1
|
Martins C, Aukan MI, De Luca M. Lower levels of plasma syndecan-4 are associated with loss of body weight and fat-free mass after bariatric surgery. BMC Res Notes 2024; 17:164. [PMID: 38879520 PMCID: PMC11179341 DOI: 10.1186/s13104-024-06822-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/05/2024] [Indexed: 06/19/2024] Open
Abstract
OBJECTIVE Bariatric surgery induces a significant loss of both fat mass (FM) and fat-free mass (FFM). The proteoglycan receptor syndecan-4 (SDC4) plays a crucial role in adipose tissue and skeletal muscle functions. Thus, this study was performed (i) to assess plasma SDC4 levels after both Sleeve Gastrectomy (SG) and Roux-en-Y Gastric Bypass (RYGB) surgeries, and (ii) to explore potential associations with changes in body composition variables. RESULTS Twenty-six patients (17 females) with severe obesity underwent SG (n = 13) or RYGB (n = 13) and were followed up to 1 year (1Y). Body weight, FM, FFM, and SCD4 were measured at baseline (BL), and at week 11 (W11) and 1Y after surgery. Independently of procedure, there was a significant body weight loss at W11, with an average FM and FFM reduction of 13.7 ± 0.6 kg and 5.3 ± 0.5 kg, respectively. Participants continued to lose weight afterwards, with a total weigth loss of 38.2 ± 1.5 kg at 1Y. No associations were found at BL between SDC4 levels and any anthropometric variable; however, SDC4 levels were lower than BL at both W11 and 1Y, independently of type of surgery. Additionally, changes in SDC4 between BL and 1Y were positively correlated with weight and FFM loss during the same period. TRIAL REGISTRATION ClinicalTrials.gov NCT04051190 on 09/08/2019.
Collapse
Affiliation(s)
- Catia Martins
- Department of Nutrition Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre of Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
| | - Marthe Isaksen Aukan
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre of Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
| | - Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| |
Collapse
|
2
|
Sztretye M, Singlár Z, Ganbat N, Al-Gaadi D, Szabó K, Köhler ZM, Dux L, Keller-Pintér A, Csernoch L, Szentesi P. Unravelling the Effects of Syndecan-4 Knockdown on Skeletal Muscle Functions. Int J Mol Sci 2023; 24:ijms24086933. [PMID: 37108098 PMCID: PMC10138797 DOI: 10.3390/ijms24086933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The remodelling of the extracellular matrix plays an important role in skeletal muscle development and regeneration. Syndecan-4 is a cell surface proteoglycan crucial for muscle differentiation. Syndecan-4-/- mice have been reported to be unable to regenerate following muscle damage. To investigate the consequences of the decreased expression of Syndecan-4, we have studied the in vivo and in vitro muscle performance and the excitation-contraction coupling machinery in young and aged Syndecan-4+/- (SDC4) mice. In vivo grip force was decreased significantly as well as the average and maximal speed of voluntary running in SDC4 mice, regardless of their age. The maximal in vitro twitch force was reduced in both EDL and soleus muscles from young and aged SDC4 mice. Ca2+ release from the sarcoplasmic reticulum decreased significantly in the FDB fibres of young SDC4 mice, while its voltage dependence was unchanged regardless of age. These findings were present in muscles from young and aged mice as well. On C2C12 murine skeletal muscle cells, we have also found altered calcium homeostasis upon Syndecan-4 silencing. The decreased expression of Syndecan-4 leads to reduced skeletal muscle performance in mice and altered motility in C2C12 myoblasts via altered calcium homeostasis. The altered muscle force performance develops at an early age and is maintained throughout the life course of the animal until old age.
Collapse
Affiliation(s)
- Mónika Sztretye
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, 4032 Debrecen, Hungary
| | - Zoltán Singlár
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Nyamkhuu Ganbat
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Dána Al-Gaadi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Kitti Szabó
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Zoltán Márton Köhler
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - László Dux
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Anikó Keller-Pintér
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, 4032 Debrecen, Hungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
3
|
Sun X, Bai Y, Zheng X, Li X, Zhou Y, Wang Y, Heng BC, Zhang X. Bone Piezoelectricity-Mimicking Nanocomposite Membranes Enhance Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells by Amplifying Cell Adhesion and Actin Cytoskeleton. J Biomed Nanotechnol 2021; 17:1058-1067. [PMID: 34167620 DOI: 10.1166/jbn.2021.3090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ferroelectric biomaterials have been widely investigated and demonstrated to enhance osteogenesis by simulating the inherent electrical properties of bone tissues. Nevertheless, the underlying biological processes are still not wellunderstood. Hence, this study investigated the underlying biological processes by which bone piezoelectricity-mimicking barium titanate/poly(vinylidene fluoride-trifluoroethylene) nanocomposite membranes (BTO nanocomposite membranes) promote osteogenesis of Bone Marrow Mesenchymal Stem Cells (BMSCs). Ourresults revealed that the piezoelectric coefficient (d33) of nanocomposite membranes aftercontrolled corona poling was similar to that of native bone, and exhibited highly-stable piezoelectrical properties and concentrated surface electrical potential. These nanocomposite membranes significantly enhanced the adhesion and spreading of BMSCs, which was manifested as increased number and area of mature focal adhesions. Furthermore, the nanocomposite membranes significantly promoted the expression of integrin receptors genes (α1, α5 andβ3), which in turn enhanced osteogenesis of BMSCs, as manifested by upregulated Alkaline Phosphatase (ALP) and Bone Morphogenetic Protein 2 (BMP2) expression levels. Further investigations found that the Focal Adhesion Kinase (FAK)-Extracellular Signal-Regulated Kinase1/2 (ERK 1/2) signaling axis may be involved in the biological process of polarized nanocomposite membrane-induced osteogenesis. This study thus provides useful insights for betterunderstanding of the biological processes by which piezoelectric or ferroelectric biomaterials promote osteogenesis.
Collapse
Affiliation(s)
- Xiaowen Sun
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Xiaona Zheng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Yingying Zhou
- Department of Medical Technology, Peking University Health Science Center, Beijing, 100081, PR China
| | - Yijun Wang
- Department of Medical Technology, Peking University Health Science Center, Beijing, 100081, PR China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| |
Collapse
|
4
|
Gorza L, Sorge M, Seclì L, Brancaccio M. Master Regulators of Muscle Atrophy: Role of Costamere Components. Cells 2021; 10:cells10010061. [PMID: 33401549 PMCID: PMC7823551 DOI: 10.3390/cells10010061] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
The loss of muscle mass and force characterizes muscle atrophy in several different conditions, which share the expression of atrogenes and the activation of their transcriptional regulators. However, attempts to antagonize muscle atrophy development in different experimental contexts by targeting contributors to the atrogene pathway showed partial effects in most cases. Other master regulators might independently contribute to muscle atrophy, as suggested by our recent evidence about the co-requirement of the muscle-specific chaperone protein melusin to inhibit unloading muscle atrophy development. Furthermore, melusin and other muscle mass regulators, such as nNOS, belong to costameres, the macromolecular complexes that connect sarcolemma to myofibrils and to the extracellular matrix, in correspondence with specific sarcomeric sites. Costameres sense a mechanical load and transduce it both as lateral force and biochemical signals. Recent evidence further broadens this classic view, by revealing the crucial participation of costameres in a sarcolemmal “signaling hub” integrating mechanical and humoral stimuli, where mechanical signals are coupled with insulin and/or insulin-like growth factor stimulation to regulate muscle mass. Therefore, this review aims to enucleate available evidence concerning the early involvement of costamere components and additional putative master regulators in the development of major types of muscle atrophy.
Collapse
Affiliation(s)
- Luisa Gorza
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
- Correspondence:
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| | - Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| |
Collapse
|
5
|
Ghimire K, Li Y, Chiba T, Julovi SM, Li J, Ross MA, Straub AC, O’Connell PJ, Rüegg C, Pagano PJ, Isenberg JS, Rogers NM. CD47 Promotes Age-Associated Deterioration in Angiogenesis, Blood Flow and Glucose Homeostasis. Cells 2020; 9:E1695. [PMID: 32679764 PMCID: PMC7407670 DOI: 10.3390/cells9071695] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 02/06/2023] Open
Abstract
The aged population is currently at its highest level in human history and is expected to increase further in the coming years. In humans, aging is accompanied by impaired angiogenesis, diminished blood flow and altered metabolism, among others. A cellular mechanism that impinges upon these manifestations of aging can be a suitable target for therapeutic intervention. Here we identify cell surface receptor CD47 as a novel age-sensitive driver of vascular and metabolic dysfunction. With the natural aging process, CD47 and its ligand thrombospondin-1 were increased, concurrent with a reduction of self-renewal transcription factors OCT4, SOX2, KLF4 and cMYC (OSKM) in arteries from aged wild-type mice and older human subjects compared to younger controls. These perturbations were prevented in arteries from aged CD47-null mice. Arterial endothelial cells isolated from aged wild-type mice displayed cellular exhaustion with decreased proliferation, migration and tube formation compared to cells from aged CD47-null mice. CD47 suppressed ex vivo sprouting, in vivo angiogenesis and skeletal muscle blood flow in aged wild-type mice. Treatment of arteries from older humans with a CD47 blocking antibody mitigated the age-related deterioration in angiogenesis. Finally, aged CD47-null mice were resistant to age- and diet-associated weight gain, glucose intolerance and insulin desensitization. These results indicate that the CD47-mediated signaling maladapts during aging to broadly impair endothelial self-renewal, angiogenesis, perfusion and glucose homeostasis. Our findings provide a strong rationale for therapeutically targeting CD47 to minimize these dysfunctions during aging.
Collapse
Affiliation(s)
- Kedar Ghimire
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Rd, Sydney 2145, NSW, Australia; (S.M.J.); (J.L.); (P.J.O.)
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, BST Starzl Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA; (Y.L.); (T.C.); (A.C.S.); (P.J.P.)
| | - Yao Li
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, BST Starzl Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA; (Y.L.); (T.C.); (A.C.S.); (P.J.P.)
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, BST Starzl Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Takuto Chiba
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, BST Starzl Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA; (Y.L.); (T.C.); (A.C.S.); (P.J.P.)
| | - Sohel M. Julovi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Rd, Sydney 2145, NSW, Australia; (S.M.J.); (J.L.); (P.J.O.)
| | - Jennifer Li
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Rd, Sydney 2145, NSW, Australia; (S.M.J.); (J.L.); (P.J.O.)
| | - Mark A. Ross
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, BST, 200 Lothrop Street, Pittsburgh, PA 15261, USA;
| | - Adam C. Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, BST Starzl Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA; (Y.L.); (T.C.); (A.C.S.); (P.J.P.)
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, BST Starzl Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Philip J. O’Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Rd, Sydney 2145, NSW, Australia; (S.M.J.); (J.L.); (P.J.O.)
| | - Curzio Rüegg
- Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Chemin du Musée 18, PER 17, 1700 Fribourg, Switzerland;
| | - Patrick J. Pagano
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, BST Starzl Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA; (Y.L.); (T.C.); (A.C.S.); (P.J.P.)
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, BST Starzl Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Jeffrey S. Isenberg
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, BST Starzl Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA; (Y.L.); (T.C.); (A.C.S.); (P.J.P.)
- Department of Medicine, University of Pittsburgh, BST Starzl Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Natasha M. Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Rd, Sydney 2145, NSW, Australia; (S.M.J.); (J.L.); (P.J.O.)
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, BST Starzl Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA; (Y.L.); (T.C.); (A.C.S.); (P.J.P.)
| |
Collapse
|
6
|
Eftestøl E, Egner IM, Lunde IG, Ellefsen S, Andersen T, Sjåland C, Gundersen K, Bruusgaard JC. Increased hypertrophic response with increased mechanical load in skeletal muscles receiving identical activity patterns. Am J Physiol Cell Physiol 2016; 311:C616-C629. [PMID: 27488660 DOI: 10.1152/ajpcell.00016.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/26/2016] [Indexed: 11/22/2022]
Abstract
It is often assumed that mechanical factors are important for effects of exercise on muscle, but during voluntary training and most experimental conditions the effects could solely be attributed to differences in electrical activity, and direct evidence for a mechanosensory pathway has been scarce. We here show that, in rat muscles stimulated in vivo under deep anesthesia with identical electrical activity patterns, isometric contractions induced twofold more hypertrophy than contractions with 50-60% of the isometric force. The number of myonuclei and the RNA levels of myogenin and myogenic regulatory factor 4 were increased with high load, suggesting that activation of satellite cells is mechano dependent. On the other hand, training induced a major shift in fiber type distribution from type 2b to 2x that was load independent, indicating that the electrical signaling rather than mechanosignaling controls fiber type. RAC-α serine/threonine-protein kinase (Akt) and ribosomal protein S6 kinase β-1 (S6K1) were not significantly differentially activated by load, suggesting that the differences in mechanical factors were not important for activating the Akt/mammalian target of rapamycin/S6K1 pathway. The transmembrane molecule syndecan-4 implied in overload hypertrophy in cardiac muscle was not load dependent, suggesting that mechanosignaling in skeletal muscle is different.
Collapse
Affiliation(s)
- Einar Eftestøl
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ingrid M Egner
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ida G Lunde
- Department of Genetics, Harvard Medical School, Boston, Massachusetts; Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Stian Ellefsen
- Section for Sport Sciences, Lillehammer University College, Lillehammer, Norway; and
| | - Tom Andersen
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | | - Jo C Bruusgaard
- Department of Biosciences, University of Oslo, Oslo, Norway; Department of Health Sciences, Kristiania University College, Oslo, Norway
| |
Collapse
|
7
|
Role of skeletal muscle proteoglycans during myogenesis. Matrix Biol 2013; 32:289-97. [PMID: 23583522 DOI: 10.1016/j.matbio.2013.03.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/30/2013] [Accepted: 03/30/2013] [Indexed: 02/06/2023]
Abstract
Skeletal muscle formation during development and the adult mammal consists of a highly organised and regulated the sequence of cellular processes intending to form or repair muscle tissue. This sequence includes, cell proliferation, migration, and differentiation. Proteoglycans (PGs), macromolecules formed by a core protein and glycosaminoglycan chains (GAGs) present a great diversity of functions explained by their capacity to interact with different ligands and receptors forming part of their signalling complex and/or protecting them from proteolytic cleavage. Particularly attractive is the function of the different types of PGs present at the neuromuscular junction (NMJ). This review is focussed on the advances reached to understand the role of PGs during myogenesis and skeletal muscular dystrophies.
Collapse
|
8
|
Shin J, McFarland DC, Velleman SG. Migration of turkey muscle satellite cells is enhanced by the syndecan-4 cytoplasmic domain through the activation of RhoA. Mol Cell Biochem 2012; 375:115-30. [PMID: 23212449 DOI: 10.1007/s11010-012-1534-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/23/2012] [Indexed: 01/12/2023]
Abstract
Syndecan-4 (S4) is a cell membrane-associated heparan sulfate proteoglycan that forms oligomers in muscle satellite cells. The S4 oligomers activate protein kinase Cα (PKCα) through the S4 cytoplasmic domain and may regulate the activation of ras homolog gene family member A (RhoA), a signal transduction molecule down-stream of PKCα which is thought to influence cell migration. However, little is known about the function of the S4 cytoplasmic domain in satellite cell migration and RhoA activation. The objective of the current study was to determine the function of S4 and its cytoplasmic domain in cell migration and RhoA activation. To study the objective, clones of S4 and S4 without the cytoplasmic domain (S4C) were used in overexpression studies, and small interference RNAs targeting S4 or RhoA were used in knockdown studies. Satellite cell migration was increased by S4 overexpression, but decreased by the knockdown or deletion of the S4 cytoplasmic domain. The RhoA protein was activated by the overexpression of S4, but not with the deletion of the S4 cytoplasmic domain. The treatment of Rho activator II or the knockdown of RhoA also modulated satellite cell migration. Finally, co-transfection (S4 overexpression and RhoA knockdown) and rescue (the knockdown of S4 and the treatment with Rho activator II) studies demonstrated that S4-mediated satellite cell migration was regulated through the activation of RhoA. The cytoplasmic domain of S4 is required for cell migration and RhoA activation which will affect muscle fiber formation.
Collapse
Affiliation(s)
- Jonghyun Shin
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, 213 Gerlaugh Hall, 1680 Madison Avenue, Wooster, OH 44691, USA
| | | | | |
Collapse
|
9
|
Morales MG, Cabello-Verrugio C, Santander C, Cabrera D, Goldschmeding R, Brandan E. CTGF/CCN-2 over-expression can directly induce features of skeletal muscle dystrophy. J Pathol 2011; 225:490-501. [PMID: 21826667 DOI: 10.1002/path.2952] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 05/29/2011] [Accepted: 06/05/2011] [Indexed: 01/04/2023]
Abstract
Muscular dystrophies are diseases characterized by muscle weakness together with cycles of degeneration and regeneration of muscle fibres, resulting in a progressive decrease of muscle mass, diminished muscle force generation and an increase in fibrosis. Fibrotic disorders are the endpoint of many chronic diseases in different tissues, where accumulation of the extracellular matrix (ECM) occurs. Connective tissue growth factor CTGF/CCN2, which is over-expressed in muscular dystrophies, plays a major role in many progressive scarring conditions. To test the hypothesis that CTGF might not only contribute conversion of already damaged muscle into scar tissue, but that it could by itself also directly contribute to skeletal muscle deterioration, we evaluated the effect of CTGF over-expression in tibialis anterior muscle of wild-type mice, using an adenovirus containing the CTGF mouse sequence (Ad-mCTGF). CTGF over-expression induced extensive skeletal muscle damage, which was followed by a massive regeneration of the damaged muscle, as evidenced by increased embryonic myosin and fibres with centrally located nuclei. It also induced strong fibrosis with increased levels of fibronectin, collagen, decorin and α-smooth muscle actin (α-SMA). Moreover, CTGF over-expression caused a decrease of the specific isometric contractile force. Strikingly, when CTGF over-expression stopped, the entire phenotype proved to be reversible, in parallel with normalization of CTGF levels. Thus, CTGF not merely acts downstream of muscle injury but also contributes directly to the deterioration of skeletal muscle phenotype and function. Moreover, normalization of expression levels led to spontaneous reversal of the CTGF-induced phenotype and to full recovery of muscle structure. These observations underscore the importance of CTGF in the pathophysiology of muscular dystrophies and suggest that targeting CTGF might have significant potential in the development of novel therapies for Duchenne muscular dystrophy and related diseases.
Collapse
Affiliation(s)
- María Gabriela Morales
- Centro de Regulación Celular y Patología (CRCP), Laboratorio de Diferenciación Celular y Patología, Departamento de Biología Celular y Molecular, MIFAB, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|