1
|
Gomes AC, Sousa DM, Oliveira TC, Fonseca Ó, Pinto RJ, Silvério D, Fernandes AI, Moreira AC, Silva T, Teles MJ, Pereira L, Saraiva M, Lamghari M, Gomes MS. Serum amyloid A proteins reduce bone mass during mycobacterial infections. Front Immunol 2023; 14:1168607. [PMID: 37153579 PMCID: PMC10161249 DOI: 10.3389/fimmu.2023.1168607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Osteopenia has been associated to several inflammatory conditions, including mycobacterial infections. How mycobacteria cause bone loss remains elusive, but direct bone infection may not be required. Methods Genetically engineered mice and morphometric, transcriptomic, and functional analyses were used. Additionally, inflammatory mediators and bone turnover markers were measured in the serum of healthy controls, individuals with latent tuberculosis and patients with active tuberculosis. Results and discussion We found that infection with Mycobacterium avium impacts bone turnover by decreasing bone formation and increasing bone resorption, in an IFNγ- and TNFα-dependent manner. IFNγ produced during infection enhanced macrophage TNFα secretion, which in turn increased the production of serum amyloid A (SAA) 3. Saa3 expression was upregulated in the bone of both M. avium- and M. tuberculosis-infected mice and SAA1 and 2 proteins (that share a high homology with murine SAA3 protein) were increased in the serum of patients with active tuberculosis. Furthermore, the increased SAA levels seen in active tuberculosis patients correlated with altered serum bone turnover markers. Additionally, human SAA proteins impaired bone matrix deposition and increased osteoclastogenesis in vitro. Overall, we report a novel crosstalk between the cytokine-SAA network operating in macrophages and bone homeostasis. These findings contribute to a better understanding of the mechanisms of bone loss during infection and open the way to pharmacological intervention. Additionally, our data and disclose SAA proteins as potential biomarkers of bone loss during infection by mycobacteria.
Collapse
Affiliation(s)
- Ana Cordeiro Gomes
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IMBC – Instituto de Biologia Molecular e Celular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- *Correspondence: Ana Cordeiro Gomes,
| | - Daniela Monteiro Sousa
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | | | - Óscar Fonseca
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Mestrado em Bioquímica Clínica, Universidade de Aveiro, , Aveiro, Portugal
| | - Ricardo J. Pinto
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Diogo Silvério
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IMBC – Instituto de Biologia Molecular e Celular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Isabel Fernandes
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IMBC – Instituto de Biologia Molecular e Celular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana C. Moreira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IMBC – Instituto de Biologia Molecular e Celular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Tânia Silva
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria José Teles
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- CHUSJ – Centro Hospitalar de São João, Porto, Portugal
- EPIUnit, ISPUP - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - Luísa Pereira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Margarida Saraiva
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IMBC – Instituto de Biologia Molecular e Celular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Meriem Lamghari
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria Salomé Gomes
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
2
|
Wang Z, Zhong Y, He S, Liang R, Liao C, Zheng L, Zhao J. Application of the pH-Responsive PCL/PEG-Nar Nanofiber Membrane in the Treatment of Osteoarthritis. Front Bioeng Biotechnol 2022; 10:859442. [PMID: 35573245 PMCID: PMC9092049 DOI: 10.3389/fbioe.2022.859442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Electrospinning technology is widely used in the field of drug delivery due to its advantages of convenience, high efficiency, and low cost. To investigate the therapeutic effect of naringenin (Nar) on osteoarthritis (OA), the pH-responsive system of the polycaprolactone/polyethylene glycol-naringenin (PCL/PEG-Nar) nanofiber membrane was designed and used as drug delivery systems (DDS) in the treatment of OA. The PEG-Nar conjugate was constructed via ester linkage between mPEG-COOH and the carboxyl group of naringenin, and the PCL/PEG-Nar nanofiber membrane was prepared by electrospinning technology. When placed in the weak acid OA microenvironment, the PCL/PEG-Nar nanofiber membrane can be cleverly “turned on” to continuously release Nar with anti-inflammatory effect to alleviate the severity of OA. In this study, the construction and the application of the pH-responsive PCL/PEG-Nar nanofiber membrane drug delivery platform would throw new light on OA treatment.
Collapse
Affiliation(s)
- Zetao Wang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Yanping Zhong
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Si He
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Ruiming Liang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
- *Correspondence: Ruiming Liang, ; Chuanan Liao, ; Li Zheng,
| | - Chuanan Liao
- Postdoctoral Mobile Station of Clinical Medicine, Guangxi Medical University, Nanning, China
- *Correspondence: Ruiming Liang, ; Chuanan Liao, ; Li Zheng,
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
- *Correspondence: Ruiming Liang, ; Chuanan Liao, ; Li Zheng,
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
Wang J, Yang Y, Zhang A, Zeng L, Xiao S, Ma H, Li J, Mao F, Zhang Y, Zhang Y, Yu Z, Zhang J, Xiang Z. Serum amyloid protein (SAA) as a healthy marker for immune function in Tridacna crocea. FISH & SHELLFISH IMMUNOLOGY 2022; 122:495-500. [PMID: 35202805 DOI: 10.1016/j.fsi.2022.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Serum amyloid protein (SAA) is known as an acute reactive protein of innate immunity in mammals. However, in invertebrates, the role of SAA in innate immunity is still unclear. In this study, a full-length cDNA of the SAA gene (named TcSAA) was cloned from Tridacna crocea, mollusca. The gene includes a 193 bp 5' untranslated region (UTR) and a 129 bp 3' UTR sequence, and the open reading frame (ORF) with 393 bp nucleotides encodes a polypeptide of 130 amino acids. TcSAA contains a typical signal peptide and an SAA functional domain. The mRNA expression of TcSAA was detected in all 12 selected tissues and 7 different developmental stages. Furthermore, the expression of TcSAA was increased quickly in hemocytes after challenge with V. coralliilyticus or LPS. Furthermore, rTcSAA could bind V. coralliilyticus and V. alginolyticus, and the protein could reduce the lethality rate of the clams from 80% to 55% which caused by V. coralliilyticus about 48 h after injection. In summary, these results indicate that TcSAA may act as a marker for monitoring health and protecting T. crocea.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yucheng Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aijiao Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Zeng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu Xiao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Haitao Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Fan Mao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
4
|
Peng X, Ma Y, Wang Q, Gao Y, Li G, Jiang C, Gao Y, Feng Y. Serum Amyloid A Correlates With the Osteonecrosis of Femoral Head by Affecting Bone Metabolism. Front Pharmacol 2021; 12:767243. [PMID: 34733165 PMCID: PMC8559508 DOI: 10.3389/fphar.2021.767243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Osteonecrosis of femoral head (ONFH) is a progressive hip joint disease without disease-modifying treatment. Lacking understanding of the pathophysiological process of ONFH has become the humper to develop therapeutic approach. Serum amyloid A (SAA) is an acute phase lipophilic protein during inflammation and we found that SAA is increased for the first time in the serum of ONFH patients through proteomic studies and quantitatively verified by ELISA. Treating rBMSCs with SAA inhibited the osteogenic differentiation via Wnt/β-catenin signaling pathway deactivation and enhanced the adipogenic differentiation via MAPK/PPARγ signaling pathway activation. Finally, bilateral critical-sized calvarial-defect rat model which received SAA treated rBMSCs demonstrated reduction of bone formation when compared to untreated rBMSCs implantation control. Hence, SAA is a vital protein in the physiological process of ONFH and can act as a potential therapeutic target to treat ONFH.
Collapse
Affiliation(s)
- Xiaoyuan Peng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yiyang Ma
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qiyang Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yanchun Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guangyi Li
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chenyi Jiang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yun Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yong Feng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
5
|
Houson H, Hedrick A, Awasthi V. Drug-induced cardiomyopathy: Characterization of a rat model by [ 18F]FDG/PET and [ 99mTc]MIBI/SPECT. Animal Model Exp Med 2020; 3:295-303. [PMID: 33532704 PMCID: PMC7824964 DOI: 10.1002/ame2.12136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drug-induced cardiomyopathy is a significant medical problem. Clinical diagnosis of myocardial injury is based on initial electrocardiogram, levels of circulating biomarkers, and perfusion imaging with single photon emission computed tomography (SPECT). Positron emission tomography (PET) is an alternative imaging modality that provides better resolution and sensitivity than SPECT, improves diagnostic accuracy, and allows therapeutic monitoring. The objective of this study was to assess the detection of drug-induced cardiomyopathy by PET using 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and compare it with the conventional SPECT technique with [99mTc]-Sestamibi (MIBI). METHODS Cardiomyopathy was induced in Sprague Dawley rats using high-dose isoproterenol. Nuclear [18F]FDG/PET and [99mTc]MIBI/SPECT were performed before and after isoproterenol administration. [18F]FDG (0.1 mCi, 200-400 µL) and [99mTc]MIBI (2 mCi, 200-600 µL) were administered via the tail vein and imaging was performed 1 hour postinjection. Isoproterenol-induced injury was confirmed by the plasma level of cardiac troponin and triphenyltetrazolium chloride (TTC) staining. RESULTS Isoproterenol administration resulted in an increase in circulating cardiac troponin I and showed histologic damage in the myocardium. Visually, preisoproterenol and postisoproterenol images showed alterations in cardiac accumulation of [18F]FDG, but not of [99mTc]MIBI. Image analysis revealed that myocardial uptake of [18F]FDG reduced by 60% after isoproterenol treatment, whereas that of [99mTc]MIBI decreased by 45%. CONCLUSION We conclude that [18F]FDG is a more sensitive radiotracer than [99mTc]MIBI for imaging of drug-induced cardiomyopathy. We theorize that isoproterenol-induced cardiomyopathy impacts cellular metabolism more than perfusion, which results in more substantial changes in [18F]FDG uptake than in [99mTc]MIBI accumulation in cardiac tissue.
Collapse
Affiliation(s)
- Hailey Houson
- Research Imaging FacilityDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
| | - Andria Hedrick
- Research Imaging FacilityDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
| | - Vibhudutta Awasthi
- Research Imaging FacilityDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
- Hexakit, Inc.EdmondOKUSA
| |
Collapse
|
6
|
Farnaghi S, Crawford R, Xiao Y, Prasadam I. Cholesterol metabolism in pathogenesis of osteoarthritis disease. Int J Rheum Dis 2017; 20:131-140. [DOI: 10.1111/1756-185x.13061] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Saba Farnaghi
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty; Queensland University of Technology; Brisbane Qld Australia
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty; Queensland University of Technology; Brisbane Qld Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty; Queensland University of Technology; Brisbane Qld Australia
| | - Indira Prasadam
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty; Queensland University of Technology; Brisbane Qld Australia
| |
Collapse
|
7
|
Jacobsen S, Ladefoged S, Berg LC. Production of serum amyloid A in equine articular chondrocytes and fibroblast-like synoviocytes treated with proinflammatory cytokines and its effects on the two cell types in culture. Am J Vet Res 2016; 77:50-8. [PMID: 26709936 DOI: 10.2460/ajvr.77.1.50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the role of the major equine acute phase protein serum amyloid A (SAA) in inflammation of equine intraarticular tissues. SAMPLE Articular chondrocytes and fibroblast-like synoviocytes (FLSs) from 8 horses (4 horses/cell type). PROCEDURES Chondrocytes and FLSs were stimulated in vitro for various periods up to 48 hours with cytokines (recombinant interleukin [IL]-1β, IL-6, tumor necrosis factor-α, or a combination of all 3 [IIT]) or with recombinant SAA. Gene expression of SAA, IL-6, matrix metalloproteinases (MMP)-1 and -3, and cartilage-derived retinoic acid-sensitive protein were assessed by quantitative real-time PCR assay; SAA protein was evaluated by immunoturbidimetry and denaturing isoelectric focusing and western blotting. RESULTS All cytokine stimulation protocols increased expression of SAA mRNA and resulted in detectable SAA protein production in chondrocytes and FLSs. Isoforms of SAA in lysed chondrocytes and their culture medium corresponded to those previously detected in synovial fluid from horses with joint disease. When exposed to SAA, chondrocytes and FLSs had increased expression of IL-6, SAA, and MMP3, and chondrocytes had increased expression of MMP-1. Chondrocytes had decreased expression of cartilage-derived retinoic acid-sensitive protein. CONCLUSIONS AND CLINICAL RELEVANCE Upregulation of SAA in chondrocytes and FLSs stimulated with proinflammatory cytokines and the proinflammatory effects of SAA suggested that SAA may be involved in key aspects of pathogenesis of the joint inflammation in horses.
Collapse
|
8
|
Thaler R, Sturmlechner I, Spitzer S, Riester SM, Rumpler M, Zwerina J, Klaushofer K, van Wijnen AJ, Varga F. Acute-phase protein serum amyloid A3 is a novel paracrine coupling factor that controls bone homeostasis. FASEB J 2014; 29:1344-59. [PMID: 25491310 DOI: 10.1096/fj.14-265512] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/17/2014] [Indexed: 11/11/2022]
Abstract
Serum amyloid A (A-SAA/Saa3) was shown before to affect osteoblastic metabolism. Here, using RT-quantitative PCR and/or immunoblotting, we show that expression of mouse Saa3 and human SAA1 and SAA2 positively correlates with increased cellular maturation toward the osteocyte phenotype. Expression is not detected in C3H10T1/2 embryonic fibroblasts but is successively higher in preosteoblastic MC3T3-E1 cells, late osteoblastic MLO-A5 cells, and MLO-Y4 osteocytes, consistent with findings using primary bone cells from newborn mouse calvaria. Recombinant Saa3 protein functionally inhibits osteoblast differentiation as reflected by reductions in the expression of osteoblast markers and decreased mineralization in newborn mouse calvaria. Yet, Saa3 protein enhances osteoclastogenesis in mouse macrophages/monocytes based on the number of multinucleated and tartrate-resistant alkaline phosphatase-positive cells and Calcr mRNA expression. Depletion of Saa3 in MLO osteocytes results in the loss of the mature osteocyte phenotype. Recombinant osteocalcin, which is reciprocally regulated with Saa3 at the osteoblast/osteocyte transition, attenuates Saa3 expression in MLO-Y4 osteocytes. Mechanistically, Saa3 produced by MLO-Y4 osteocytes is integrated into the extracellular matrix of MC3T3-E1 osteoblasts, where it associates with the P2 purinergic receptor P2rx7 to stimulate Mmp13 expression via the P2rx7/MAPK/ERK/activator protein 1 axis. Our data suggest that Saa3 may function as an important coupling factor in bone development and homeostasis.
Collapse
Affiliation(s)
- Roman Thaler
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ines Sturmlechner
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Silvia Spitzer
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Scott M Riester
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Monika Rumpler
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jochen Zwerina
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Klaus Klaushofer
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andre J van Wijnen
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Franz Varga
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Meitern R, Andreson R, Hõrak P. Profile of whole blood gene expression following immune stimulation in a wild passerine. BMC Genomics 2014; 15:533. [PMID: 24972896 PMCID: PMC4092216 DOI: 10.1186/1471-2164-15-533] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/24/2014] [Indexed: 12/22/2022] Open
Abstract
Background Immunoecology aims to explain variation among hosts in the strength and efficacy of immunological defences in natural populations. This requires development of biomarkers of the activation of the immune system so that they can be collected non-lethally and sampled from small amounts of easily obtainable tissue. We used transcriptome profiling in wild greenfinches (Carduelis chloris) to detect whole blood transcripts that most profoundly indicate upregulation of antimicrobial defences during acute phase response. The more general aim of this study was to obtain a functional annotation of a substantial portion of the greenfinch transcriptome that would enable to gain access to more specific genomic tools in subsequent studies. The birds received either bacterial lipopolysaccharide or saline injections and RNA-seq transcriptional profiling was performed 12 h after treatment to provide initial functional annotation of the transcriptome and assess whole blood response to immune stimulation. Results A total of 66,084 transcripts were obtained from de novo Trinty assembly, out of which 23,153 could be functionally annotated. Only 1,911 of these were significantly upregulated or downregulated. The manipulation caused marked upregulation of several transcripts related to immune activation. These included avian-specific antimicrobial agents avidin and gallinacin, but also some more general host response genes, such as serum amyloid A protein, lymphocyte antigen 75 and copper-transporting ATPase 1. However, links with avian immunity for most differentially regulated transcripts remained rather hypothetical, as a large set of differentially expressed transcripts lacked functional annotation. Conclusions This appears to be the first large scale transcriptional profiling of immune function in passerine birds. The transcriptomic data obtained suggest novel markers for the assessment of the immunological state of wild passerines. Characterizing the function of those possible novel infection markers would assist future vertebrate genome annotation. The extensive sequence information collected enables to identify possible target and housekeeping genes needed to gain access to more specific genomic tools in future studies. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-533) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Richard Meitern
- Department of Zoology, Institute of Ecology and Earth Sciences, Tartu University, Vanemuise 46, 51014 Tartu, Estonia.
| | | | | |
Collapse
|
10
|
Garner BC, Kuroki K, Stoker AM, Cook CR, Cook JL. Expression of proteins in serum, synovial fluid, synovial membrane, and articular cartilage samples obtained from dogs with stifle joint osteoarthritis secondary to cranial cruciate ligament disease and dogs without stifle joint arthritis. Am J Vet Res 2013; 74:386-94. [DOI: 10.2460/ajvr.74.3.386] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
A novel snRNA-like transcript affects amyloidogenesis and cell cycle progression through perturbation of Fe65L1 (APBB2) alternative splicing. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1511-26. [PMID: 23485396 DOI: 10.1016/j.bbamcr.2013.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 01/17/2013] [Accepted: 02/18/2013] [Indexed: 11/24/2022]
Abstract
FE65 proteins constitute a family of adaptors which modulates the processing of amyloid precursor protein and the consequent amyloid β production. Thus, they have been involved in the complex and partially unknown cascade of reactions at the base of Alzheimer's disease etiology. However, FE65 and FE65-like proteins may be linked to neurodegeneration through the regulation of cell cycle in post-mitotic neurons. In this work we disclose novel molecular mechanisms by which APBB2 can modulate APP processing. We show that APBB2 mRNA splicing, driven by the over-expression of a novel non-coding RNA named 45A, allow the generation of alternative protein forms endowed with differential effects on Aβ production, cell cycle control, and DNA damage response. 45A overexpression also favors cell transformation and tumorigenesis leading to a marked increase of malignancy of neuroblastoma cells. Therefore, our results highlight a novel regulatory pathway of considerable interest linking APP processing with cell cycle regulation and DNA-surveillance systems, that may represent a molecular mechanism to induce neurodegeneration in post-mitotic neurons.
Collapse
|
12
|
The Murine PSE/TATA-dependent transcriptome: evidence of functional homologies with its human counterpart. Int J Mol Sci 2012. [PMID: 23203095 PMCID: PMC3509611 DOI: 10.3390/ijms131114813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A series of recent studies demonstrated an unexpectedly high frequency of intronic RNA polymerase (pol) III transcription units spread throughout the human genome. The investigation of a subset of these transcripts revealed their tissue/cell-specific transcription together with the involvement in relevant physiopathological pathways. Despite this evidence, these transcripts did not seem to have murine orthologs, based on their nucleotide sequence, resulting in a limitation of the experimental approaches aimed to study their function. In this work, we have extended our investigation to the murine genome identifying 121 pairs of mouse/human transcripts displaying syntenic subchromosomal localization. The analysis in silico of this set of putative noncoding (nc)RNAs suggest their association with alternative splicing as suggested by recent experimental evidence. The investigation of one of these pairs taken as experimental model in mouse hippocampal neurons provided evidence of a human/mouse functional homology that does not depend on underlying sequence conservation. In this light, the collection of transcriptional units here reported can be considered as a novel source for the identification and the study of novel regulatory elements involved in relevant biological processes.
Collapse
|
13
|
Thaler R, Zwerina J, Rumpler M, Spitzer S, Gamsjaeger S, Paschalis EP, Klaushofer K, Varga F. Homocysteine induces serum amyloid A3 in osteoblasts via unlocking RGD-motifs in collagen. FASEB J 2012; 27:446-63. [PMID: 23085993 DOI: 10.1096/fj.12-208058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hyperhomocysteinemia is a risk factor for osteoporotic fractures. Homocysteine (Hcys) inhibits collagen cross-linking and consequently decreases bone extracellular matrix (ECM) quality. Serum amyloid A (A-SAA), an acute-phase protein family, plays an important role in chronic and inflammatory diseases and up-regulates MMP13, which plays an important role in bone development and remodeling. Here, we investigate the effect of Hcys on expression of SAA3, a member of the A-SAA gene family, in osteoblasts characterizing underlying mechanisms and possible consequences on bone metabolism. MC3T3-E1 osteoblast-like cells were cultured up to 21 d with Hcys (low millimolar range) or reseeded onto ECM resulting from untreated or Hcys-treated MC3T3-E1 cells. Fourier-transformed infrared spectroscopy and a discriminative antibody were used to characterize the resulting ECM. Gene expression and signaling pathways were analyzed by gene chip, quantitative RT-PCR, and immunoblotting. Transcriptional regulation of Saa3 was studied by promoter transfection assays, chromatin immunoprecipitation, and immunofluorescence microscopy. Hcys treatment resulted in reduced collagen cross-linking, uncovering of RGD-motifs, and activation of the PTK2-PXN-CTNNB1 pathway followed by RELA activation. These signaling events led to increased SAA3 expression followed by the production of MMP13 and several chemokines, including Ccl5, Ccl2, Cxcl10, and Il6. Our data suggest Saa3 as link between hyperhomocysteinemia and development of osteoporosis.
Collapse
Affiliation(s)
- Roman Thaler
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Matulova M, Rajova J, Vlasatikova L, Volf J, Stepanova H, Havlickova H, Sisak F, Rychlik I. Characterization of chicken spleen transcriptome after infection with Salmonella enterica serovar Enteritidis. PLoS One 2012; 7:e48101. [PMID: 23094107 PMCID: PMC3477135 DOI: 10.1371/journal.pone.0048101] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/20/2012] [Indexed: 01/23/2023] Open
Abstract
In this study we were interested in identification of new markers of chicken response to Salmonella Enteritidis infection. To reach this aim, gene expression in the spleens of naive chickens and those intravenously infected with S. Enteritidis with or without previous oral vaccination was determined by 454 pyrosequencing of splenic mRNA/cDNA. Forty genes with increased expression at the level of transcription were identified. The most inducible genes encoded avidin (AVD), extracellular fatty acid binding protein (EXFABP), immune responsive gene 1 (IRG1), chemokine ah221 (AH221), trappin-6-like protein (TRAP6) and serum amyloid A (SAA). Using cDNA from sorted splenic B-lymphocytes, macrophages, CD4, CD8 and γδ T-lymphocytes, we found that the above mentioned genes were preferentially expressed in macrophages. AVD, EXFABP, IRG1, AH221, TRAP6 and SAA were induced also in the cecum of chickens orally infected with S. Enteritidis on day 1 of life or day 42 of life. Unusual results were obtained for the immunoglobulin encoding transcripts. Prior to the infection, transcripts coding for the constant parts of IgM, IgY, IgA and Ig light chain were detected in B-lymphocytes. However, after the infection, immunoglobulin encoding transcripts were expressed also by T-lymphocytes and macrophages. Expression of AVD, EXFABP, IRG1, AH221, TRAP6, SAA and all immunoglobulin genes can be therefore used for the characterization of the course of S. Enteritidis infection in chickens.
Collapse
Affiliation(s)
| | - Jana Rajova
- Veterinary Research Institute, Brno, Czech Republic
| | | | - Jiri Volf
- Veterinary Research Institute, Brno, Czech Republic
| | | | | | | | - Ivan Rychlik
- Veterinary Research Institute, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
15
|
Ciarlo E, Massone S, Penna I, Nizzari M, Gigoni A, Dieci G, Russo C, Florio T, Cancedda R, Pagano A. An intronic ncRNA-dependent regulation of SORL1 expression affecting Aβ formation is upregulated in post-mortem Alzheimer's disease brain samples. Dis Model Mech 2012; 6:424-33. [PMID: 22996644 PMCID: PMC3597024 DOI: 10.1242/dmm.009761] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recent studies indicated that sortilin-related receptor 1 (SORL1) is a risk gene for late-onset Alzheimer's disease (AD), although its role in the aetiology and/or progression of this disorder is not fully understood. Here, we report the finding of a non-coding (nc) RNA (hereafter referred to as 51A) that maps in antisense configuration to intron 1 of the SORL1 gene. 51A expression drives a splicing shift of SORL1 from the synthesis of the canonical long protein variant A to an alternatively spliced protein form. This process, resulting in a decreased synthesis of SORL1 variant A, is associated with impaired processing of amyloid precursor protein (APP), leading to increased Aβ formation. Interestingly, we found that 51A is expressed in human brains, being frequently upregulated in cerebral cortices from individuals with Alzheimer's disease. Altogether, these findings document a novel ncRNA-dependent regulatory pathway that might have relevant implications in neurodegeneration.
Collapse
Affiliation(s)
- Eleonora Ciarlo
- Department of Experimental Medicine, University of Genoa, Genoa 16132, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Massone S, Ciarlo E, Vella S, Nizzari M, Florio T, Russo C, Cancedda R, Pagano A. NDM29, a RNA polymerase III-dependent non coding RNA, promotes amyloidogenic processing of APP and amyloid β secretion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1170-7. [DOI: 10.1016/j.bbamcr.2012.05.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/29/2012] [Accepted: 05/02/2012] [Indexed: 10/28/2022]
|
17
|
Kjelgaard-Hansen M, Jacobsen S. Assay validation and diagnostic applications of major acute-phase protein testing in companion animals. Clin Lab Med 2010; 31:51-70. [PMID: 21295722 DOI: 10.1016/j.cll.2010.10.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The use of major acute-phase proteins (APPs) for assessment of health and disease in companion animals has increased within the last decade because of increased knowledge in the field and increased access to appropriate assay systems for detection of relevant APPs, which are highly species specific. Despite evidence being restricted almost solely to proven excellent overlap performance of these markers in detecting inflammatory activity, clinically relevant studies at higher evidence levels do exist. The available body of literature shows a clear, but seemingly untapped, potential for more extended routine clinical use of major APP testing in companion animal medicine.
Collapse
Affiliation(s)
- Mads Kjelgaard-Hansen
- Department of Small Animal Clinical Sciences, Faculty of LIFE Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | | |
Collapse
|
18
|
Mullan RH, McCormick J, Connolly M, Bresnihan B, Veale DJ, Fearon U. A role for the high-density lipoprotein receptor SR-B1 in synovial inflammation via serum amyloid-A. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1999-2008. [PMID: 20304957 DOI: 10.2353/ajpath.2010.090014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acute phase apoprotein Serum Amyloid A (A-SAA), which is strongly expressed in rheumatoid arthritis synovial membrane (RA SM), induces angiogenesis, adhesion molecule expression, and matrix metalloproteinase production through the G-coupled receptor FPRL-1. Here we report alternative signaling through the high-density lipoprotein receptor scavenger receptor-class B type 1 (SR-B1). Quantitative expression/localization of SR-B1 in RA SM, RA fibroblast-like cells (FLCs), and microvascular endothelial cells (ECs) was assessed by Western blotting and immunohistology/fluorescence. A-SAA-mediated effects were examined using a specific antibody against SR-B1 or amphipathic alpha-Helical Peptides (the SR-B1 antagonists L-37pA and D-37pA), in RA FLCs and ECs. Adhesion molecule expression and cytokine production were quantified using flow cytometry and ELISA. SR-B1 was strongly expressed in the RA SM lining layer and endothelial/perivascular regions compared with osteoarthritis SM or normal control synovium. Differential SR-B1 expression in RA FLC lines (n = 5) and ECs correlated closely with A-SAA, but not tumor necrosis factor alpha-induced intercellular adhesion molecule-1 upregulation. A-SAA-induced interleukin-6 and -8 production was inhibited in the presence of anti-SR-B1 in human microvascular endothelial cells and RA FLCs. Moreover, D-37pA and L-37pA inhibited A-SAA-induced vascular cell adhesion molecule-1 and intercellular adhesion molecule expression from ECs in a dose-dependent manner. As SR-B1 is expressed in RA synovial tissue and mediates A-SAA-induced pro-inflammatory pathways, a better understanding of A-SAA-mediated inflammatory pathways may lead to novel treatment strategies for RA.
Collapse
Affiliation(s)
- Ronan Hugh Mullan
- Education and Research Centre, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
19
|
Debigaré R, Maltais F, Côté CH, Michaud A, Caron MA, Mofarrahi M, LeBlanc P, Hussain SN. Profiling of mRNA Expression in Quadriceps of Patients with COPD and Muscle Wasting. COPD 2009; 5:75-84. [DOI: 10.1080/15412550801940457] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Lenti M, Gentili C, Pianezzi A, Marcolongo G, Lalli A, Cancedda R, Cancedda FD. Monogalactosyldiacylglycerol anti-inflammatory activity on adult articular cartilage. Nat Prod Res 2009; 23:754-62. [DOI: 10.1080/14786410802456956] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Ashwell MS, O'Nan AT, Gonda MG, Mente PL. Gene expression profiling of chondrocytes from a porcine impact injury model. Osteoarthritis Cartilage 2008; 16:936-46. [PMID: 18276170 DOI: 10.1016/j.joca.2007.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 12/22/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To identify differentially expressed genes between axially impacted and control articular cartilage taken from porcine patellae maintained in organ culture for 14 days. METHODS Porcine patellae were impacted perpendicular to the articular surface to create an impact injury. Intact patellae (control and impacted) were maintained in culture for 14 days. Total RNA was then extracted from the articular cartilage beneath the impaction and used to prepare two Serial Analysis of Gene Expression (SAGE) libraries. Approximately 42,500 SAGE long tags were sequenced from the libraries. The expression of select genes was confirmed by quantitative real-time PCR analysis. RESULTS Thirty-nine SAGE tags were significantly differentially expressed in the impacted and control libraries, representing 30 different annotated pig genes. These genes represented gene products associated with matrix molecules, iron and phosphate transport, protein biosynthesis, skeletal development, cell proliferation, lipid metabolism and the inflammatory response. Twenty-three of the 30 genes were down-regulated in the impacted library and five were up-regulated in the impacted library. Quantitative real-time PCR follow-up of four genes supported the results found with SAGE. CONCLUSION We have identified 30 putative genes differentially expressed in a porcine impact injury model and validated these findings for four of these genes using real-time PCR. Results using this impact injury model have contributed further evidence that damaged chondrocytes may de-differentiate into fibroblast-like cells and proliferate in an attempt to repair themselves. Additional work is underway to study these genes in further detail at earlier time points to provide a more complete story about the fate of chondrocytes in articular cartilage following an injury.
Collapse
Affiliation(s)
- M S Ashwell
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, United States.
| | | | | | | |
Collapse
|
22
|
Ulivi V, Giannoni P, Gentili C, Cancedda R, Descalzi F. p38/NF‐kB‐dependent expression of COX‐2 during differentiation and inflammatory response of chondrocytes. J Cell Biochem 2008; 104:1393-406. [DOI: 10.1002/jcb.21717] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Kovacevic A, Hammer A, Stadelmeyer E, Windischhofer W, Sundl M, Ray A, Schweighofer N, Friedl G, Windhager R, Sattler W, Malle E. Expression of serum amyloid A transcripts in human bone tissues, differentiated osteoblast-like stem cells and human osteosarcoma cell lines. J Cell Biochem 2008; 103:994-1004. [PMID: 17849429 PMCID: PMC4861207 DOI: 10.1002/jcb.21472] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although the liver is the primary site of cytokine-mediated expression of acute-phase serum amyloid A (SAA) protein, extrahepatic production has also been reported. Besides its role in amyloidosis and lipid homeostasis during the acute-phase, SAA has recently been assumed to contribute to bone and cartilage destruction. However, expression of SAA in human osteogenic tissue has not been studied. Therefore, we first show that SAA1 (coding for the major SAA isoform) but not SAA2 transcripts are expressed in human trabecular and cortical bone fractions and bone marrow. Next, we show expression of (i) IL-1, IL-6, and TNF receptor transcripts; (ii) the human homolog of SAA-activating factor-1 (SAF-1, a transcription factor involved in cytokine-mediated induction of SAA genes); and (iii) SAA1/2 transcripts in non-differentiated and, to a higher extent, in osteoblast-like differentiated human mesenchymal stem cells. Third, we provide evidence that human osteoblast-like cells of tumor origin (MG-63 and SAOS-2) express SAF-1 under basal conditions. SAA1/2 transcripts are expressed under basal conditions (SAOS-2) and cytokine-mediated conditions (MG-63 and SAOS-2). RT-PCR, Western blot analysis, and immunofluorescence technique confirmed cytokine-mediated expression of SAA on RNA and protein level in osteosarcoma cell lines while SAA4, a protein of unknown function, is constitutively expressed in all osteogenic tissues investigated.
Collapse
Affiliation(s)
- Alenka Kovacevic
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Center of Molecular Medicine, Graz, Austria
| | - Astrid Hammer
- Institute of Cell Biology, Histology and Embryology, Center of Molecular Medicine, Medical University of Graz, Center of Molecular Medicine, Graz, Austria
| | - Elke Stadelmeyer
- Department of Orthopaedics, Graz University Hospital, Medical University of Graz, Graz, Austria
| | - Werner Windischhofer
- Department of Pediatrics, Research Unit of Osteological Research and Analytical Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Monika Sundl
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Center of Molecular Medicine, Graz, Austria
| | - Alpana Ray
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO 65211
| | - Natascha Schweighofer
- Division of Endocrinology and Nuclear Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Gerald Friedl
- Department of Orthopaedics, Graz University Hospital, Medical University of Graz, Graz, Austria
| | - Reinhard Windhager
- Department of Orthopaedics, Graz University Hospital, Medical University of Graz, Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Center of Molecular Medicine, Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Center of Molecular Medicine, Graz, Austria
- Correspondence to: Ernst Malle, Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, A-8010 Graz, Austria.
| |
Collapse
|
24
|
Gentili C, Tutolo G, Pianezzi A, Cancedda R, Descalzi Cancedda F. Cholesterol secretion and homeostasis in chondrocytes: a liver X receptor and retinoid X receptor heterodimer mediates apolipoprotein A1 expression. Matrix Biol 2005; 24:35-44. [PMID: 15749000 DOI: 10.1016/j.matbio.2004.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 12/14/2004] [Accepted: 12/14/2004] [Indexed: 11/17/2022]
Abstract
Cholesterol is required for chondrocyte differentiation and bone formation. Apolipoprotein A1 (apoA-1) plays a major role in lipoprotein clearance and cholesterol redistribution. We report here that apoA-1 is expressed during chondrocyte differentiation in vitro and in vivo. In differentiating chondrocytes, the expression of the liver X receptor (LXR) is modulated and its expression correlates to the expression of apoA-1. The expression of other LXR target genes related to cholesterol homeostasis such as ABCA1 cholesterol transporter and sterol regulatory element-binding protein 1 (SREBP1) is similarly regulated. Small molecule ligands activating either LXR or retinoid X receptor (RXR) lead to a dramatic increase in apoA-1 mRNA and protein expression in cultured chondrocytes. These ligands strongly induce ABCA1 cholesterol transporter expression and effectively mediate cholesterol efflux from hypertrophic chondrocytes. In addition, we report that, in the same cells, the ligands down modulate Serum Amyloid A expression induced by bacterial lipopolysaccharide. Our studies provide evidence that LXR/RXR mediate a fine regulation of cholesterol homeostasis in differentiating chondrocytes.
Collapse
Affiliation(s)
- C Gentili
- Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | | | | | | |
Collapse
|