1
|
Garcés-Ordóñez O, Spence R, Canals M, Thiel M. Macrolitter contamination in beach, dune, and mangrove ecosystems on a Caribbean island: A comparative analysis. MARINE POLLUTION BULLETIN 2025; 213:117616. [PMID: 39889546 DOI: 10.1016/j.marpolbul.2025.117616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Litter pollution is a global issue that threatens biodiversity and ecosystem services, especially on vulnerable islands. This study assesses and compares the abundance and composition of macrolitter, including plastic bottles, and identifies its sources across beach, dune, and mangrove ecosystems in Jamaica. The highest macrolitter abundance occurred on the beach (12 items m-2), followed by dune (4.3 items m-2) and mangrove (1.8 items m-2) ecosystems. Plastics dominated (83 %-99 %), with sizes ranging from 2.5 to 25 cm (91 %-99 % of the items), and most had lifetimes shorter than one year (60 %-82 %). Lightweight items easily transported by wind accumulated in the dune, while floating items carried by tides prevailed in beach and mangrove ecosystems, with similar plastic bottle abundances (0.3 items m-2). Result showed that the primary causes of macrolitter contamination in all three ecosystems are poor waste management and recreational activities. Whereas most (54 %-84 %) of the analyzed plastic bottles were produced in Jamaica, there were also bottles made in neighboring countries, such as the Dominican Republic, Haiti, and Trinidad and Tobago, which are not sold locally. These foreign bottles were likely carried by currents from these countries or improperly disposed of by ships.
Collapse
Affiliation(s)
- Ostin Garcés-Ordóñez
- GRC Geociències Marines, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain; Grupo de Investigación Territorios Semiáridos del Caribe, Universidad de La Guajira, Riohacha, Colombia.
| | | | - Miquel Canals
- GRC Geociències Marines, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain; Sustainable Blue Economy Chair, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain; Reial Acadèmia de Ciències i Arts de Barcelona (RACAB), La Rambla 115, 08002 Barcelona, Spain; Institut d'Estudis Catalans (IEC), Secció de Ciències i Tecnologia, Carme 47, 08001 Barcelona, Spain
| | - Martin Thiel
- MarineGEO Program, Smithsonian Environmental Research Center, Edgewater, MD, USA; Departamento de Biología Marina, Facultad Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
| |
Collapse
|
2
|
Gallitelli L, Cutini M, Cesarini G, Scalici M. Riparian vegetation entraps macroplastics along the entire river course: Implications for eco-safety activities and mitigation strategies. ENVIRONMENTAL RESEARCH 2024; 263:120224. [PMID: 39448017 DOI: 10.1016/j.envres.2024.120224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Macroplastic litter causes detrimental effects on freshwater biota affecting human health. Despite the significant role of rivers in transporting plastic waste, most plastics remain in fluvial ecosystems, accumulating in infrastructure, river sediment, and (riverbank) vegetated areas. However, the entrapment of plastics by riparian vegetation was overlooked, particularly in upper and middle river courses. For the first time, we aimed to quantify the entrapment of plastics by riparian vegetation along the entire river course. Sampling riparian areas in the upper, middle, and lower river courses in central Italy, we found 1548 macrolitter items, with vegetation entrapping 93.9% of total litter. Riverbank and riparian plastics acted as long-term indicators of river plastics. We emphasized the trapping efficiency at the species level highlighting that the best plastic trapper species were trees, shrubs and reeds (Populus spp., Salix spp., Rubus ulmifolius, Phragmites australis, and Ficus carica), blocking 85.4% of the total macrolitter entrapped by plants. Plastic pieces, bags, bandages, sanitary items, and packaging were among the most trapped types. Furthermore, vegetation in the lower river course exhibited greater plastic entrapment compared to the upper and middle courses, following the fact that all the river courses contribute to plastic pollution. Recognizing the potential of riparian vegetation as a valuable ecosystem service in trapping macroplastics, further research should explore the characteristics and structures of riparian communities involved in this process. By developing eco-safe practices and mitigation strategies based on these findings, we might contribute significantly to managing, conserving, and restoring riverine ecosystems.
Collapse
Affiliation(s)
- Luca Gallitelli
- University of Roma Tre, Department of Sciences, Viale Guglielmo Marconi, 446 00146, Rome, Italy.
| | - Maurizio Cutini
- University of Roma Tre, Department of Sciences, Viale Guglielmo Marconi, 446 00146, Rome, Italy; National Biodiversity Future Center (NBFC), Università di Palermo, Piazza Marina 61, 90133, Palermo, Italy
| | - Giulia Cesarini
- University of Roma Tre, Department of Sciences, Viale Guglielmo Marconi, 446 00146, Rome, Italy; National Research Council - Water Research Institute (CNR-IRSA), Corso Tonolli 50, 28922, Verbania, Italy
| | - Massimiliano Scalici
- University of Roma Tre, Department of Sciences, Viale Guglielmo Marconi, 446 00146, Rome, Italy; National Biodiversity Future Center (NBFC), Università di Palermo, Piazza Marina 61, 90133, Palermo, Italy.
| |
Collapse
|
3
|
Calderisi G, Cogoni D, Fenu G. Unravelling the Nexus of Beach Litter and Plant Species and Communities Along the Mediterranean Coasts: A Critical Literature Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:3125. [PMID: 39599334 PMCID: PMC11597917 DOI: 10.3390/plants13223125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
Beach litter, an anthropogenic and hazardous component, can interact with psammophilous plant species and communities. These are particularly prominent in the Mediterranean Basin, renowned for its highly specialized and unique flora but recognized as one of the areas that is globally most severely affected by marine litter. To provide a comprehensive picture and outline possible future directions, data on beach litter in the Mediterranean coastal ecosystems were collected through a bibliographic research. Overall, 103 studies investigated the presence of beach litter on the Mediterranean coasts, of which only 18 considered its relationship with psammophilous plant species and communities. Our research highlights that this topic is rather underexplored in the Mediterranean Basin and the need to develop a standardized protocol for the assessment of beach litter that can be applied consistently across different beaches and countries. Information collected through a standardized protocol might improve the management and conservation strategies for these fragile ecosystems.
Collapse
Affiliation(s)
| | | | - Giuseppe Fenu
- Department of Life and Environmental Sciences, University of Cagliari, Viale Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy; (G.C.); (D.C.)
| |
Collapse
|
4
|
Ponmani M, Padmavathy P, Manimekalai D, Shalini R, Ravikumar T, Hariharan G, Manickavasagam S. Vulnerability of mangrove ecosystems to anthropogenic marine litter along the southeast coast of India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177224. [PMID: 39477121 DOI: 10.1016/j.scitotenv.2024.177224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Human-caused marine pollution poses a constant threat to marine ecosystems, particularly tropical mangrove forests, which are vulnerable to litter from both inland and marine sources due to inadequate waste management. Despite well-documented effects of marine litter on various maritime habitats, its impact on mangrove forests remains underexplored. This study investigates the abundance, composition, sources, and impacts of human-caused marine litter on mangroves along the Thoothukudi coast in the Gulf of Mannar, southeast India. The study recorded an average litter abundance of 6.7 ± 1.2 items/m2 on the mangrove ground and 8.6 ± 0.3 items/tree, with plastic litter comprising over 81 % of all collected litter. Single-use plastic items were the most common across all sites. Several indices, including the General Index, Clean Coast Index, Pollution Load Index (PLI), and Hazardous Items Index (HII), were used to evaluate mangrove floor cleanliness, all indicating poor conditions. The PLI revealed "Hazard Level I" plastic debris concerns, with litter levels varying significantly by location. Areas with high population density and poor solid waste management had significantly more stranded litter. Litter sources were identified as both local (land-based) and external (marine fishing). Trapped plastic was found to impair mangrove pneumatophores and branches. To mitigate the negative impacts on mangrove ecosystems and ensure their conservation, the study emphasizes the need for strict law enforcement, a unified solid waste management strategy, and a widespread behavioural shift among citizens.
Collapse
Affiliation(s)
- Muthu Ponmani
- Ph.D Scholar, Department of Aquatic Environment Management, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Fisheries College and Research Institute, Thoothukudi - 628 008, Tamil Nadu, India
| | - P Padmavathy
- Director i/c, Directorate of Sustainable Aquaculture, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Nagapattinam - 611 002, Tamil Nadu, India.
| | - D Manimekalai
- Assistant Professor, Department of Aquatic Environment Management, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Fisheries College and Research Institute, Thoothukudi - 628 008, Tamil Nadu, India
| | - R Shalini
- Assistant Professor and Head i/c, Department of Fish Quality Assurance and Management, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Fisheries College and Research Institute, Thoothukudi - 628 008, Tamil Nadu, India
| | - T Ravikumar
- Assistant Professor, Department of Fishing Technology and Fisheries Engineering, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Fisheries College and Research Institute, Thoothukudi - 628 008, Tamil Nadu, India
| | - G Hariharan
- Scientist-C, National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai-600025, India
| | - S Manickavasagam
- Assistant Professor, Thanjavur Centre for Sustainable Aquaculture (TCeSA), Directorate of Sustainable Aquaculture, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Thanjavur - 614 904, Tamil Nadu, India
| |
Collapse
|
5
|
Fonseca T, Agostinho F, Pavão JMSJ, Sulis F, Maceno MMC, Almeida CMVB, Giannetti BF. Marine plastic pollution: A systematic review of management strategies through a macroscope approach. MARINE POLLUTION BULLETIN 2024; 208:117075. [PMID: 39361995 DOI: 10.1016/j.marpolbul.2024.117075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Alternatives to address the ocean plastic crisis have been a hot topic in scientific literature, although a systemic approach to assess their effectiveness and identify bottlenecks is still lacking. To contribute to discussions on this topic, this study aims to conduct a literature review on current scientific information regarding management strategies for marine plastic pollution. The PRISMA method was used to select the most relevant articles from the Scopus® database, resulting in a sample of 176 articles after applying exclusion criteria for full-text evaluation. Unlike other literature review studies, Odum's Macroscope is used here to develop a model that provides a systemic view of the plastic crisis on a large scale, encompassing various compartments and their interactions. Specifically, eight compartments are identified: industry, consumers, waste collection & management, freshwater systems, fisheries, aquaculture and shipping, marine ecosystems, marine plastic collection and recycling, and life cycle. Each piece of literature reviewed is categorized into one of these compartments and discussed accordingly. The highlights of the results indicate that: (i) waste collection & management and freshwater systems, which are primary pathways for plastic litter reaching the ocean, have been relatively under-investigated compared to other compartments. (ii) Most studies originate from developed countries, raising doubts about the effectiveness of management proposals in underdeveloped countries. (ii) Existing strategies for collecting and recycling marine litter are unlikely to be implemented at a large scale due to operational obstacles, thus offering insufficient mitigation for the plastic crisis. (iv) The development of new biomaterials has proven mostly ineffective and harmful. (v) Alternatives management for microplastic pollution are still in their infancy, resulting in scarce information across all compartments. (vi) No studies focus on the origin of the plastic issue, which lies in the petrochemical industry. From a general perspective, the literature indicates that there is no one-size-fits-all management strategy to the plastic crisis, and the available options are often scattered and disconnected, making a systemic approach essential for studying such a transboundary issue. While efforts exist, stakeholders must act to effectively address the problem, or at least make meaningful progress. The marine plastic crisis operates systemically, analogous to the climate crisis, both stemming from human dependence on fossil fuels. Similar to achieving carbon neutrality, designing a globally sustainable economy should prioritize achieving plastic neutrality as a core component.
Collapse
Affiliation(s)
- T Fonseca
- Post-graduation Program in Production Engineering, Paulista University, São Paulo, Brazil; Post-graduation Program in Environmental Systems Analysis, University Centre Cesmac, Maceió, Brazil
| | - F Agostinho
- Post-graduation Program in Production Engineering, Paulista University, São Paulo, Brazil.
| | - J M S J Pavão
- Post-graduation Program in Environmental Systems Analysis, University Centre Cesmac, Maceió, Brazil; Emergy and Resilience Ecosystems Laboratory (LERE), University Centre Cesmac, Maceió, Brazil.
| | - F Sulis
- Post-graduation Program in Production Engineering, Paulista University, São Paulo, Brazil; Post-graduation Program in Environmental Systems Analysis, University Centre Cesmac, Maceió, Brazil.
| | - M M C Maceno
- Post-graduation Program in Production Engineering, Federal University of Parana, Brazil.
| | - C M V B Almeida
- Post-graduation Program in Production Engineering, Paulista University, São Paulo, Brazil.
| | - B F Giannetti
- Post-graduation Program in Production Engineering, Paulista University, São Paulo, Brazil.
| |
Collapse
|
6
|
Razeghi N, Hamidian AH, Abbasi S, Mirzajani A. Distribution, flux, and risk assessment of microplastics at the Anzali Wetland, Iran, and its tributaries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54815-54831. [PMID: 39214944 DOI: 10.1007/s11356-024-34847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Microplastic pollution has raised significant concerns among scientific communities and society in recent years due to its increase and lesser-known effects on the environment. To improve the knowledge of microplastic pollution in freshwater, we investigated microplastics in Anzali Wetland, a Ramsar site in northern Iran, as well as its nine main entering rivers. The extracted microplastics were characterized via visual identification, SEM-EDX, and μ-Raman methods. Microplastics (size range: 50-5000 μm) were found in all water and sediment samples with concentration of fibrous particles as well as polypropylene and polyethylene polymers. The mean concentration of microplastics in bottom sediment and surface water samples of the wetland was 301 ± 222 particles∙kg-1 d.w. and 235 ± 115 particles∙m-3 (0.23 particles∙L-1), respectively. The microplastic concentration in the central and eastern parts of the wetland was higher than in other areas; however, the mean concentrations revealed homogeneity across the wetland area. Water properties (dissolved oxygen, pH, temperature, electrical conductivity, and salinity in water) did not affect the concentration of microplastic particles, though correlational analysis revealed a strong positive association between microplastic quantity and turbidity. There was a significant positive relationship between microplastic concentration and the percentage of clay in sediment samples. The quantity of microplastics in river water was higher than in wetland water, but the difference between the results was not significant. However, the quantity of microplastics in the river's littoral sediment was higher than in the bottom sediment of the wetland where the difference between the results was significant. Microplastic ecological risk assessment showed high potential ecological risk. The findings underscore the importance of effective management strategies and the implementation of policies to mitigate the negative impact of MP pollution on ecosystems and human health.
Collapse
Affiliation(s)
- Nastaran Razeghi
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University College of Agriculture & Natural Resources, University of Tehran, P.O. Box 4314, Karaj, 31587-77878, Iran
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University College of Agriculture & Natural Resources, University of Tehran, P.O. Box 4314, Karaj, 31587-77878, Iran.
| | - Sajjad Abbasi
- Department of Earth Sciences, School of Science, Shiraz University, Shiraz, 71454, Iran
- Centre for Environmental Studies and Emerging Pollutants (ZISTANO), Shiraz University, Shiraz, 714545, Iran
| | - Alireza Mirzajani
- Inland Waters Aquaculture Research Center, Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute, P.O. Box 66, Bandar-E Anzali, Iran
| |
Collapse
|
7
|
De Michelis S, Pietrelli L, Battisti C, Carosi M. First evidence of plastics in coypu (Myocastor coypus)'s platforms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45452-45458. [PMID: 38965107 DOI: 10.1007/s11356-024-34084-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Platforms are structures built by coypus for various purposes, such as reproduction, resting, and thermoregulation. In a coastal wetland of central Italy, during a study aimed at investigating the characteristics of coypu's platforms, it was recorded, for the first time worldwide, the presence of plastic in these structures. Through a transect survey, we censused 83 platforms, among which three (3.61%) were found with presence of macro- and megaplastics (polystyrene, polypropylene, and low-density polyethylene in film form; polyester, polyamide, and expanded polystyrene in fragments). Through the FTIR spectra, it was possible to highlight the degradation of the polymeric materials. To stimulate possible in-depth investigations at the level of the food chain (e.g., coypu predators, including canids) in wet habitats, we discussed possible causes and implications of plastic presence in coypus' nest structures.
Collapse
Affiliation(s)
- Silvia De Michelis
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy
| | - Loris Pietrelli
- Legambiente, Scientific Committee, Via Salaria 403, 00199, Rome, Italy.
| | - Corrado Battisti
- Protected Areas Service, "Torre Flavia" LTER (Long Term Ecological Research) Station, Città Metropolitana Di Roma, Via G. Ribotta 41, 00144, Rome, Italy
| | - Monica Carosi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy
- National Biodiversity Future Center, Università Di Palermo, Palermo, Italy
| |
Collapse
|
8
|
Özşeker K, Coşkun T, Erüz C. Exploring seasonal, spatial and pathways of marine litter pollution along the Southeastern Black Sea Cost of Türkiye. MARINE POLLUTION BULLETIN 2024; 202:116348. [PMID: 38636341 DOI: 10.1016/j.marpolbul.2024.116348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
Spatial and temporal variations in marine litter density and composition along the Southeastern Black Sea Coast were investigated. A total of 156,371 litter items weighing 327,258.3 kg were collected. The highest frequency of litter material by number was 15,869 ± 103.88 items/m2 16 and 74.466 ± 7.23 by weight. The highest litter concentrations (77,768 items; 81,737.1 kg) were observed in autumn, mainly comprising single-use items, with plastic being the most abundant (54.05 %), followed by metal (15.69 %), and paper (10.45 %). The subcategories of plastic litter items bags, caps/lids, cigarette lighters, cosmetic packages, gloves, and plastics pieces were found to be the most abundant litter in number. According to Principal Component Analysis (PCA) and Kruskal-Wallis statistical tests (p < 0.005), significant differences in marine litter were identified among the stations and seasons. These findings offer insights for modeling studies, advocating restrictions on single-use products, and enacting legal regulations for local governance.
Collapse
Affiliation(s)
- Koray Özşeker
- Karadeniz Technical University, Institute of Marine Sciences and Technology, Trabzon, Turkiye.
| | - Tolga Coşkun
- Middle East Technical University, Biological Sciences, Limnology Laboratory, Ankara, Turkiye
| | - Coşkun Erüz
- Karadeniz Technical University, Faculty of Marine Sciences, Trabzon, Turkiye
| |
Collapse
|
9
|
Battisti C, Cesarini G, Gallitelli L, Moretti F, Scalici M. Anthropogenic litter in a Mediterranean coastal wetland: A heterogeneous spatial pattern of historical deposition. MARINE POLLUTION BULLETIN 2024; 201:116163. [PMID: 38401392 DOI: 10.1016/j.marpolbul.2024.116163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
Coastal wetlands represent areas that can testify historical accumulation of litter. We analyzed the anthropogenic litter deposited on the channel bottom of a coastal wetland area that experienced water stress due to extreme summer dryness after about 20 years. We hypothesize that the litter accumulated in the different areas over the years reflects the different social user categories (i.e., fishermen, beach users, hunters) and exposure to meteo-marine events. Our findings highlight that historically accumulated litter is composed of plastics (78.8 %), clothes (8.9 %), and glass (4.9 %). Moreover, litter concentration averages 53.6 items/ha in the 8 sectors. The most found categories were common household items (25.4 %), diverse (professional and consumer) items (24.2 %), and food and beverages packaging (21.4 %). Finally, litter diversity indices and the Detrended Correspondence Analysis showed sector and litter type similarities. We reported for the first time the presence of litter accumulated for 20 years testifying non-more occurring recreational activities.
Collapse
Affiliation(s)
- Corrado Battisti
- 'Torre Flavia' LTER (Long Term Ecological Research) Station, Città Metropolitana di Roma Capitale, Italy
| | - Giulia Cesarini
- National Research Council - Water Research Institute (CNR-IRSA), Corso Tonolli 50, 28922 Verbania, Italy
| | - Luca Gallitelli
- University of Roma Tre, Department of Sciences, Viale Guglielmo Marconi, 446 00146 Rome, Italy.
| | - Filippo Moretti
- ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Agrifood Sustainability, Quality and Safety Laboratory BIOAG-PROBIO, Via Anguillarese 301, 00123 Santa Maria di Galeria (RM), Italy
| | - Massimiliano Scalici
- University of Roma Tre, Department of Sciences, Viale Guglielmo Marconi, 446 00146 Rome, Italy; National Biodiversity Future Center (NBFC), Università di Palermo, Piazza Marina 61, 90133 Palermo, Italy
| |
Collapse
|
10
|
Kerpen NB, Larsen BE, Schlurmann T, Paul M, Guler HG, Goral KD, Carstensen S, Christensen ED, Fuhrman DR. Microplastic retention in marine vegetation canopies under breaking irregular waves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169280. [PMID: 38128667 DOI: 10.1016/j.scitotenv.2023.169280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
The present study provides indications and underlying drivers of wave-induced transport and retention potential of microplastic particles (MP) in marine vegetation canopies having different densities. The anthropogenic occurrence of MP in coastal waters is well documented in the recent literature. It is acknowledged that coastal vegetation can serve as a sink for MP due to its energy dissipating features, which can mimic a novel ecosystem service. While the transport behavior of MP in vegetation has previously been investigated to some extent for stationary flow conditions, fundamental investigations for unsteady surf zone flow conditions under irregular waves are still lacking. Herein, we demonstrate by means of hydraulic model tests that a vegetation's retention potential of MP in waves increases with the vegetation shoot density, the MP settling velocity and decreasing wave energy. It is found that particles migrating by traction (predominantly in contact with the bed) are trapped in the wake regions around a canopy, whereas suspended particles are able to pass vegetated areas more easily. Very dense canopies can also promote the passage of MP with diameters larger than the plant spacing, as the canopies then show characteristics of a solid sill and avoid particle penetration. The particle migration ability through a marine vegetation canopy is quantified, and the key drivers are described by an empirical expression based on the particle settling velocity, the canopy length and density. The findings of this study may contribute to improved prediction and assessment of MP accumulation hotspots in vegetated coastal areas and, thus, may help in tracing MP sinks. Such knowledge can be considered a prerequisite to develope methods or new technologies to recover plastic pollutants and rehabilitate valuable coastal environments.
Collapse
Affiliation(s)
- Nils B Kerpen
- Gottfried Wilhelm Leibniz University Hannover, Ludwig-Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Nienburger Str. 4, D-30167 Hannover, Germany
| | - Bjarke Eltard Larsen
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark
| | - Torsten Schlurmann
- Gottfried Wilhelm Leibniz University Hannover, Ludwig-Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Nienburger Str. 4, D-30167 Hannover, Germany
| | - Maike Paul
- Gottfried Wilhelm Leibniz University Hannover, Ludwig-Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Nienburger Str. 4, D-30167 Hannover, Germany
| | - Hasan Gokhan Guler
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark; Middle East Technical University, Department of Civil Engineering, Ocean Engineering Research Center, Cankaya, Ankara, Turkey
| | - Koray Deniz Goral
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark
| | - Stefan Carstensen
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark
| | - Erik Damgaard Christensen
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark
| | - David R Fuhrman
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
11
|
Taurozzi D, Cesarini G, Scalici M. Diatom and macroinvertebrate communities dynamic: A co-occurrence pattern analysis on plastic substrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169071. [PMID: 38049005 DOI: 10.1016/j.scitotenv.2023.169071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Wetlands are habitats that provide numerous ecosystem services, but are often understudied and threatened by anthropogenic pollution, particularly plastic pollution. Macroplastics are a significant component of plastic litter that have high biological impacts but are often understudied. Previous studies have highlighted negative impacts on biota, but there is a lack of information about the communities of micro and macro organisms that settle on macroplastic litter. In this context, we investigated the colonization patterns and community structures of diatoms and macroinvertebrates on virgin substrates composed of two different plastic polymers, polystyrene and polyethylene terephthalate, located at two different depths in a protected wetland in Central Italy over a period of 10 months. The results show that diatom community is not highly structured by competitive forces and aggregation patterns emerges. In contrast, macroinvertebrate community appears to be randomly structured, without the presence of patterns following specific assembly rules. Randomness in macroinvertebrates assemblages could highlight the presence of different niches available for settlement of different taxa. Combined matrix analyses show that diatoms and macroinvertebrates co-occur, and their community assemblages are sometimes structured, while they appeared to be randomly assembled at other times. Whenever non-randomness of diatoms and macroinvertebrates co-occurrences was detected, it suggested aggregation. Moreover, the possible predatory relationship between different macroinvertebrates taxa should be investigated, as it could reveal important scenarios in the establishment of macroinvertebrate structured communities on plastic litter, including taxa that exploit different ecological niches. This could lead to an enrichment of the biological community within areas impacted by plastics.
Collapse
Affiliation(s)
- Davide Taurozzi
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Giulia Cesarini
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy; National Research Council - Water Research Institute (CNR-IRSA), Corso Tonolli 50, 28922 Verbania, Italy.
| | - Massimiliano Scalici
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy; National Biodiversity Future Center (NBFC), Università di Palermo, Piazza Marina 61, 90133 Palermo, Italy
| |
Collapse
|
12
|
Gallitelli L, D'Agostino M, Battisti C, Cózar A, Scalici M. Dune plants as a sink for beach litter: The species-specific role and edge effect on litter entrapment by plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166756. [PMID: 37659519 DOI: 10.1016/j.scitotenv.2023.166756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Anthropogenic litter accumulates along coasts worldwide. In addition to the flowing litter load, wind, sea currents, geomorphology and vegetation determine the distribution of litter trapped on the sandy coasts. Although some studies highlighted the role of dune plants in trapping marine litter, little is known about their efficiency as sinks and about the small-scale spatial distribution of litter across the dune area. Here, we explore these gaps by analysing six plant species widespread in Mediterranean coastal habitats, namely Echinophora spinosa, Limbarda crithmoides, Anthemis maritima, Pancratium maritimum, Thinopyrum junceum, and Salsola kali. The present study analyses for the first time the capture of litter by dune vegetation at a multi-species level, considering their morphological structure. Data on plastic accumulation on dune plants were compared with unvegetated control plots located at embryo-dune and foredune belts. We found that dunal plants mainly entrapped macrolitter (> 0.5 cm). Particularly, E. spinosa, L. crithmoides, A. maritima and P. maritimum mostly accumulated litter in the embryo dune while T. junceum and S. kali entrapped more in the foredune area. Moreover, beach litter was mainly blocked at the edge of the plant patches rather than in the core, highlighting the 'Plant-edge litter effect'. As A. maritima and S. kali entrapped respectively more litter in embryo and foredune habitats, these species could be used to monitor and recollect litter. In this light, our findings provide further insight into the role of dune plants in the beach litter dynamics, suppling useful information for beach clean-up actions.
Collapse
Affiliation(s)
- Luca Gallitelli
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - Martina D'Agostino
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Corrado Battisti
- "Torre Flavia" LTER (Long Term Ecological Research) Station, Città Metropolitana di Roma Capitale, Servizio Aree Protette, Via G. Ribotta, 41, 00144 Roma, Italy
| | - Andrés Cózar
- Department of Biology, Institute of Marine Research (INMAR), University of Cádiz, European University of the Seas, Puerto Real, Spain
| | - Massimiliano Scalici
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| |
Collapse
|