290 Coimbra, Portugal; University of Coimbra, Department of Mathematics, Coimbra, Portugal.
| | - P Sharma
- Department of Agricultural Engineering and Technology, School of Engineering and Technology, Nagaland University, Dimapur, Nagaland, India
| | - S Gundogdu
- Cukurova University, Department of Basic Science, Adana, Türkiye.
| | - R Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA.
| | - N A Garello
- The National Institute of Limnology (INALI; CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - A L G Camargo
- Botany and Ecology Department, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
| | - K Topouzelis
- Department of Marine Sciences, University of Aegean, Greece.
| | - F Galgani
- ECHOS D'OCEANS, 20217 Saint Florent, Corse, France
| | - S J Royer
- The Ocean Cleanup, Coolsingel 6, 3011 AD Rotterdam, the Netherlands
| | - G N Zaimes
- GERi Lab (Geomorphology, Edaphology and Riparian Area Laboratory), Democritus University of Thrace, Drama, Greece
| | - F Rotta
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy; Institute of Earth Sciences, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
| | | | - V Nava
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy.
| | - J Castro-Jiménez
- IFREMER, CCEM Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France.
| | - T Mani
- The Ocean Cleanup, Coolsingel 6, 3011 AD Rotterdam, the Netherlands
| | - R Crosti
- ISPRA, Istituto Superiore Protezione e Ricerca Ambientale, Biodiversità, Roma, Italy
| | | | - F Bessa
- Centre for Functional Ecology - Science for People & the Planet (CFE), Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Portugal.
| | - R Tramoy
- LEESU, Univ Paris Est Créteil, Ecole Des Ponts, Creteil, France
| | - M F Costa
- Departamento de Oceanografia da Universidade Federal de Pernambuco, Av. Arquitetura s/n, Cidade Universitária, Recife, Pernambuco CEP 50740-550, Brazil
| | - C Corbau
- University of Ferrara, Ferrara, Italy.
| | - A Montanari
- Department of Civil, Chemical, Environmental and Material Engineering, Via del Risorgimento 2, 40136 Bologna, Italy.
| | - C Battisti
- Department of Sciences, University Roma Tre, Viale Guglielmo Marconi 446, 00146 Rome, Italy
| | - M Scalici
- Department of Sciences, University Roma Tre, Viale Guglielmo Marconi 446, 00146 Rome, Italy; National Biodiversity Future Center (NBFC), Università di Palermo, Piazza Marina 61, 90133 Palermo, Italy.
| |
Collapse
|
2
|
Andriolo U, Gonçalves G. How much does marine litter weigh? A literature review to improve monitoring, support modelling and optimize clean-up activities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124863. [PMID: 39216667 DOI: 10.1016/j.envpol.2024.124863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The weight of marine litter has been marginally considered in comparison to counting and categorizing items. However, weight determines litter dynamics on water and coasts, and it is an essential parameter for planning and optimizing clean-up activities. This work reviewed 80 publications that reported both the number and weight of beached macro-litter worldwide. On average, a litter item weighed 19.5 ± 20.3 g, with a median weight of 13.4 g. Plastics composed 80% by number and 51% by weight of the global litter bulk. A plastic item weighed 12.9 ± 13.8 g on average, with a median weight of 9 g. The analysis based on continents and on water bodies returned similar values, which can be used to estimate litter weight on beaches from past and future visual census surveys, and from remote sensing imagery. Overall, this work can improve litter monitoring reports and support dynamics modelling, thereby contributing for environmental protection and mitigation efforts.
Collapse
Affiliation(s)
- Umberto Andriolo
- INESC Coimbra, Department of Electrical and Computer Engineering, Polo 2, 3030 - 290, Coimbra, Portugal.
| | - Gil Gonçalves
- INESC Coimbra, Department of Electrical and Computer Engineering, Polo 2, 3030 - 290, Coimbra, Portugal; University of Coimbra, Department of Mathematics, Coimbra, Portugal.
| |
Collapse
|
3
|
Calderisi G, Cogoni D, Fenu G. Unravelling the Nexus of Beach Litter and Plant Species and Communities Along the Mediterranean Coasts: A Critical Literature Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:3125. [PMID: 39599334 PMCID: PMC11597917 DOI: 10.3390/plants13223125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
Beach litter, an anthropogenic and hazardous component, can interact with psammophilous plant species and communities. These are particularly prominent in the Mediterranean Basin, renowned for its highly specialized and unique flora but recognized as one of the areas that is globally most severely affected by marine litter. To provide a comprehensive picture and outline possible future directions, data on beach litter in the Mediterranean coastal ecosystems were collected through a bibliographic research. Overall, 103 studies investigated the presence of beach litter on the Mediterranean coasts, of which only 18 considered its relationship with psammophilous plant species and communities. Our research highlights that this topic is rather underexplored in the Mediterranean Basin and the need to develop a standardized protocol for the assessment of beach litter that can be applied consistently across different beaches and countries. Information collected through a standardized protocol might improve the management and conservation strategies for these fragile ecosystems.
Collapse
Affiliation(s)
| | | | - Giuseppe Fenu
- Department of Life and Environmental Sciences, University of Cagliari, Viale Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy; (G.C.); (D.C.)
| |
Collapse
|
4
|
Sahoo MM. Microplastic pollution in surface sediments of Coromandel coastline, South-East Coast, India: Diversity index, carbonyl index, pollution load index, risk fraction and MPs inventory. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124179. [PMID: 38763293 DOI: 10.1016/j.envpol.2024.124179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
The investigation along the Coromandel coastline of South-east India focused on assessing microplastics abundance using Simpson's diversity index (DIMP), Degradation-carbonyl index (DgCIMP), Pollution load index (PLIMP) and Ecological risk fraction (RfMP). These indices evaluated the dissemination and transportation of MPs across a 1076 km stretch divided into five zones from Chennai to Kanyakumari. During the wet season, average microplastics abundance (101 ± 36.6 items/kg dw) was lower compared to the dry season (143 ± 56.2 items/kg dw). Notably, 54% and 45% of microplastics were found in the 0.1-0.5 mm size range, with 45% and 64% being colored microplastics, and 80% and 71% being fibers during the wet and dry seasons respectively. Micro-Fourier-transform infrared spectroscopy (μFTIR) analysis showed rayon (34%) and PE (64%) dominance in ports and estuaries during both seasons. Kottaipattinam Port exhibited higher diversity indices (DIMPsh=0.56,DIMPsz=0.66,DIMPco=0.50andDIMPpo=0.65) compared to other zones, with an overall diversity index IDIMP of 0.57. Notably, among the DgCIMP values (n = 96), only 12 fell within the moderate photo-chemical oxidation range (0.16-0.35), while the majority (n = 60) surpassed 0.35 indicating higher oxidation levels, with some (n = 24) exceeding 0.50, signifying extreme oxidation. PLIMP revealed that 42% of sampling stations had very low to negligible MP contamination levels in ports and estuaries. However, ecological risk fraction RfMP values ranged from 10.2 to 13,670, with 27% of values exceeding 1500, indicating higher coastal ecological risk in 13 sampling stations.
Collapse
|
5
|
Andriolo U, Gonçalves G, Hidaka M, Gonçalves D, Gonçalves LM, Bessa F, Kako S. Marine litter weight estimation from UAV imagery: Three potential methodologies to advance macrolitter reports. MARINE POLLUTION BULLETIN 2024; 202:116405. [PMID: 38663345 DOI: 10.1016/j.marpolbul.2024.116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
In the context of marine litter monitoring, reporting the weight of beached litter can contribute to a better understanding of pollution sources and support clean-up activities. However, the litter scaling task requires considerable effort and specific equipment. This experimental study proposes and evaluates three methods to estimate beached litter weight from aerial images, employing different levels of litter categorization. The most promising approach (accuracy of 80 %) combined the outcomes of manual image screening with a generalized litter mean weight (14 g) derived from studies in the literature. Although the other two methods returned values of the same magnitude as the ground-truth, they were found less feasible for the aim. This study represents the first attempt to assess marine litter weight using remote sensing technology. Considering the exploratory nature of this study, further research is needed to enhance the reliability and robustness of the methods.
Collapse
Affiliation(s)
- Umberto Andriolo
- INESC Coimbra, Department of Electrical and Computer Engineering, Polo 2, 3030 - 290 Coimbra, Portugal.
| | - Gil Gonçalves
- INESC Coimbra, Department of Electrical and Computer Engineering, Polo 2, 3030 - 290 Coimbra, Portugal; University of Coimbra, Department of Mathematics, Coimbra, Portugal.
| | - Mitsuko Hidaka
- Research Institute for Value-Added-Information Generation (VAiG), Japan Agency for Marine - Earth Science and Technology (JAMSTEC), Yokohama, Japan; Graduate School of Science and Engineering, Department of Engineering, Ocean Civil Engineering Program, Kagoshima University, Kagoshima, Japan.
| | - Diogo Gonçalves
- INESC Coimbra, Department of Electrical and Computer Engineering, Polo 2, 3030 - 290 Coimbra, Portugal; University of Coimbra, Department of Civil Engineering, Coimbra, Portugal.
| | - Luisa Maria Gonçalves
- INESC Coimbra, Department of Electrical and Computer Engineering, Polo 2, 3030 - 290 Coimbra, Portugal; School of Technology and Management, Polytechnic of Leiria, Nova IMS University Lisbon, Portugal.
| | - Filipa Bessa
- Centre for Functional Ecology - Science for People & the Planet (CFE), Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Portugal.
| | - Shin'ichiro Kako
- Research Institute for Value-Added-Information Generation (VAiG), Japan Agency for Marine - Earth Science and Technology (JAMSTEC), Yokohama, Japan; Graduate School of Science and Engineering, Department of Engineering, Ocean Civil Engineering Program, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
6
|
Sousa-Guedes D, Bessa F, Queiruga A, Teixeira L, Reis V, Gonçalves JA, Marco A, Sillero N. Lost and found: Patterns of marine litter accumulation on the remote Island of Santa Luzia, Cabo Verde. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123338. [PMID: 38218543 DOI: 10.1016/j.envpol.2024.123338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Santa Luzia, an uninhabited island in the archipelago of Cabo Verde, serves as a natural laboratory and important nesting site for loggerhead turtles Carettacaretta. The island constitutes an Integral Natural Reserve and a Marine Protected Area. We assessed marine litter accumulation on sandy beaches of the island and analysed their spatial patterns using two sampling methods: at a fine scale, sand samples from 1 × 1 m squares were collected, identifying debris larger than 1 mm; at a coarse scale, drone surveys were conducted to identify visible marine debris (>25 mm) in aerial images. We sampled six points on three beaches of the island: Achados (three points), Francisca (two points) and Palmo Tostão (one point). Then, we modelled the abundance of marine debris using topographical variables as explanatory factors, derived from digital surface models (DSM). Our findings reveal that the island is a significant repository for marine litter (>84% composed of plastics), with up to 917 plastic items per m2 in the sand samples and a maximum of 38 macro-debris items per m2 in the drone surveys. Plastic fragments dominate, followed by plastic pellets (at the fine-scale approach) and fishing materials (at the coarse-scale approach). We observed that north-facing, higher-elevation beaches accumulate more large marine litter, while slope and elevation affect their spatial distribution within the beach. Achados Beach faces severe marine debris pollution challenges, and the upcoming climate changes could exacerbate this problem.
Collapse
Affiliation(s)
- Diana Sousa-Guedes
- Centro de Investigação em Ciências Geo-Espaciais (CICGE), Faculdade de Ciências da Universidade do Porto, Alameda do Monte da Virgem, 4430-146 Vila Nova de Gaia, Portugal; University of Coimbra, MARE - Marine and Environmental Sciences Centre/ ARNET Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; Estación Biológica de Doñana, CSIC, C/ Américo Vespucio, s/n, 41092 Sevilla, Spain; BIOS.CV - Conservation of the Environment and Sustainable Development, CP 52111, Sal Rei, Boa Vista Island, Cabo Verde.
| | - Filipa Bessa
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ ARNET Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | | | | | - Vitória Reis
- Centro de Investigação em Ciências Geo-Espaciais (CICGE), Faculdade de Ciências da Universidade do Porto, Alameda do Monte da Virgem, 4430-146 Vila Nova de Gaia, Portugal.
| | - José Alberto Gonçalves
- Departamento de Geociências, Ambiente e Ordenamento do Território (DGAOT), Faculdade de Ciências da Universidade do Porto, Portugal; CIIMAR Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Adolfo Marco
- Estación Biológica de Doñana, CSIC, C/ Américo Vespucio, s/n, 41092 Sevilla, Spain; BIOS.CV - Conservation of the Environment and Sustainable Development, CP 52111, Sal Rei, Boa Vista Island, Cabo Verde.
| | - Neftalí Sillero
- Centro de Investigação em Ciências Geo-Espaciais (CICGE), Faculdade de Ciências da Universidade do Porto, Alameda do Monte da Virgem, 4430-146 Vila Nova de Gaia, Portugal.
| |
Collapse
|
7
|
Abelouah MR, Ben-Haddad M, Hajji S, Nouj N, Ouheddou M, Mghili B, De-la-Torre GE, Costa LL, Banni M, Ait Alla A. Exploring marine biofouling on anthropogenic litter in the Atlantic coastline of Morocco. MARINE POLLUTION BULLETIN 2024; 199:115938. [PMID: 38141584 DOI: 10.1016/j.marpolbul.2023.115938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
Today, the world is increasingly concerned about marine litter and its interaction with marine biodiversity. However, knowledge concerning the fouling organisms associated with marine litter is very limited in many of the world's marine environments. In this survey, we investigated biofouling on different types of marine litter washed up on all the coasts of the central Atlantic of Morocco. The findings revealed 21 fouling species belonging to 9 phyla (Arthropoda, Mollusca, Echinodermata, Annelida, Bryozoa, Porifera, Chlorophyta, Ochrophyta, and Ascomycota). More specifically, frequently observed fouling species include Mytilus galloprovincialis, Balanus laevis, Megabalanus coccopoma, and Pollicipes pollicipes species. Large marine litter items recorded the highest colonization of marine organisms in comparison to small ones. The frequency of occurrence (FO) of the species most commonly fouled on all coasts was Perforatus perforatus (FO = 48.60), followed by Mytilus galloprovincialis (FO = 45.80), Balanus trigonus (FO = 32.05), Balanus laevis (FO = 30.25), Megabalanus coccopoma (FO = 25.25), Bryozoa species (FO = 19.40), Spirobranchus triqueter (FO = 18.18), Lepas pectinata (FO = 14.45), and Pollicipes pollicipes (FO = 13.05). The majority of the species registered in this study are sessile. Substrate coverage by fouling taxa was significantly different between plastic substrate and other types of marine litter. Likewise, this study revealed that the proportion of fouling organisms is higher on rough surfaces. Overall, this research could be crucial to understanding the little-known subject of marine litter and its colonization by marine biota. Given that these marine litters can act as vectors and cause ecological, biogeographical, and conservation issues in the marine environment, minimizing the quantity of anthropogenic litter reaching the Moroccan Atlantic could significantly reduce its accumulation on the sea surface and seabed, thereby reducing the risk of invasion by non-indigenous species.
Collapse
Affiliation(s)
- Mohamed Rida Abelouah
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Sara Hajji
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Nisrine Nouj
- Material and Environmental Laboratory (LME), Department of Chemistry, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| | - Maryam Ouheddou
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Bilal Mghili
- LESCB, URL-CNRST N° 18, Abdelmalek Essaadi University, Faculty of Sciences, Tetouan, Morocco.
| | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | - Leonardo Lopes Costa
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes CEP, Rio de Janeiro 28013-602, Brazil.
| | - Mohamed Banni
- Laboratory of Agrobio diversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia; Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia.
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| |
Collapse
|
8
|
Gallitelli L, D'Agostino M, Battisti C, Cózar A, Scalici M. Dune plants as a sink for beach litter: The species-specific role and edge effect on litter entrapment by plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166756. [PMID: 37659519 DOI: 10.1016/j.scitotenv.2023.166756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Anthropogenic litter accumulates along coasts worldwide. In addition to the flowing litter load, wind, sea currents, geomorphology and vegetation determine the distribution of litter trapped on the sandy coasts. Although some studies highlighted the role of dune plants in trapping marine litter, little is known about their efficiency as sinks and about the small-scale spatial distribution of litter across the dune area. Here, we explore these gaps by analysing six plant species widespread in Mediterranean coastal habitats, namely Echinophora spinosa, Limbarda crithmoides, Anthemis maritima, Pancratium maritimum, Thinopyrum junceum, and Salsola kali. The present study analyses for the first time the capture of litter by dune vegetation at a multi-species level, considering their morphological structure. Data on plastic accumulation on dune plants were compared with unvegetated control plots located at embryo-dune and foredune belts. We found that dunal plants mainly entrapped macrolitter (> 0.5 cm). Particularly, E. spinosa, L. crithmoides, A. maritima and P. maritimum mostly accumulated litter in the embryo dune while T. junceum and S. kali entrapped more in the foredune area. Moreover, beach litter was mainly blocked at the edge of the plant patches rather than in the core, highlighting the 'Plant-edge litter effect'. As A. maritima and S. kali entrapped respectively more litter in embryo and foredune habitats, these species could be used to monitor and recollect litter. In this light, our findings provide further insight into the role of dune plants in the beach litter dynamics, suppling useful information for beach clean-up actions.
Collapse
Affiliation(s)
- Luca Gallitelli
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - Martina D'Agostino
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Corrado Battisti
- "Torre Flavia" LTER (Long Term Ecological Research) Station, Città Metropolitana di Roma Capitale, Servizio Aree Protette, Via G. Ribotta, 41, 00144 Roma, Italy
| | - Andrés Cózar
- Department of Biology, Institute of Marine Research (INMAR), University of Cádiz, European University of the Seas, Puerto Real, Spain
| | - Massimiliano Scalici
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| |
Collapse
|
9
|
Andriolo U, Topouzelis K, van Emmerik THM, Papakonstantinou A, Monteiro JG, Isobe A, Hidaka M, Kako S, Kataoka T, Gonçalves G. Drones for litter monitoring on coasts and rivers: suitable flight altitude and image resolution. MARINE POLLUTION BULLETIN 2023; 195:115521. [PMID: 37714078 DOI: 10.1016/j.marpolbul.2023.115521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023]
Abstract
Multirotor drones can be efficiently used to monitor macro-litter in coastal and riverine environments. Litter on beaches, dunes and riverbanks, along with floating litter on coastal and river waters, can be spotted and mapped from aerial drone images. Items detection and classification are prone to image resolution, which is expressed in terms of Ground Sampling Distance (GSD). The GSD is determined by drone flight altitude and camera properties. This paper investigates what is a suitable GSD value for litter survey. Drone flight altitude and camera setup should be chosen to obtain a GSD between 0.5 cm/px and 1.25 cm/px. Within this range, the lowest GSD allows litter categorization and classification, whereas the highest value should be adopted for a coarser litter census. In the vision of drawing up a global protocol for drone-based litter surveys, this work sets the ground for homogenizing data collection and litter assessments.
Collapse
Affiliation(s)
- Umberto Andriolo
- INESC Coimbra, Department of Electrical and Computer Engineering, Polo 2, 3030-290 Coimbra, Portugal.
| | | | - Tim H M van Emmerik
- Hydrology and Environmental Hydraulics Group, Wageningen University, Wageningen, the Netherlands.
| | | | - João Gama Monteiro
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; Faculty of Life Sciences, Universidade da Madeira, Funchal, Madeira, Portugal.
| | - Atsuhiko Isobe
- Research Institute for Applied Mechanics, Kyushu University, Kasuga, Japan.
| | - Mitsuko Hidaka
- Research Institute for Value-Added-Information Generation (VAiG), Japan Agency for Marine - Earth Science and Technology (JAMSTEC), Yokohama, Japan; Graduate School of Science and Engineering, Department of Engineering, Ocean Civil Engineering Program, Kagoshima University, Kagoshima, Japan.
| | - Shin'ichiro Kako
- Graduate School of Science and Engineering, Department of Engineering, Ocean Civil Engineering Program, Kagoshima University, Kagoshima, Japan.
| | - Tomoya Kataoka
- Department of Civil and Environmental Engineering, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan.
| | - Gil Gonçalves
- INESC Coimbra, Department of Electrical and Computer Engineering, Polo 2, 3030-290 Coimbra, Portugal; University of Coimbra, Department of Mathematics, Coimbra, Portugal.
| |
Collapse
|
10
|
Andriolo U, Gonçalves G. The octopus pot on the North Atlantic Iberian coast: A plague of plastic on beaches and dunes. MARINE POLLUTION BULLETIN 2023; 192:115099. [PMID: 37267867 DOI: 10.1016/j.marpolbul.2023.115099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
This baseline focuses on the octopus pot, a litter item found on the North Atlantic Iberian coast. Octopus pots are deployed from vessels in ropes, with several hundred units, and placed on the seabed, to capture mostly Octopus Vulgaris. The loss of gears due to extreme seas state, bad weather and/or fishing-related unforeseen circumstances, cause the octopus pots contaminating beaches and dunes, where they are transported by sea current, waves and wind actions. This work i) gives an overview of the use of octopus pot on fisheries, ii) analyses the spatial distribution of this item on the coast, and iii) discusses the potential measures for tackling the octopus pot plague on the North Atlantic Iberian coast. Overall, it is urgent to promote conducive policies and strategies for a sustainable waste management of octopus pots, based on Reduce, Reuse and Recycle hierarchical framework.
Collapse
Affiliation(s)
- Umberto Andriolo
- INESC Coimbra, Department of Electrical and Computer Engineering, Polo 2, 3030 - 290 Coimbra, Portugal.
| | - Gil Gonçalves
- INESC Coimbra, Department of Electrical and Computer Engineering, Polo 2, 3030 - 290 Coimbra, Portugal; University of Coimbra, Department of Mathematics, Coimbra, Portugal.
| |
Collapse
|
11
|
Calderisi G, Cogoni D, Loni A, Fenu G. Difference between invasive alien and native vegetation in trapping beach litter: A focus on a typical sandy beach of W-Mediterranean Basin. MARINE POLLUTION BULLETIN 2023; 192:115065. [PMID: 37216878 DOI: 10.1016/j.marpolbul.2023.115065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
Beach litter is one of the most pervasive pollution issues in coastal environments worldwide. In this study, we aim to assess the amount and distribution of beach litter on Porto Paglia beach, its entrapment across psammophilous habitats, and whether the invasive Carpobrotus acinaciformis (L.) L.Bolus plays a different role in trapping litter than native vegetation. To this end, two seasonal samplings (in spring and autumn) were conducted using a paired sampling method that considers plots in all coastal habitats with and without C. acinaciformis. Our results confirm that the main beach litter category is plastic, and that its distribution varies across habitats: the white dune seems to play a greater role in trapping and filtering beach litter, reducing its amount in the backdune. A correlation was found between the Naturalness index (N) and the beach litter amount, supporting the finding that invaded habitats trap beach litter better than native ones.
Collapse
Affiliation(s)
- Giulia Calderisi
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Viale Sant'Ignazio da Laconi 13, 09123 Cagliari, Italy
| | - Donatella Cogoni
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Viale Sant'Ignazio da Laconi 13, 09123 Cagliari, Italy.
| | - Alessandra Loni
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Viale Sant'Ignazio da Laconi 13, 09123 Cagliari, Italy
| | - Giuseppe Fenu
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Viale Sant'Ignazio da Laconi 13, 09123 Cagliari, Italy
| |
Collapse
|