1
|
He S, Zhang Q, Jia J, Xia W, Chen S, Min F, Song Y, Yu Y, Li J, Li Z, Luo G. Stiffness and surface topology of silicone implants competitively mediate inflammatory responses of macrophages and foreign body response. Mater Today Bio 2024; 29:101304. [PMID: 39498150 PMCID: PMC11532915 DOI: 10.1016/j.mtbio.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
Adverse inflammatory responses, dominated by macrophages, that are induced by physical cues of silicone implants can heavily damage the life quality of patients via causing fibrosis and device failure. As stiffness and surface topology affect macrophages at the same time, the competition or partnership among physical cues against the regulation of macrophages is still ambiguous. Herein, a series of PDMS implants with different stiffness at ∼ MPa and surface topology at tens of micrometers were fabricated to investigate the relationship, the regulation rule, and the underlying mechanism of the two physical cues against the inflammatory responses of M1 macrophages. There is a competitive rule: surface topology could suppress the inflammatory responses of M1 macrophages in the soft group but did not have the same effect in the stiff group. Without surface topology, lower stiffness unexpectedly evoked stronger inflammatory responses of M1 macrophages. Implanting experiments also proved that the competitive state against mediating in vivo immune responses and the unexpected inflammatory responses. The reason is that stiffness could strongly up-regulate focal adhesion and activate the MAPK/NF-κB signaling axis to evoke inflammatory responses, which could shield the effect of surface topology. Therefore, for patient healthcare, it is crucial to prioritize stiffness while not surface topology at MPa levels to minimize adverse reactions.
Collapse
Affiliation(s)
- Sicen He
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Qingrong Zhang
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jiezhi Jia
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Wei Xia
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Shengnan Chen
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, PR China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fanyi Min
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, PR China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, PR China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yunlong Yu
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jiangfeng Li
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Zheng Li
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| |
Collapse
|
2
|
Meng L, Chen HM, Zhang JS, Wu YR, Xu YZ. Matricellular proteins: From cardiac homeostasis to immune regulation. Biomed Pharmacother 2024; 180:117463. [PMID: 39305814 DOI: 10.1016/j.biopha.2024.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 09/19/2024] [Indexed: 11/14/2024] Open
Abstract
Tissue repair after myocardial injury is a complex process involving changes in all aspects of the myocardial tissue, including the extracellular matrix (ECM). The ECM is composed of large structural proteins such as collagen and elastin and smaller proteins with major regulatory properties called matricellular proteins. Matricellular cell proteins exert their functions and elicit cellular responses by binding to structural proteins not limited to interactions with cell surface receptors, cytokines, or proteases. At the same time, matricellular proteins act as the "bridge" of information exchange between cells and ECM, maintaining the integrity of the cardiac structure and regulating the immune environment, which is a key factor in determining cardiac homeostasis. In this review, we present an overview of the identified matricellular proteins and summarize the current knowledge regarding their roles in maintaining cardiac homeostasis and regulating the immune system.
Collapse
Affiliation(s)
- Li Meng
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Hui-Min Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Jia-Sheng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Yi-Rong Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China.
| | - Yi-Zhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China.
| |
Collapse
|
3
|
Datki Z, Darula Z, Vedelek V, Hunyadi-Gulyas E, Dingmann BJ, Vedelek B, Kalman J, Urban P, Gyenesei A, Galik-Olah Z, Galik B, Sinka R. Biofilm formation initiating rotifer-specific biopolymer and its predicted components. Int J Biol Macromol 2023; 253:127157. [PMID: 37778576 DOI: 10.1016/j.ijbiomac.2023.127157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
The rotifer-specific biopolymer, namely Rotimer, is a recently discovered group of the biomolecule family. Rotimer has an active role in the biofilm formation initiated by rotifers (e.g., Euchlanis dilatata or Adineta vaga) or in the female-male sexual interaction of monogononts. To understand the Ca2+- and polarity-dependent formation of this multifunctional viscoelastic material, it is essential to explore its molecular composition. The investigation of the rotifer-enhanced biofilm and Rotimer-inductor conglomerate (RIC) formation yielded several protein candidates to predict the Rotimer-specific main components. The exudate of E. dilatata males was primarily applied from different biopolimer-containing samples (biofilm or RIC). The advantage of males over females lies in their degenerated digestive system and simple anatomy. Thus, their exudate is less contaminated with food and endosymbiont elements. The sequenced and annotated genome and transcriptome of this species opened the way for identifying Rotimer proteins by mass spectrometry. The predicted rotifer-biopolymer forming components are SCO-spondins and 14-3-3 protein. The characteristics of Rotimer are similar to Reissner's fiber, which is found in the central nervous system of vertebrates and is mainly formed from SCO-spondins. This molecular information serves as a starting point for its interdisciplinary investigation and application in biotechnology, biomedicine, or neurodegeneration-related drug development.
Collapse
Affiliation(s)
- Zsolt Datki
- Micro-In Vivo Biomolecule Research Laboratory, Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged. Dugonics ter 13. H-6720, Szeged, Hungary.
| | - Zsuzsanna Darula
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary; Proteomics Research Group, Core Facilities, Biological Research Centre, ELKH, Szeged, Hungary
| | - Viktor Vedelek
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, H-6726, Hungary
| | - Eva Hunyadi-Gulyas
- Proteomics Research Group, Core Facilities, Biological Research Centre, ELKH, Szeged, Hungary
| | - Brian J Dingmann
- Department of Math Science and Technology, University of Minnesota Crookston, 2900 University Avenue, Crookston, MN 56716, United States of America
| | - Balazs Vedelek
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, H-6726, Hungary
| | - Janos Kalman
- Department of Psychiatry, Albert Szent-Gyorgyi Medical School, University of Szeged, Koranyi Fasor 8-10, H-6725 Szeged, Hungary
| | - Peter Urban
- Szentagothai Research Center, Genomic and Bioinformatic Core Facility, Pecs, Hungary
| | - Attila Gyenesei
- Szentagothai Research Center, Genomic and Bioinformatic Core Facility, Pecs, Hungary
| | - Zita Galik-Olah
- Micro-In Vivo Biomolecule Research Laboratory, Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged. Dugonics ter 13. H-6720, Szeged, Hungary
| | - Bence Galik
- Szentagothai Research Center, Genomic and Bioinformatic Core Facility, Pecs, Hungary
| | - Rita Sinka
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, H-6726, Hungary
| |
Collapse
|
4
|
Yadav TC, Bachhuka A. Tuning foreign body response with tailor-engineered nanoscale surface modifications: fundamentals to clinical applications. J Mater Chem B 2023; 11:7834-7854. [PMID: 37528807 DOI: 10.1039/d3tb01040f] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Biomaterials are omnipresent in today's healthcare services and are employed in various applications, including implants, sensors, healthcare accessories, and drug delivery systems. Unfavorable host immunological responses frequently jeopardize the efficacy of biomaterials. As a result, surface modification has received much attention in controlling inflammatory responses since it helps camouflage the biomaterial from the host immune system, influencing the foreign body response (FBR) from protein adsorption to fibrous capsule formation. Surfaces with controlled nanotopography and chemistry, among other surface modification methodologies, have effectively altered the immune response to biomaterials. However, the field is still in its early stages, with only a few studies showing a synergistic effect of surface chemistry and nanotopography on inflammatory and wound healing pathways. Therefore, this review will concentrate on the individual and synergistic effects of surface chemistry and nanotopography on FBR modulation and the molecular processes known to modulate these responses. This review will also provide insights into crucial research gaps and advancements in various tactics for modulating FBR, opening new paths for future research. This will further aid in improving our understanding of the immune response to biomaterials, developing advanced surface modification techniques, designing immunomodulatory biomaterials, and translating discoveries into clinical applications.
Collapse
Affiliation(s)
- Tara Chand Yadav
- Department of Bioinformatics, Faculty of Engineering & Technology, Marwadi University, Gujarat, 360003, India
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), Tarragona, 43003, Spain.
| | - Akash Bachhuka
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), Tarragona, 43003, Spain.
| |
Collapse
|
5
|
Teng Y, Xie R, Xu J, Wang P, Chen W, Shan Z, Yan Z, Mao F, Cheng P, Peng L, Zhang J, Tian W, Yang S, Zhao Y, Chen W, Zou Q, Zhuang Y. Tubulointerstitial nephritis antigen-like 1 is a novel matricellular protein that promotes gastric bacterial colonization and gastritis in the setting of Helicobacter pylori infection. Cell Mol Immunol 2023; 20:924-940. [PMID: 37336990 PMCID: PMC10387474 DOI: 10.1038/s41423-023-01055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023] Open
Abstract
The interaction between the gastric epithelium and immune cells plays key roles in H. pylori-associated pathology. Here, we demonstrate a procolonization and proinflammatory role of tubulointerstitial nephritis antigen-like 1 (TINAGL1), a newly discovered matricellular protein, in H. pylori infection. Increased TINAGL1 production by gastric epithelial cells (GECs) in the infected gastric mucosa was synergistically induced by H. pylori and IL-1β via the ERK-SP1 pathway in a cagA-dependent manner. Elevated human gastric TINAGL1 correlated with H. pylori colonization and the severity of gastritis, and mouse TINAGL1 derived from non-bone marrow-derived cells promoted bacterial colonization and inflammation. Importantly, H. pylori colonization and inflammation were attenuated in Tinagl1-/- and Tinagl1ΔGEC mice and were increased in mice injected with mouse TINAGL1. Mechanistically, TINAGL1 suppressed CCL21 expression and promoted CCL2 production in GECs by directly binding to integrin α5β1 to inhibit ERK and activate the NF-κB pathway, respectively, which not only led to decreased gastric influx of moDCs via CCL21-CCR7-dependent migration and, as a direct consequence, reduced the bacterial clearance capacity of the H. pylori-specific Th1 response, thereby promoting H. pylori colonization, but also resulted in increased gastric influx of Ly6Chigh monocytes via CCL2-CCR2-dependent migration. In turn, TINAGL1 induced the production of the proinflammatory protein S100A11 by Ly6Chigh monocytes, promoting H. pylori-associated gastritis. In summary, we identified a model in which TINAGL1 collectively ensures H. pylori persistence and promotes gastritis.
Collapse
Affiliation(s)
- Yongsheng Teng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
- The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Rui Xie
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingyu Xu
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Pan Wang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
- The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Wanyan Chen
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Zhiguo Shan
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zongbao Yan
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fangyuan Mao
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Ping Cheng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Liusheng Peng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Jinyu Zhang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Wenqing Tian
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, XinQiao Hospital, Third Military Medical University, Chongqing, China
| | - Yongliang Zhao
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Weisan Chen
- La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Yuan Zhuang
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China.
| |
Collapse
|
6
|
Feng D, Gao P, Henley N, Dubuissez M, Chen N, Laurin LP, Royal V, Pichette V, Gerarduzzi C. SMOC2 promotes an epithelial-mesenchymal transition and a pro-metastatic phenotype in epithelial cells of renal cell carcinoma origin. Cell Death Dis 2022; 13:639. [PMID: 35869056 PMCID: PMC9307531 DOI: 10.1038/s41419-022-05059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 01/21/2023]
Abstract
Renal Cell Carcinoma (RCC) is the most common form of all renal cancer cases, and well-known for its highly aggressive metastatic behavior. SMOC2 is a recently described non-structural component of the extracellular matrix (ECM) that is highly expressed during tissue remodeling processes with emerging roles in cancers, yet its role in RCC remains elusive. Using gene expression profiles from patient samples, we identified SMOC2 as being significantly expressed in RCC tissue compared to normal renal tissue, which correlated with shorter RCC patient survival. Specifically, de novo protein synthesis of SMOC2 was shown to be much higher in the tubular epithelial cells of patients with biopsy-proven RCC. More importantly, we provide evidence of SMOC2 triggering kidney epithelial cells into an epithelial-to-mesenchymal transition (EMT), a phenotype known to promote metastasis. We found that SMOC2 induced mesenchymal-like morphology and activities in both RCC and non-RCC kidney epithelial cell lines. Mechanistically, treatment of RCC cell lines ACHN and 786-O with SMOC2 (recombinant and enforced expression) caused a significant increase in EMT-markers, -matrix production, -proliferation, and -migration, which were inhibited by targeting SMOC2 by siRNA. We further characterized SMOC2 activation of EMT to occur through the integrin β3, FAK and paxillin pathway. The proliferation and metastatic potential of SMOC2 overexpressing ACHN and 786-O cell lines were validated in vivo by their significantly higher tumor growth in kidneys and systemic dissemination into other organs when compared to their respective controls. In principle, understanding the impact that SMOC2 has on EMT may lead to more evidence-based treatments and biomarkers for RCC metastasis.
Collapse
Affiliation(s)
- Daniel Feng
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Peng Gao
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Nathalie Henley
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Marion Dubuissez
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Nan Chen
- Faculty of Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Louis-Philippe Laurin
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Virginie Royal
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Vincent Pichette
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Casimiro Gerarduzzi
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada.
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
7
|
Suppression of the fibrotic encapsulation of silicone implants by inhibiting the mechanical activation of pro-fibrotic TGF-β. Nat Biomed Eng 2021; 5:1437-1456. [PMID: 34031559 DOI: 10.1038/s41551-021-00722-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
The fibrotic encapsulation of implants involves the mechanical activation of myofibroblasts and of pro-fibrotic transforming growth factor beta 1 (TGF-β1). Here, we show that both softening of the implant surfaces and inhibition of the activation of TGF-β1 reduce the fibrotic encapsulation of subcutaneous silicone implants in mice. Conventionally stiff silicones (elastic modulus, ~2 MPa) coated with a soft silicone layer (elastic modulus, ~2 kPa) reduced collagen deposition as well as myofibroblast activation without affecting the numbers of macrophages and their polarization states. Instead, fibroblasts around stiff implants exhibited enhanced intracellular stress, increased the recruitment of αv and β1 integrins, and activated TGF-β1 signalling. In vitro, the recruitment of αv integrin to focal adhesions and the activation of β1 integrin and of TGF-β were higher in myofibroblasts grown on latency-associated peptide (LAP)-coated stiff silicones than on soft silicones. Antagonizing αv integrin binding to LAP through the small-molecule inhibitor CWHM-12 suppressed active TGF-β signalling, myofibroblast activation and the fibrotic encapsulation of stiff subcutaneous implants in mice.
Collapse
|
8
|
Carvalho CMF, Leonel LCPC, Cañada RR, Barreto RSN, Maria DA, Del Sol M, Miglino MA, Lobo SE. Comparison between placental and skeletal muscle ECM: in vivo implantation. Connect Tissue Res 2021; 62:629-642. [PMID: 33106052 DOI: 10.1080/03008207.2020.1834540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF THE STUDY Several tissues have been decellularized and their extracellular matrices used as allogeneic or xenogeneic scaffolds, either in orthotopic or heterotopic implantations, for tissue engineering purposes. Placentas have abundant matrix, extensive microvascular structure, immunomodulatory properties, growth factors and are discarded after birth, representing an interesting source of extracellular matrix. This study aimed at comparing decellularized canine placentas and murine skeletal muscles to regenerate skeletal muscles in a rat model. MATERIALS AND METHODS Muscle pockets were created at the posterior limbs of male Wistar rats, where the muscle- and placenta-derived extracellular matrices were implanted. Macroscopic, histological, and immunohistochemical analyses were performed after 3, 15, and 45 days of surgeries. RESULTS On the third day, intense inflammatory reaction, with macrophages (CD163+) and proliferative cells (PCNA+) being observed in control group and adjacent to the decellularized matrices. The percentage of proliferative cells was higher in placenta than in muscle matrices. Macrophages CD163+ high were higher in muscles than in placentas, whereas CD163+ low were higher in placentas than in muscle ECM, at days 3 and 15. Placental matrices were not completely degraded at day 15, as opposed to the muscular ones. After 45 days, both matrices were resorbed and morphologically normal myofibers, with reduction of cell infiltration, were observed. CONCLUSIONS These results demonstrated that xenogeneic placental ECM, implanted heterotopically (representing a biologically critical and challenging microenvironment), induced local inflammatory reactions similar to the allogeneic muscle ECM, implanted orthotopically. Thus, placenta-derived extracellular matrix must be further explored in regenerative medicine.
Collapse
Affiliation(s)
- Carla Maria F Carvalho
- Department of Surgery, Sector of Anatomy, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Luciano C P C Leonel
- Department of Surgery, Sector of Anatomy, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Rafael R Cañada
- Biological Science, University São Judas Tadeu, São Paulo, Brazil
| | - Rodrigo S N Barreto
- Department of Surgery, Sector of Anatomy, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Durvanei A Maria
- Molecular BIology Laboratory, Butantan Institute, São Paulo, Brazil
| | | | - Maria Angélica Miglino
- Department of Surgery, Sector of Anatomy, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Sonja E Lobo
- Department of Surgery, Sector of Anatomy, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Nikoloudaki G. Functions of Matricellular Proteins in Dental Tissues and Their Emerging Roles in Orofacial Tissue Development, Maintenance, and Disease. Int J Mol Sci 2021; 22:ijms22126626. [PMID: 34205668 PMCID: PMC8235165 DOI: 10.3390/ijms22126626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/04/2023] Open
Abstract
Matricellular proteins (MCPs) are defined as extracellular matrix (ECM) associated proteins that are important regulators and integrators of microenvironmental signals, contributing to the dynamic nature of ECM signalling. There is a growing understanding of the role of matricellular proteins in cellular processes governing tissue development as well as in disease pathogenesis. In this review, the expression and functions of different MP family members (periostin, CCNs, TSPs, SIBLINGs and others) are presented, specifically in relation to craniofacial development and the maintenance of orofacial tissues, including bone, gingiva, oral mucosa, palate and the dental pulp. As will be discussed, each MP family member has been shown to have non-redundant roles in development, tissue homeostasis, wound healing, pathology and tumorigenesis of orofacial and dental tissues.
Collapse
Affiliation(s)
- Georgia Nikoloudaki
- Schulich Dentistry Department, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; ; Tel.: +1-519-661-2111 (ext. 81102)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
10
|
Parisi L, Rivara F, Costa CA, Abuna RP, Palioto DB, Macaluso GM. Aptamers recognizing fibronectin confer improved bioactivity to biomaterials and promote new bone formation in a periodontal defect in rats. Biomed Mater 2020; 16:015016. [PMID: 33325378 DOI: 10.1088/1748-605x/abb6b2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The use of alloplastic materials in periodontal regenerative therapies is limited by their incapacity to establish a dynamic dialog with the surrounding milieu. The aim of the present study was to control biomaterial surface bioactivity by introducing aptamers to induce the selective adsorption of fibronectin from blood, thus promoting platelets activation in vitro and bone regeneration in vivo. A hyaluronic acid/polyethyleneglycole-based hydrogel was enriched with aptamers selected for recognizing and binding fibronectin. In vitro, the capacity of constructs to support osteoblast adhesion, as well as platelets aggregation and activation was assessed by chemiluminescence within 24 h. Matrices were then evaluated in a rat periodontal defect to assess their regenerative potential by microcomputed tomography (µCT) and their osteogenic capacity by Luminex assay 5, 15 and 30 d postoperatively. Aptamers were found to confer matrices the capacity of sustaining firm cell adhesion (p = 0.0377) and to promote platelets activation (p = 0.0442). In vivo, aptamers promoted new bone formation 30 d post-operatively (p < 0.001) by enhancing osteoblastic lineage commitment maturation. Aptamers are a viable surface modification, which confers alloplastic materials the potential capacity to orchestrate blood clot formation, thus controlling bone healing.
Collapse
Affiliation(s)
- Ludovica Parisi
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, Parma 43126, Italy
- Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, Parma 43126, Italy
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Freiburgstrasse 3, Bern 3010, Switzerland
| | - Federico Rivara
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, Parma 43126, Italy
- Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, Parma 43126, Italy
| | - Camila A Costa
- Department of Oral & Maxillofacial Surgery, and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. Do Cafè, Ribeirão Preto, SP 14040-904, Brazil
- Department of Stomatological Sciences, School of Dentistry, Federal University of Goias, Avenida Arumã, Goiâna, GO 74835-320, Brazil
| | - Rodriguo Pf Abuna
- Cell Culture Laboratory, School of Dentistry of Ribeirao Preto, University of São Paulo, Av. Do Cafè, Ribeirão Preto, SP 14040-904, Brazil
- Fiocruz-Bi-Instituional Translational Medicine Project, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Rua dos Técnicos, Ribeirão Preto, SP 14040-030, Brazil
| | - Daniela B Palioto
- Department of Oral & Maxillofacial Surgery, and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. Do Cafè, Ribeirão Preto, SP 14040-904, Brazil
| | - Guido M Macaluso
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, Parma 43126, Italy
- Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, Parma 43126, Italy
- Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parco Area delle Scienze 37/A, Parma 43124, Italy
| |
Collapse
|
11
|
Osteopontin: The Molecular Bridge between Fat and Cardiac-Renal Disorders. Int J Mol Sci 2020; 21:ijms21155568. [PMID: 32759639 PMCID: PMC7432729 DOI: 10.3390/ijms21155568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022] Open
Abstract
Osteopontin (OPN) is a multifaceted matricellular protein, with well-recognized roles in both the physiological and pathological processes in the body. OPN is expressed in the main organs and cell types, in which it induces different biological actions. During physiological conditioning, OPN acts as both an intracellular protein and soluble excreted cytokine, regulating tissue remodeling and immune-infiltrate in adipose tissue the heart and the kidney. In contrast, the increased expression of OPN has been correlated with the severity of the cardiovascular and renal outcomes associated with obesity. Indeed, OPN expression is at the “cross roads” of visceral fat extension, cardiovascular diseases (CVDs) and renal disorders, in which OPN orchestrates the molecular interactions, leading to chronic low-grade inflammation. The common factor associated with OPN overexpression in adipose, cardiac and renal tissues seems attributable to the concomitant increase in visceral fat size and the increase in infiltrated OPN+ macrophages. This review underlines the current knowledge on the molecular interactions between obesity and the cardiac–renal disorders ruled by OPN.
Collapse
|
12
|
Feng D, Gerarduzzi C. Emerging Roles of Matricellular Proteins in Systemic Sclerosis. Int J Mol Sci 2020; 21:E4776. [PMID: 32640520 PMCID: PMC7369781 DOI: 10.3390/ijms21134776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
Systemic sclerosis is a rare chronic heterogenous disease that involves inflammation and vasculopathy, and converges in end-stage development of multisystem tissue fibrosis. The loss of tight spatial distribution and temporal expression of proteins in the extracellular matrix (ECM) leads to progressive organ stiffening, which is a hallmark of fibrotic disease. A group of nonstructural matrix proteins, known as matricellular proteins (MCPs) are implicated in dysregulated processes that drive fibrosis such as ECM remodeling and various cellular behaviors. Accordingly, MCPs have been described in the context of fibrosis in sclerosis (SSc) as predictive disease biomarkers and regulators of ECM synthesis, with promising therapeutic potential. In this present review, an informative summary of major MCPs is presented highlighting their clear correlations to SSc- fibrosis.
Collapse
Affiliation(s)
- Daniel Feng
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Casimiro Gerarduzzi
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, QC H1T 2M4, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
13
|
Parisi L, Toffoli A, Ghezzi B, Mozzoni B, Lumetti S, Macaluso GM. A glance on the role of fibronectin in controlling cell response at biomaterial interface. JAPANESE DENTAL SCIENCE REVIEW 2019; 56:50-55. [PMID: 31890058 PMCID: PMC6928270 DOI: 10.1016/j.jdsr.2019.11.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 10/26/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022] Open
Abstract
The bioactivity of biomaterials is closely related to cell response in contact with them. However, shortly after their insertion, materials are soon covered with proteins that constitute the biological fluids, and which render the direct surface recognition by cells almost impossible. The control of protein adsorption at the interface is therefore desirable. Extracellular matrix proteins are of particular interest in this sense, due to their well-known ability to modulate cell behavior. Particularly, fibronectin plays a leading role, being present in both healthy and injured tissues undergoing healing and regeneration. The aim of the present work is to give an overview on fibronectin and on its involvement in the control of cell behavior providing evidence of its pivotal role in the control of cell adhesion, spreading, migration, proliferation and differentiation. A deep insight into methods to enrich biomaterials surface with fibronectin will be then discussed, as well as new cues on the possibility to design tailored platforms able to specifically retain fibronectin from the surrounding extracellular milieu.
Collapse
Affiliation(s)
- Ludovica Parisi
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
- Labor für Orale Molekularbiologie, Klinik für Kieferorthopädie, Zahnmedizinische Klinik, Universität Bern, Freiburgstrasse 7, 3008 Bern, Switzerland
- Corresponding author. Present address: Labor für Orale Molekularbiologie, Klinik für Kieferorthopädie, Zahnmedizinische Kliniken, Universität Bern, Freiburgstrasse 7, CH-3010 Bern, Switzerland.
| | - Andrea Toffoli
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Benedetta Ghezzi
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Beatrice Mozzoni
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Simone Lumetti
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Guido M. Macaluso
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
- Istituto dei Materiali per l’Elettronica e l’Elettromagnetismo, Consiglio Nazionale delle Ricerche, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
14
|
Veiseh O, Vegas AJ. Domesticating the foreign body response: Recent advances and applications. Adv Drug Deliv Rev 2019; 144:148-161. [PMID: 31491445 PMCID: PMC6774350 DOI: 10.1016/j.addr.2019.08.010] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 01/03/2023]
Abstract
The foreign body response is an immunological process that leads to the rejection of implanted devices and presents a fundamental challenge to their performance, durability, and therapeutic utility. Recent advances in materials development and device design are now providing strategies to overcome this immune-mediated reaction. Here, we briefly review our current mechanistic understanding of the foreign body response and highlight new anti-FBR technologies from this decade that have been applied successfully in biomedical applications relevant to implants, devices, and cell-based therapies. Further development of these important technologies promises to enable new therapies, diagnostics, and revolutionize the management of patient care for many intractable diseases.
Collapse
Affiliation(s)
- Omid Veiseh
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77030, USA.
| | - Arturo J Vegas
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA.
| |
Collapse
|
15
|
Dempsey SG, Miller CH, Hill RC, Hansen KC, May BCH. Functional Insights from the Proteomic Inventory of Ovine Forestomach Matrix. J Proteome Res 2019; 18:1657-1668. [DOI: 10.1021/acs.jproteome.8b00908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sandi G. Dempsey
- Aroa Biosurgery Limited, Airport Oaks, Auckland 2022, New Zealand
| | | | - Ryan C. Hill
- Omix Technologies LLC, Bioscience 1, 12635 E. Montview Blvd. Suite 100, Aurora, Colorado 80045, United States
| | - Kirk C. Hansen
- Omix Technologies LLC, Bioscience 1, 12635 E. Montview Blvd. Suite 100, Aurora, Colorado 80045, United States
| | | |
Collapse
|
16
|
de Mello Gomes ÁN, Nagai MA, Lourenço SV, Coutinho-Camillo CM. Apoptosis and proliferation during human salivary gland development. J Anat 2019; 234:830-838. [PMID: 30861119 DOI: 10.1111/joa.12970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2019] [Indexed: 01/24/2023] Open
Abstract
Human salivary gland (SG) branching morphogenesis is an intricate mechanism divided into stages, prebud, initial bud, pseudoglandular, canalicular, and terminal bud, to form the final lobular structure of the organ. The coordination of molecular cascades, including cell proliferation and apoptosis, are fundamental to this process. The intrinsic apoptosis pathway appears to be important in the early phases of ductal cavitation and luminisation; however, the role of the extrinsic apoptosis pathway has still to be determined. Questions remain as to whether the latter mechanism participates in the maintenance of the ductal lumen; therefore, the present study investigated the expression of proteins Prostate apoptosis response-4 (Par-4), Fas cell surface death receptor (Fas), Fas ligand (FasL), pleckstrin homology-like domain family A member 1 (PHLDA1), caspase-3, B-cell CLL/lymphoma 2 (Bcl-2), survivin, Ki-67, mucin 1 (MUC1), and secreted protein acidic and cysteine-rich (SPARC) during distinct phases of human SG development (50 specimens). This strategy aimed to draw an immunomorphological map of the proteins involved in apoptosis, cell proliferation, and tissue maturation during the SG branching morphogenesis process. Par-4 was positive at all stages except the pre-acinar phase. Fas and FasL were expressed in few cells. PHLDA1 was expressed in all phases but not in the terminal bud. Bcl-2 expression was mainly negative (expressed in few cells). Survivin showed a cytoplasmic expression pattern in the early phases of development, which changed to a predominantly nuclear expression during development into more differentiated structures. Ki-67 was expressed mainly at the pseudoglandular stage. MUC1 was positive in the pseudoglandular stage with a cytoplasmic pattern in regions of early luminal opening. Immunostaining for SPARC and caspase-3 was negative. Our results suggest that proteins associated with the regulation of extrinsic and intrinsic apoptosis contribute to apoptosis during specific phases of the early formation of SGs in humans.
Collapse
Affiliation(s)
| | - Maria Aparecida Nagai
- Discipline of Oncology, Department of Radiology and Oncology, Medical School, University of São Paulo, São Paulo, Brazil.,Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
17
|
Parisi L, Toffoli A, Bianchi MG, Bergonzi C, Bianchera A, Bettini R, Elviri L, Macaluso GM. Functional Fibronectin Adsorption on Aptamer-Doped Chitosan Modulates Cell Morphology by Integrin-Mediated Pathway. MATERIALS 2019; 12:ma12050812. [PMID: 30857264 PMCID: PMC6427328 DOI: 10.3390/ma12050812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/29/2022]
Abstract
A decisive step in cell-biomaterial interaction is represented by the adsorption of proteins at the interface, whose fine control may be useful to trigger proper cell response. To this purpose, we can selectively control protein adsorption on biomaterials by means of aptamers. Aptamers selected to recognize fibronectin dramatically enhance chitosan ability to promote cell proliferation and adhesion, but the underlying biological mechanism remains unknown. We supposed that aptamers contributed to ameliorate the adsorption of fibronectin in an advantageous geometrical conformation for cells, thus regulating their morphology by the proper activation of the integrin-mediated pathway. We investigated this possibility by culturing epithelial cells on chitosan enriched with increasing doses of aptamers in the presence or in the absence of cytoskeleton pharmacological inhibitors. Our results showed that aptamers control cell morphology in a dose dependent manner (p < 0.0001). Simultaneously, when the inhibition of actin polymerization was induced, the control of cell morphology was attenuated (p < 0.0001), while no differences were detected when cells contractility was challenged (p > 0.05). Altogether, our data provide evidence that aptamers contribute to control fibronectin adsorption on biomaterials by preserving its conformation and thus function. Furthermore, our work provides a new insight into a new way to accurately tailor material surface bioactivity.
Collapse
Affiliation(s)
- Ludovica Parisi
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Andrea Toffoli
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Massimiliano G Bianchi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Carlo Bergonzi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 59/A, 43124 Parma, Italy.
| | - Annalisa Bianchera
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 59/A, 43124 Parma, Italy.
| | - Ruggero Bettini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 59/A, 43124 Parma, Italy.
| | - Lisa Elviri
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 59/A, 43124 Parma, Italy.
| | - Guido M Macaluso
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- IMEM-CNR National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy.
| |
Collapse
|
18
|
Morris AH, Lee H, Xing H, Stamer DK, Tan M, Kyriakides TR. Tunable Hydrogels Derived from Genetically Engineered Extracellular Matrix Accelerate Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41892-41901. [PMID: 30424595 PMCID: PMC9996546 DOI: 10.1021/acsami.8b08920] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hydrogels composed of solubilized decellularized extracellular matrix (ECM) are attractive materials because they combine the complexity of native ECM with injectability and ease of use. Nevertheless, these materials are typically only tunable by altering the concentration, which alters the ligand landscape, or by incorporating synthetic components, which can result in an unfavorable host response. Herein, we demonstrate the fabrication of genetically tunable ECM-derived materials, by utilizing wild type (WT) and (thrombospondin-2 knockout) TSP-2 KO decellularized skins to prepare hydrogels. The resulting materials exhibited distinct mechanical properties characterized by rheology and different concentrations of collagens when characterized by quantitative proteomics. Mixtures of the gels achieved intermediate effects between the WT and the KO, permitting tunability of the gel properties. In vivo, the hydrogels exhibited tunable cell invasion with a correlation between the content of TSP-2 KO hydrogel and the extent of cell invasion. Additionally, TSP-2 KO hydrogels significantly improved diabetic wound healing at 10 and 21 days. Furthermore, hydrogels derived from genetically engineered in vitro cell-derived matrix mimicked the trends observed for tissue-derived matrix, providing a platform for faster screening of novel manipulations and easier clinical translation. Overall, we demonstrate that genetic engineering approaches impart tunability to ECM-based hydrogels and can result in materials capable of enhanced regeneration.
Collapse
Affiliation(s)
- Aaron H. Morris
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, United States
- Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut 06511, United States
| | - Hudson Lee
- Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut 06511, United States
| | - Hao Xing
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, United States
- Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut 06511, United States
| | - Danielle K. Stamer
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Marina Tan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Themis R. Kyriakides
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, United States
- Department of Pathology, Yale University, New Haven, Connecticut 06511, United States
- Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
19
|
Morris AH, Stamer DK, Kunkemoeller B, Chang J, Xing H, Kyriakides TR. Decellularized materials derived from TSP2-KO mice promote enhanced neovascularization and integration in diabetic wounds. Biomaterials 2018; 169:61-71. [PMID: 29631168 DOI: 10.1016/j.biomaterials.2018.03.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 12/19/2022]
Abstract
Decellularized biologic scaffolds are gaining popularity over synthetic biomaterials as naturally derived materials capable of promoting improved healing. Nevertheless, the most widely used biologic material - acellular dermal matrix (ADM) - exhibits slow repopulation and remodeling, which prevents integration. Additionally, engineering control of these materials is limited because they require a natural source for their production. In the current report, we demonstrate the feasibility of using genetically engineered animals to create decellularized biologic scaffolds with favorable extracellular matrix (ECM) properties. Specifically, we utilized skin from thrombospondin (TSP)-2 KO mice to derive various decellularized products. Scanning electron microscopy and mechanical testing showed that TSP-2 KO ADM exhibited an altered structure and a reduction in elastic modulus and ultimate tensile strength, respectively. When a powdered form of KO ADM was implanted subcutaneously, it was able to promote enhanced vascularization over WT. Additionally, when implanted subcutaneously, intact slabs of KO ADM were populated by higher number of host cells when compared to WT. In vitro studies confirmed the promigratory properties of KO ADM. Specifically, degradation products released by pepsin digestion of KO ADM induced greater cell migration than WT. Moreover, cell-derived ECM from TSP-2 null fibroblasts was more permissive to fibroblast migration. Finally, ADMs were implanted in a diabetic wound model to examine their ability to accelerate wound healing. KO ADM exhibited enhanced remodeling and vascular maturation, indicative of efficient integration. Overall, we demonstrate that genetic manipulation enables engineered ECM-based materials with increased regenerative potential.
Collapse
Affiliation(s)
- Aaron H Morris
- Department of Biomedical Engineering, Yale University, New Haven CT 06511, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven CT 06511, United States
| | - Danielle K Stamer
- Department of Biomedical Engineering, Yale University, New Haven CT 06511, United States
| | - Britta Kunkemoeller
- Department of Pathology, Yale University, New Haven CT 06511, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven CT 06511, United States
| | - Julie Chang
- Department of Biomedical Engineering, Yale University, New Haven CT 06511, United States
| | - Hao Xing
- Department of Biomedical Engineering, Yale University, New Haven CT 06511, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven CT 06511, United States
| | - Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, New Haven CT 06511, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven CT 06511, United States.
| |
Collapse
|
20
|
Abstract
The extracellular matrix (ECM) has central roles in tissue integrity and remodeling throughout the life span of animals. While collagens are the most abundant structural components of ECM in most tissues, tissue-specific molecular complexity is contributed by ECM glycoproteins. The matricellular glycoproteins are categorized primarily according to functional criteria and represented predominantly by the thrombospondin, tenascin, SPARC/osteonectin, and CCN families. These proteins do not self-assemble into ECM fibrils; nevertheless, they shape ECM properties through interactions with structural ECM proteins, growth factors, and cells. Matricellular proteins also promote cell migration or morphological changes through adhesion-modulating or counter-adhesive actions on cell-ECM adhesions, intracellular signaling, and the actin cytoskeleton. Typically, matricellular proteins are most highly expressed during embryonic development. In adult tissues, expression is more limited unless activated by cues for dynamic tissue remodeling and cell motility, such as occur during inflammatory response and wound repair. Many insights in the complex roles of matricellular proteins have been obtained from studies of gene knockout mice. However, with the exception of chordate-specific tenascins, these are highly conserved proteins that are encoded in many animal phyla. This review will consider the increasing body of research on matricellular proteins in nonmammalian animal models. These models provide better access to the very earliest stages of embryonic development and opportunities to study biological processes such as limb and organ regeneration. In aggregate, this research is expanding concepts of the functions and mechanisms of action of matricellular proteins.
Collapse
Affiliation(s)
- Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
21
|
Robb KP, Shridhar A, Flynn LE. Decellularized Matrices As Cell-Instructive Scaffolds to Guide Tissue-Specific Regeneration. ACS Biomater Sci Eng 2017; 4:3627-3643. [PMID: 33429606 DOI: 10.1021/acsbiomaterials.7b00619] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Decellularized scaffolds are promising clinically translational biomaterials that can be applied to direct cell responses and promote tissue regeneration. Bioscaffolds derived from the extracellular matrix (ECM) of decellularized tissues can naturally mimic the complex extracellular microenvironment through the retention of compositional, biomechanical, and structural properties specific to the native ECM. Increasingly, studies have investigated the use of ECM-derived scaffolds as instructive substrates to recapitulate properties of the stem cell niche and guide cell proliferation, paracrine factor production, and differentiation in a tissue-specific manner. Here, we review the application of decellularized tissue scaffolds as instructive matrices for stem or progenitor cells, with a focus on the mechanisms through which ECM-derived scaffolds can mediate cell behavior to promote tissue-specific regeneration. We conclude that although additional preclinical studies are required, ECM-derived scaffolds are a promising platform to guide cell behavior and may have widespread clinical applications in the field of regenerative medicine.
Collapse
Affiliation(s)
- Kevin P Robb
- Biomedical Engineering Graduate Program, The University of Western Ontario, Claudette MacKay Lassonde Pavilion, London, Ontario, Canada N6A 5B9
| | - Arthi Shridhar
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, Thompson Engineering Building, London, Ontario, Canada N6A 5B9
| | - Lauren E Flynn
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, Thompson Engineering Building, London, Ontario, Canada N6A 5B9.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
22
|
Moreno-Hagelsieb G, Vitug B, Medrano-Soto A, Saier MH. The Membrane Attack Complex/Perforin Superfamily. J Mol Microbiol Biotechnol 2017; 27:252-267. [PMID: 29145176 DOI: 10.1159/000481286] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 09/05/2017] [Indexed: 12/30/2022] Open
Abstract
The membrane attack complex/perforin (MACPF) superfamily consists of a diverse group of proteins involved in bacterial pathogenesis and sporulation as well as eukaryotic immunity, embryonic development, neural migration and fruiting body formation. The present work shows that the evolutionary relationships between the members of the superfamily, previously suggested by comparison of their tertiary structures, can also be supported by analyses of their primary structures. The superfamily includes the MACPF family (TC 1.C.39), the cholesterol-dependent cytolysin (CDC) family (TC 1.C.12.1 and 1.C.12.2) and the pleurotolysin pore-forming (pleurotolysin B) family (TC 1.C.97.1), as revealed by expansion of each family by comparison against a large protein database, and by the comparisons of their hidden Markov models. Clustering analyses demonstrated grouping of the CDC homologues separately from the 12 MACPF subfamilies, which also grouped separately from the pleurotolysin B family. Members of the MACPF superfamily revealed a remarkably diverse range of proteins spanning eukaryotic, bacterial, and archaeal taxonomic domains, with notable variations in protein domain architectures. Our strategy should also be helpful in putting together other highly divergent protein families.
Collapse
|
23
|
Piprek RP, Kolasa M, Podkowa D, Kloc M, Kubiak JZ. Transcriptional profiling validates involvement of extracellular matrix and proteinases genes in mouse gonad development. Mech Dev 2017; 149:9-19. [PMID: 29129619 DOI: 10.1016/j.mod.2017.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/29/2017] [Accepted: 11/06/2017] [Indexed: 12/28/2022]
Abstract
Extracellular matrix (ECM) plays an important scaffolding role in the establishment of organs structure during development. A great number of ECM components and enzymes (proteinases) regulating formation/degradation of ECM during organ remodeling have been identified. In order to study the role of ECM in the mouse gonad development, especially during sexual differentiation of the gonads when the structure of the testis and ovary becomes established, we performed a global analysis of transcriptome in three main cell types of developing gonad (supporting, interstitial/stromal and germ cells) using transgenic mice, cell sorting and microarray. The genes coding for ECM components were mostly expressed in two gonadal cell lines: supporting and interstitial/stromal cells. These two cell lines differed in the expression pattern of ECM components, which suggests that ECM components might be crucial for differentiation of gonad compartments (for example testis cords vs. interstitium in XY gonads). Collagens and proteoglycans coding genes were mainly expressed in the interstitium/stromal cells, while non-collagen glycoproteins and matricellular coding genes were expressed in both cell lines. We also analyzed the expression of genes encoding ECM enzymes that are secreted to the ECM where they remodel the scaffolding of developing organs. We found that the ECM enzyme genes were also mostly expressed in supporting and interstitial/stromal cells. In contrast to the somatic cells, the germ cells expressed only limited number of ECM components and enzymes. This suggests that the germ line cells do not participate, or play only a minor role, in the sculpting of the gonad structure via ECM synthesis and remodeling. Importantly, the supporting cells showed the sex-specific pattern of expression of ECM components. However, the pattern of expression of most ECM enzymes in the somatic and germ cells is independent on the sex of the gonad. Further studies are required to elucidate the exact roles of identified genes in sexual differentiation of the gonads.
Collapse
Affiliation(s)
- Rafal P Piprek
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| | - Michal Kolasa
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
| | - Dagmara Podkowa
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA; The Houston Methodist Hospital, Department of Surgery, Houston, TX, USA; The University of Texas MD Anderson Cancer Center, Department of Genetics, Houston, TX, USA
| | - Jacek Z Kubiak
- CNRS, UMR 6290, Institute of Genetics and Development of Rennes, Cell Cycle Group, F-35043, France; Université Rennes 1, Faculty of Medicine, F-35043 Rennes, France; Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| |
Collapse
|
24
|
Morris AH, Mahal RS, Udell J, Wu M, Kyriakides TR. Multicompartment Drug Release System for Dynamic Modulation of Tissue Responses. Adv Healthc Mater 2017. [PMID: 28636088 DOI: 10.1002/adhm.201700370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pharmacological modulation of responses to injury is complicated by the need to deliver multiple drugs with spatiotemporal resolution. Here, a novel controlled delivery system containing three separate compartments with each releasing its contents over different timescales is fabricated. Core-shell electrospun fibers create two of the compartments in the system, while electrosprayed spheres create the third. Utility is demonstrated by targeting the foreign body response to implants because it is a dynamic process resulting in implant failure. Sequential delivery of a drug targeting nuclear factor-κB (NF-κB) and an antifibrotic is characterized in in vitro experiments. Specifically, macrophage fusion and p65 nuclear translocation in the presence of releasate or with macrophages cultured on the surfaces of the constructs are evaluated. In addition, releasate from pirfenidone scaffolds is shown to reduce transforming growth factor-β (TGF-β)-induced pSMAD3 nuclear localization in fibroblasts. In vivo, drug eluting constructs successfully mitigate macrophage fusion at one week and fibrotic encapsulation in a dose-dependent manner at four weeks, demonstrating effective release of both drugs over different timescales. Future studies can employ this system to improve and prolong implant lifetimes, or load it with other drugs to modulate other dynamic processes.
Collapse
Affiliation(s)
- Aaron H. Morris
- Department of Biomedical Engineering, Vascular Biology and Therapeutics Program Yale University New Haven CT 06519 USA
| | - Rajwant S. Mahal
- Department of Biomedical Engineering Yale University New Haven CT 06519 USA
| | - Jillian Udell
- Department of Biomedical Engineering Yale University New Haven CT 06519 USA
| | - Michelle Wu
- Department of Biomedical Engineering Yale University New Haven CT 06519 USA
| | - Themis R. Kyriakides
- Department of Biomedical Engineering Department of Pathology, Vascular Biology and Therapeutics Program Yale University New Haven CT 06519 USA
| |
Collapse
|
25
|
Schneebauer G, Dirks RP, Pelster B. Anguillicola crassus infection affects mRNA expression levels in gas gland tissue of European yellow and silver eel. PLoS One 2017; 12:e0183128. [PMID: 28817599 PMCID: PMC5560681 DOI: 10.1371/journal.pone.0183128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022] Open
Abstract
Using Illumina sequencing, we investigated transcriptional changes caused by the nematode Anguillicola crassus within yellow and silver eels by comparing swimbladder samples of uninfected yellow with infected yellow eels, and uninfected silver with infected silver eels, respectively. In yellow eel gas gland, the infection caused a modification of steady state mRNA levels of 1675 genes, most of them being upregulated. Functional annotation analysis based on GO terms was used to categorize identified genes with regard to swimbladder metabolism or response to the infection. In yellow eels, the most prominent category was 'immune response', including various inflammatory components, complement proteins, and immunoglobulins. The elevated expression of several glucose and monocarboxylate transporters indicated an attempt to maintain the level of glucose metabolism, even in due to the infection thickened swimbladder tissue. In silver eel swimbladder tissue, on the contrary, the mRNA levels of only 291 genes were affected. Genes in the categories 'glucose metabolism' and 'ROS metabolism' barely responded to the infection and even the reaction of the immune system was much less pronounced compared to infected yellow eels. However, in the category 'extracellular matrix', the mRNA levels of several mucin genes were strongly elevated, suggesting increased mucus production as a defense reaction against the parasite. The present study revealed a strong reaction to an Anguillicola crassus infection on mRNA expression levels in swimbladder tissue of yellow eels, whereas in silver eels the changes ware almost negligible. A possible explanation for this difference is that the silvering process requires so much energy that there is not much scope to cope with the additional challenge of a nematode infection. Another possible explanation could be that gas-secreting activity of the silver eel swimbladder was largely reduced, which could coincide with a reduced responsiveness to other challenges, like a nematode infection.
Collapse
Affiliation(s)
- Gabriel Schneebauer
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences, University Innsbruck, Innsbruck, Austria
| | | | - Bernd Pelster
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences, University Innsbruck, Innsbruck, Austria
| |
Collapse
|
26
|
MacLauchlan SC, Calabro NE, Huang Y, Krishna M, Bancroft T, Sharma T, Yu J, Sessa WC, Giordano F, Kyriakides TR. HIF-1α represses the expression of the angiogenesis inhibitor thrombospondin-2. Matrix Biol 2017; 65:45-58. [PMID: 28789925 DOI: 10.1016/j.matbio.2017.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 12/22/2022]
Abstract
Thrombospondin-2 (TSP2) is a potent inhibitor of angiogenesis whose expression is dynamically regulated following injury. In the present study, it is shown that HIF-1α represses TSP2 transcription. Specifically, in vitro studies demonstrate that the prolyl hydroxylase inhibitor DMOG or hypoxia decrease TSP2 expression in fibroblasts. This effect is shown to be via a transcriptional mechanism as hypoxia does not alter TSP2 mRNA stability and this effect requires the TSP2 promoter. In addition, the documented repressive effect of nitric oxide (NO) on TSP2 is shown to be non-canonical and involves stabilization of hypoxia inducible factor-1a (HIF-1α). The regulation of TSP2 by hypoxia is supported by the in vivo observation that TSP2 has spatiotemporal expression distinct from regions of hypoxia in gastrocnemius muscle following murine hindlimb ischemia (HLI). A role for TSP2 regulation by HIF-1α is supported by the dysregulation of TSP2 expression in SM22α-cre HIF-1α KO mice following HLI. Indeed, there is a reduction in blood flow recovery in the SM22a-cre HIF-1α KO mice compared to littermate controls following HLI surgery, associated with impaired recovery and increased TSP2 levels. Moreover, SM22α-cre HIF-1α KO smooth muscle cells mice have increased TSP2 mRNA levels that persist in hypoxia. These findings identify a novel, ischemia-induced pro-angiogenic mechanism involving the transcriptional repression of TSP2 by HIF-1α.
Collapse
Affiliation(s)
- Susan C MacLauchlan
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Nicole E Calabro
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Yan Huang
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA; Section of Cardiovascular Medicine, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Meenakshi Krishna
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Tara Bancroft
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Tanuj Sharma
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Jun Yu
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA; Section of Cardiovascular Medicine, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - William C Sessa
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pharmacology, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Frank Giordano
- Section of Cardiovascular Medicine, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Themis R Kyriakides
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
27
|
Claudio-Rizo JA, Rangel-Argote M, Castellano LE, Delgado J, Mata-Mata JL, Mendoza-Novelo B. Influence of residual composition on the structure and properties of extracellular matrix derived hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 28629082 DOI: 10.1016/j.msec.2017.05.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this work, hydrolysates of extracellular matrix (hECM) were obtained from rat tail tendon (TR), bovine Achilles tendon (TAB), porcine small intestinal submucosa (SIS) and bovine pericardium (PB), and they were polymerized to generate ECM hydrogels. The composition of hECM was evaluated by quantifying the content of sulphated glycosaminoglycans (sGAG), fibronectin and laminin. The polymerization process, structure, physicochemical properties, in vitro degradation and biocompatibility were studied and related to their composition. The results indicated that the hECM derived from SIS and PB were significantly richer in sGAG, fibronectin and laminin, than those derived from TAB and TR. These differences in hECM composition influenced the polymerization and the structural characteristics of the fibrillar gel network. Consequently, the swelling, mechanics and degradation of the hydrogels showed a direct relationship with the remaining composition. Moreover, the cytocompatibility and the secretion of transforming growth factor beta-1 (TGF-β1) by macrophages were enhanced in hydrogels with the highest residual content of ECM biomolecules. The results of this work evidenced the role of the ECM molecules remaining after both decellularization and hydrolysis steps to produce tissue derived hydrogels with structure and properties tailored to enhance their performance in tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Jesús A Claudio-Rizo
- Departamento de Ingenierías Química, Electrónica y Biomédica, DCI, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Gto., Mexico; Departamento de Química, DCNE, Universidad de Guanajuato, Noria alta s/n, 36050 Guanajuato, Gto., Mexico; Ingeniería en Biotecnología, Universidad Politécnica de Pénjamo, Carretera Irapuato-La Piedad Km 44, 36921, Pénjamo, Gto., Mexico
| | - Magdalena Rangel-Argote
- Departamento de Ingenierías Química, Electrónica y Biomédica, DCI, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Gto., Mexico; Departamento de Química, DCNE, Universidad de Guanajuato, Noria alta s/n, 36050 Guanajuato, Gto., Mexico
| | - Laura E Castellano
- Departamento de Ingenierías Química, Electrónica y Biomédica, DCI, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Gto., Mexico
| | - Jorge Delgado
- Departamento de Ingenierías Química, Electrónica y Biomédica, DCI, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Gto., Mexico
| | - José L Mata-Mata
- Departamento de Química, DCNE, Universidad de Guanajuato, Noria alta s/n, 36050 Guanajuato, Gto., Mexico.
| | - Birzabith Mendoza-Novelo
- Departamento de Ingenierías Química, Electrónica y Biomédica, DCI, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Gto., Mexico.
| |
Collapse
|
28
|
Morris AH, Stamer DK, Kyriakides TR. The host response to naturally-derived extracellular matrix biomaterials. Semin Immunol 2017; 29:72-91. [PMID: 28274693 DOI: 10.1016/j.smim.2017.01.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 12/13/2022]
Abstract
Biomaterials based on natural materials including decellularized tissues and tissue-derived hydrogels are becoming more widely used for clinical applications. Because of their native composition and structure, these biomaterials induce a distinct form of the foreign body response that differs from that of non-native biomaterials. Differences include direct interactions with cells via preserved moieties as well as the ability to undergo remodeling. Moreover, these biomaterials could elicit adaptive immune responses due to the presence of modified native molecules. Therefore, these biomaterials present unique challenges in terms of understanding the progression of the foreign body response. This review covers this response to natural materials including natural polymers, decellularized tissues, cell-derived matrix, tissue derived hydrogels, and biohybrid materials. With the expansion of the fields of regenerative medicine and tissue engineering, the current repertoire of biomaterials has also expanded and requires continuous investigation of the responses they elicit.
Collapse
Affiliation(s)
- Aaron H Morris
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, United States
| | - D K Stamer
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - T R Kyriakides
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Department of Pathology, Yale University, New Haven, CT, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, United States.
| |
Collapse
|
29
|
Viloria K, Hill NJ. Embracing the complexity of matricellular proteins: the functional and clinical significance of splice variation. Biomol Concepts 2017; 7:117-32. [PMID: 27135623 DOI: 10.1515/bmc-2016-0004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/24/2016] [Indexed: 01/02/2023] Open
Abstract
Matricellular proteins influence wide-ranging fundamental cellular processes including cell adhesion, migration, growth and differentiation. They achieve this both through interactions with cell surface receptors and regulation of the matrix environment. Many matricellular proteins are also associated with diverse clinical disorders including cancer and diabetes. Alternative splicing is a precisely regulated process that can produce multiple isoforms with variable functions from a single gene. To date, the expression of alternate transcripts for the matricellular family has been reported for only a handful of genes. Here we analyse the evidence for alternative splicing across the matricellular family including the secreted protein acidic and rich in cysteine (SPARC), thrombospondin, tenascin and CCN families. We find that matricellular proteins have double the average number of splice variants per gene, and discuss the types of domain affected by splicing in matricellular proteins. We also review the clinical significance of alternative splicing for three specific matricellular proteins that have been relatively well characterised: osteopontin (OPN), tenascin-C (TNC) and periostin. Embracing the complexity of matricellular splice variants will be important for understanding the sometimes contradictory function of these powerful regulatory proteins, and for their effective clinical application as biomarkers and therapeutic targets.
Collapse
|
30
|
da Anunciação ARA, Mess AM, Orechio D, Aguiar BA, Favaron PO, Miglino MA. Extracellular matrix in epitheliochorial, endotheliochorial and haemochorial placentation and its potential application for regenerative medicine. Reprod Domest Anim 2016; 52:3-15. [DOI: 10.1111/rda.12868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/10/2016] [Indexed: 12/20/2022]
Affiliation(s)
- ARA da Anunciação
- School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo Brazil
| | - AM Mess
- School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo Brazil
| | - D Orechio
- School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo Brazil
| | - BA Aguiar
- School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo Brazil
| | - PO Favaron
- School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo Brazil
| | - MA Miglino
- School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo Brazil
| |
Collapse
|
31
|
Sugiyama A, Kanno K, Nishimichi N, Ohta S, Ono J, Conway SJ, Izuhara K, Yokosaki Y, Tazuma S. Periostin promotes hepatic fibrosis in mice by modulating hepatic stellate cell activation via α v integrin interaction. J Gastroenterol 2016; 51:1161-1174. [PMID: 27039906 DOI: 10.1007/s00535-016-1206-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/26/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Periostin is a matricellular protein that serves as a ligand for integrins and is required for tissue remodeling and fibrosis. We investigated the role of periostin in hepatic fibrosis and the mechanisms involved. METHODS Primary hepatic stellate cells (HSCs) and the HSC-immortalized cell line LX2 were used to study the profibrotic property of periostin and the interaction of periostin with integrins. Wild-type and periostin-deficient (periostin-/-) mice were subjected to two distinct models of liver fibrosis induced by hepatotoxic (carbon tetrachloride or thioacetamide) or cholestatic (3.5-diethoxycarbonyl-1.4-dihydrocollidine) injury. RESULTS Periostin expression in HSCs and LX2 cells increased in association with their activation. Gene silencing of periostin resulted in a significant reduction in the levels of profibrotic markers. In addition to enhanced cell migration in response to periostin, LX2 cells incubated on periostin showed significant induction of α-smooth muscle actin and collagen, indicating a profibrotic property. An antibody targeting αvβ5 and αvβ3 integrins suppressed cell attachment to periostin by 60 and 30 % respectively, whereas anti-α5β1 antibody had no effect. Consistently, αv integrin-silenced LX2 cells exhibited decreased attachment to periostin, with a significant reduction in the levels of profibrotic markers. Moreover, these profibrotic effects of periostin were observed in the mouse models. In contrast to extensive collagen deposition in wild-type mice, periostin-/- mice developed less noticeable hepatic fibrosis induced by hepatotoxic and cholestatic liver injury. Accordingly, the profibrotic markers were significantly reduced in periostin-/- mice. CONCLUSION Periostin exerts potent profibrotic activity mediated by αv integrin, suggesting the periostin-αv integrin axis as a novel therapeutic target for hepatic fibrosis.
Collapse
Affiliation(s)
- Akiko Sugiyama
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Keishi Kanno
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Norihisa Nishimichi
- Cell-Matrix Frontier Laboratory, Biomedical Research Unit, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shoichiro Ohta
- Division of Medical Biochemistry, Department of Laboratory Medicine, Saga Medical School, 5-1-1, Nabeshima, Saga, 849-8501, Japan
| | - Junya Ono
- Central Institute, Shino-Test Corporation, 2-29-14, Oonodai Minami-ku, Sagamihara, Kanagawa, 252-0331, Japan
| | - Simon J Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga, 849-8501, Japan
| | - Yasuyuki Yokosaki
- Cell-Matrix Frontier Laboratory, Biomedical Research Unit, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Susumu Tazuma
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
32
|
Identification of the most abundant proteins in equine amniotic fluid by a proteomic approach. Anim Reprod Sci 2016; 174:150-160. [DOI: 10.1016/j.anireprosci.2016.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/06/2016] [Accepted: 10/09/2016] [Indexed: 01/21/2023]
|
33
|
Rohrs JA, Sulistio CD, Finley SD. Predictive model of thrombospondin-1 and vascular endothelial growth factor in breast tumor tissue. NPJ Syst Biol Appl 2016; 2. [PMID: 28713587 PMCID: PMC5507330 DOI: 10.1038/npjsba.2016.30] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Angiogenesis, the formation of new blood capillaries from pre-existing vessels, is a hallmark of cancer. Thus far, strategies for reducing tumor angiogenesis have focused on inhibiting pro-angiogenic factors, and less is known about the therapeutic effects of mimicking the actions of angiogenesis inhibitors. Thrombospondin-1 (TSP1) is an important endogenous inhibitor of angiogenesis that has been investigated as an anti-angiogenic agent. TSP1 impedes the growth of new blood vessels in many ways, including crosstalk with pro-angiogenic factors. Owing to the complexity of TSP1 signaling, a predictive systems biology model would provide quantitative understanding of the angiogenic balance in tumor tissue. Therefore, we have developed a molecular-detailed, mechanistic model of TSP1 and vascular endothelial growth factor (VEGF), a promoter of angiogenesis, in breast tumor tissue. The model predicts the distribution of the angiogenic factors in tumor tissue, revealing that TSP1 is primarily in an inactive, cleaved form owing to the action of proteases, rather than bound to its cellular receptors or to VEGF. The model also predicts the effects of enhancing TSP1’s interactions with its receptors and with VEGF. To provide additional predictions that can guide the development of new anti-angiogenic drugs, we simulate administration of exogenous TSP1 mimetics that bind specific targets. The model predicts that the CD47-binding TSP1 mimetic markedly decreases the ratio of receptor-bound VEGF to receptor-bound TSP1, in favor of anti-angiogenesis. Thus, we have established a model that provides a quantitative framework to study the response to TSP1 mimetics.
Collapse
Affiliation(s)
- Jennifer A Rohrs
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Christopher D Sulistio
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Stacey D Finley
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA.,Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA
| |
Collapse
|
34
|
Galli C, Parisi L, Piergianni M, Smerieri A, Passeri G, Guizzardi S, Costa F, Lumetti S, Manfredi E, Macaluso GM. Improved scaffold biocompatibility through anti-Fibronectin aptamer functionalization. Acta Biomater 2016; 42:147-156. [PMID: 27449338 DOI: 10.1016/j.actbio.2016.07.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 06/17/2016] [Accepted: 07/19/2016] [Indexed: 02/07/2023]
Abstract
UNLABELLED Protein adsorption is the first and decisive step to define cell-biomaterial interaction. Guiding the adsorption of desired protein species may represent a viable approach to promote cell activities conducive to tissue regeneration. The aim of the present study was to investigate whether immobilized anti-Fibronectin aptamers could promote the attachment and growth of osteoblastic cells. Polyethyleneglycole diacrylate/thiolated Hyaluronic Acid hydrogels (PEGDA/tHA) were coated with anti-Fibronectin aptamers. Hydrogel loading and Fibronectin bonding were investigated, through spectrophotometry and Bradford assay. Subsequently, human osteoblasts (hOBs) were cultured on hydrogels for 10days in 2D and 3D cultures. Cells were monitored through microscopy and stained for focal adhesions, microfilaments and nuclei using fluorescence microscopy. Samples were also included in paraffin and stained with Hematoxylin-Eosin. Cell number on hydrogels was quantitated over time. Cell migration into the hydrogels was also studied through Calcein AM staining. Aptamers increased the number of adherent hOBs and their cytoplasm appeared more spread and richer in adhesion complexes than on control hydrogels. Viability assays confirmed that significantly more cells were present on hydrogels in the presence of aptamers, already after 48h of culture. When hOBs were encapsulated into hydrogels, cells were more numerous on aptamer-containing PEGDA-tHA. Cells migrated deeper in the gel in the presence of DNA aptamers, appearing on different focus planes. Our data demonstrate that anti-Fibronectin aptamers promote scaffold enrichment for this protein, thus improving cell adhesion and scaffold colonization. STATEMENT OF SIGNIFICANCE We believe aptamer coating of biomaterials is a useful and viable approach to improve the performance of scaffold materials for both research and possibly clinical purposes, because different medical devices could be envisaged able to capture bioactive mediators from the patients' blood and concentrate them where they are needed, on the biomaterial itself. At the same time, this technology could be used to confer 3D cell culture scaffold with the ability to store proteins, such as Fibronectin, taking it from the medium and capture what is produced by cells. This is an improvement of traditional biomaterials that can be enriched with exogenous molecules but are not able to selectively capture a desired molecule.
Collapse
Affiliation(s)
- C Galli
- Dep. Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy; Centro Universitario di Odontoiatria, University of Parma, Parma, Italy; Istituto Materiali per l'Elettronica ed il Magnetismo IMEM-CNR, Parma, Italy.
| | - L Parisi
- Dep. Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy; Centro Universitario di Odontoiatria, University of Parma, Parma, Italy
| | - M Piergianni
- Dep. Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - A Smerieri
- Centro Universitario di Odontoiatria, University of Parma, Parma, Italy
| | - G Passeri
- Dep. Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - S Guizzardi
- Dep. Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - F Costa
- Dep. Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - S Lumetti
- Dep. Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy; Centro Universitario di Odontoiatria, University of Parma, Parma, Italy
| | - E Manfredi
- Dep. Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy; Centro Universitario di Odontoiatria, University of Parma, Parma, Italy
| | - G M Macaluso
- Dep. Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy; Centro Universitario di Odontoiatria, University of Parma, Parma, Italy; Istituto Materiali per l'Elettronica ed il Magnetismo IMEM-CNR, Parma, Italy
| |
Collapse
|
35
|
Impaired von Willebrand factor adhesion and platelet response in thrombospondin-2 knockout mice. Blood 2016; 128:1642-50. [PMID: 27471233 DOI: 10.1182/blood-2016-03-702845] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/01/2016] [Indexed: 11/20/2022] Open
Abstract
Interactions between collagenous extracellular matrices and von Willebrand factor (VWF) are critical for hemostasis and thrombosis. In the present study, we investigated the contribution of an extracellular matrix (ECM) abnormality to the bleeding diathesis in thrombospondin-2 (TSP2) knockout (KO) mice. First, we performed adoptive bone marrow transplantation and observed that introduction of wild-type (WT) marrow into lethally irradiated TSP2 KO mice did not rescue the bleeding diathesis. However, platelets in transplanted mice displayed an inherent aggregation defect, which complicated interpretation. Second, we performed interposition of arterial segments denuded of endothelium. Denuded TSP2 KO arteries grafted into WT mice remained patent in vivo. In contrast, WT grafts underwent thrombosis and were completely occluded within 24 to 48 hours. The nonthrombogenic property of the TSP2 KO ECM was confirmed in vitro by exposing platelets to TSP2 KO dermal fibroblast (DF)-derived ECM. To further probe the effect of TSP2 deficiency, ECM production and deposition by WT and TSP2 KO DFs was analyzed via polymerase chain reaction, immunofluorescence, and scanning electron microscopy and showed similar patterns. In addition, atomic force microscopy (AFM) analysis of WT and TSP2 KO ECM did not reveal differences in stiffness. In contrast, reduced VWF accumulation on TSP2 KO ECM was observed when matrices were subjected to plasma under physiological flow. AFM utilizing VWF-coated 2-μm beads confirmed the weak binding to TSP2 KO ECM, providing a mechanistic explanation for the lack of thrombus formation. Therefore, our studies show that ECM assembly is critical for interaction of collagen with VWF and subsequent thrombogenic responses.
Collapse
|
36
|
Morris AH, Chang J, Kyriakides TR. Inadequate Processing of Decellularized Dermal Matrix Reduces Cell Viability In Vitro and Increases Apoptosis and Acute Inflammation In Vivo. Biores Open Access 2016; 5:177-87. [PMID: 27500014 PMCID: PMC4948200 DOI: 10.1089/biores.2016.0021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Decellularized tissue scaffolds are commonly used in the clinic because they can be used as substitutes for more traditional biomaterials, while imparting additional physiological effects. Nevertheless, reports of complications associated with their use are widespread and poorly understood. This study probes possible causes of these complications by examining cell viability and apoptosis in response to eluents from decellularized dermis. Using multiple sources of decellularized dermis, this study shows that typical decellularized scaffolds (prepared with commonly used laboratory techniques, as well as purchased from commercial sources) contain soluble components that are cytotoxic and that these components can be removed by extensive washes in cell culture media. In addition, this study demonstrates that these observed in vitro phenotypes correlate with increased apoptosis and acute inflammation when implanted subcutaneously in mice.
Collapse
Affiliation(s)
- Aaron H Morris
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.; Department of Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Julie Chang
- Department of Biomedical Engineering, Yale University , New Haven, Connecticut
| | - Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.; Department of Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut.; Department of Pathology, Yale University, New Haven, Connecticut
| |
Collapse
|
37
|
Abstract
The skeleton is unique from all other tissues in the body because of its ability to mineralize. The incorporation of mineral into bones and teeth is essential to give them strength and structure for body support and function. For years, researchers have wondered how mineralized tissues form and repair. A major focus in this context has been on the role of the extracellular matrix, which harbors key regulators of the mineralization process. In this introductory minireview, we will review some key concepts of matrix biology as it related to mineralized tissues. Concurrently, we will highlight the subject of this special issue covering many aspects of mineralized tissues, including bones and teeth and their associated structures cartilage and tendon. Areas of emphasis are on the generation and analysis of new animal models with permutations of matrix components as well as the development of new approaches for tissue engineering for repair of damaged hard tissue. In assembling key topics on mineralized tissues written by leaders in our field, we hope the reader will get a broad view of the topic and all of its fascinating complexities.
Collapse
Affiliation(s)
- Marian F Young
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States.
| |
Collapse
|
38
|
Lobo SE, Leonel LCP, Miranda CM, Coelho TM, Ferreira GA, Mess A, Abrão MS, Miglino MA. The Placenta as an Organ and a Source of Stem Cells and Extracellular Matrix: A Review. Cells Tissues Organs 2016; 201:239-52. [DOI: 10.1159/000443636] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 11/19/2022] Open
Abstract
The placenta is a temporal, dynamic and diverse organ with important immunological features that facilitate embryonic and fetal development and survival, notwithstanding the fact that several aspects of its formation and function closely resemble tumor progression. Placentation in mammals is commonly used to characterize the evolution of species, including insights into human evolution. Although most placentas are discarded after birth, they are a high-yield source for the isolation of stem/progenitor cells and are rich in extracellular matrix (ECM), representing an important resource for regenerative medicine purposes. Interactions among cells, ECM and bioactive molecules regulate tissue and organ generation and comprise the foundation of tissue engineering. In the present article, differences among several mammalian species regarding the placental types and classifications, phenotypes and potency of placenta-derived stem/progenitor cells, placental ECM components and current placental ECM applications were reviewed to highlight their potential clinical and biomedical relevance.
Collapse
|
39
|
Abstract
Biomaterials that interface with biological systems are used to deliver drugs safely and efficiently; to prevent, detect, and treat disease; to assist the body as it heals; and to engineer functional tissues outside of the body for organ replacement. The field has evolved beyond selecting materials that were originally designed for other applications with a primary focus on properties that enabled restoration of function and mitigation of acute pathology. Biomaterials are now designed rationally with controlled structure and dynamic functionality to integrate with biological complexity and perform tailored, high-level functions in the body. The transition has been from permissive to promoting biomaterials that are no longer bioinert but bioactive. This perspective surveys recent developments in the field of polymeric and soft biomaterials with a specific emphasis on advances in nano- to macroscale control, static to dynamic functionality, and biocomplex materials.
Collapse
|
40
|
Sawyer AJ, Kyriakides TR. Matricellular proteins in drug delivery: Therapeutic targets, active agents, and therapeutic localization. Adv Drug Deliv Rev 2016; 97:56-68. [PMID: 26763408 DOI: 10.1016/j.addr.2015.12.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
Extracellular matrix is composed of a complex array of molecules that together provide structural and functional support to cells. These properties are mainly mediated by the activity of collagenous and elastic fibers, proteoglycans, and proteins such as fibronectin and laminin. ECM composition is tissue-specific and could include matricellular proteins whose primary role is to modulate cell-matrix interactions. In adults, matricellular proteins are primarily expressed during injury, inflammation and disease. Particularly, they are closely associated with the progression and prognosis of cardiovascular and fibrotic diseases, and cancer. This review aims to provide an overview of the potential use of matricellular proteins in drug delivery including the generation of therapeutic agents based on the properties and structures of these proteins as well as their utility as biomarkers for specific diseases.
Collapse
|
41
|
Ghanaati S, Kovács A, Barbeck M, Lorenz J, Teiler A, Sadeghi N, Kirkpatrick CJ, Sader R. Bilayered, non-cross-linked collagen matrix for regeneration of facial defects after skin cancer removal: a new perspective for biomaterial-based tissue reconstruction. J Cell Commun Signal 2015; 10:3-15. [PMID: 26660939 PMCID: PMC4850141 DOI: 10.1007/s12079-015-0313-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/23/2015] [Indexed: 11/13/2022] Open
Abstract
Classically skin defects are covered by split thickness skin grafts or by means of local or regional skin flaps. In the presented case series for the first time a bilayered, non-crossed-linked collagen matrix has been used in an off-label fashion in order to reconstruct facial skin defects following different types of skin cancer resection. The material is of porcine origin and consists of a spongy and a compact layer. The ratio of the two layers is 1:3 in favour of the spongy layer. The aim of the study was to investigate the potential of this matrix for skin regeneration as an alternative to the standard techniques of skin grafts or flaps. Six patients between 39 and 83 years old were included in the study based on a therapeutic trial. The collagen matrix was used in seven defects involving the nose, eyelid, forehead- and posterior scalp regions, and ranging from 1,2 to 6 cm in diameter. Two different head and neck surgeons at two different institutions performed the operations. Each used a different technique in covering the wound following surgery, i.e. with and without a latex-based sheet under the pressure dressing. In three cases cylindrical biopsies were taken after 14 days. In all cases the biomaterial application was performed without any complication and no adverse effects were observed. Clinically, the collagen matrix contributed to a tension-free skin regeneration, independent of the wound dressing used. The newly regenerated skin showed strong similarity to the adjacent normal tissue both in quality and colour. Histological analysis indicated that the spongy layer replaced the defective connective tissue, by providing stepwise integration into the surrounding implantation bed, while the compact layer was infiltrated by mononuclear cells and contributed to its epithelialization by means of a „conductive“process from the surrounding epithelial cells. The clinical and histological data demonstrate that the collagen bilayered matrix used in this series contributes to a „Guided-Integrative-Regeneration-Process“, which still needs to be further understood. The biomimetic nature of this material seems to contribute to physiological matrix remodelling, which probably involves other matricellular proteins essential for soft tissue regeneration. A deeper understanding of the mechanism, involved in the tissue integration of this material and its contribution to soft tissue regeneration based on the direct and indirect effect of matricellular proteins could open new therapeutic avenues for biomaterial-based soft tissue regeneration as an alternative to traditional flap-based plastic surgery.
Collapse
Affiliation(s)
- Shahram Ghanaati
- Frankfurt Orofacial Regenerative Medicine (FORM) Lab, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt am Main, Germany.
| | | | - Mike Barbeck
- Frankfurt Orofacial Regenerative Medicine (FORM) Lab, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jonas Lorenz
- Frankfurt Orofacial Regenerative Medicine (FORM) Lab, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anna Teiler
- Frankfurt Orofacial Regenerative Medicine (FORM) Lab, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nader Sadeghi
- Head and Neck Surgical Oncology, George Washington University, Washington, DC, USA
| | - Charles James Kirkpatrick
- Frankfurt Orofacial Regenerative Medicine (FORM) Lab, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Robert Sader
- Frankfurt Orofacial Regenerative Medicine (FORM) Lab, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
42
|
Innate Immunity and Biomaterials at the Nexus: Friends or Foes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:342304. [PMID: 26247017 PMCID: PMC4515263 DOI: 10.1155/2015/342304] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/15/2015] [Accepted: 06/22/2015] [Indexed: 01/04/2023]
Abstract
Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in function and structural composition. However, one common property amongst biomaterials is the induction of the foreign body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestation of the biomaterial-induced foreign body response are different for each biomaterial, with cases of incompatibility often associated with loss of function. However, unravelling the mechanisms that progress to the formation of the fibrotic capsule highlights the tightly intertwined nature of immunological responses to a seemingly noncanonical “antigen.” In this review, we detail the pathways associated with the foreign body response and describe possible mechanisms of immune involvement that can be targeted. We also discuss methods of modulating the immune response by altering the physiochemical surface properties of the biomaterial prior to implantation. Developments in these areas are reliant on reproducible and effective animal models and may allow a “combined” immunomodulatory approach of adapting surface properties of biomaterials, as well as treating key immune pathways to ultimately reduce the negative consequences of biomaterial implantation.
Collapse
|
43
|
Moore LB, Kyriakides TR. Molecular Characterization of Macrophage-Biomaterial Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 865:109-22. [PMID: 26306446 DOI: 10.1007/978-3-319-18603-0_7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Implantation of biomaterials in vascularized tissues elicits the sequential engagement of molecular and cellular elements that constitute the foreign body response. Initial events include the non-specific adsorption of proteins to the biomaterial surface that render it adhesive for cells such as neutrophils and macrophages. The latter undergo unique activation and in some cases undergo cell-cell fusion to form foreign body giant cells that contribute to implant damage and fibrotic encapsulation. In this review, we discuss the molecular events that contribute to macrophage activation and fusion with a focus on the role of the inflammasome, signaling pathways such as JAK/STAT and NF-κB, and the putative involvement of micro RNAs in the regulation of these processes.
Collapse
|
44
|
Murphy-Ullrich JE, Sage EH. Revisiting the matricellular concept. Matrix Biol 2014; 37:1-14. [PMID: 25064829 PMCID: PMC4379989 DOI: 10.1016/j.matbio.2014.07.005] [Citation(s) in RCA: 291] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/16/2022]
Abstract
The concept of a matricellular protein was first proposed by Paul Bornstein in the mid-1990s to account for the non-lethal phenotypes of mice with inactivated genes encoding thrombospondin-1, tenascin-C, or SPARC. It was also recognized that these extracellular matrix proteins were primarily counter or de-adhesive. This review reappraises the matricellular concept after nearly two decades of continuous investigation. The expanded matricellular family as well as the diverse and often unexpected functions, cellular location, and interacting partners/receptors of matricellular proteins are considered. Development of therapeutic strategies that target matricellular proteins are discussed in the context of pathology and regenerative medicine.
Collapse
Affiliation(s)
- Joanne E Murphy-Ullrich
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, United States.
| | | |
Collapse
|