1
|
Zhu A, Lin Y, Hu X, Lin Z, Lin Y, Xie Q, Ni S, Cheng H, Lu Q, Lai S, Pan G, Chen X, Pang W, Liu C. Treadmill exercise decreases cerebral edema in rats with local cerebral infarction by modulating AQP4 polar expression through the caveolin-1/TRPV4 signaling pathway. Brain Res Bull 2022; 188:155-168. [PMID: 35961528 DOI: 10.1016/j.brainresbull.2022.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/16/2022] [Accepted: 08/06/2022] [Indexed: 11/02/2022]
Abstract
Rehabilitation therapy is beneficial for patients with ischemic stroke. Our previous study showed that treadmill training is conducive to neurological function in rats that underwent middle cerebral artery occlusion (MCAO). However, whether exercise benefits cerebral edema and the underlying mechanism remain unclear. This study investigated the influence of treadmill exercise on brain edema and the mechanism of its formation and elimination. The MCAO model was established with Sprague-Dawley (SD) rats, and lentivirus-mediated caveolin-1 shRNA was used to investigate the role of caveolin-1 in brain edema. As expected, we found that treadmill exercise has a beneficial effect on brain edema after stroke. Training led to a significant increase in the expression of caveolin-1 and TRPV4; and reduced brain water content and blood-brain barrier (BBB) damage. This treatment also changed the localization of aquaporin-4 (AQP4). Moreover, the effect of treadmill training on the polar expression of AQP4 differed over time. The results showed that early treadmill training inhibited the polar expression of AQP4, and later promoted its expression. However, the rats that were injected with the caveolin-1 shRNA lentivirus exhibited enhanced edema. Caveolin-1 shRNA eliminated the protective effect induced by exercise, which is consistent with the downregulation of TRPV4 expression. The findings indicate that treadmill training improves brain edema through the caveolin-1/TRPV4/AQP4 pathway.
Collapse
Affiliation(s)
- Anqi Zhu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Wenzhou, Zhejiang, China
| | - Yao Lin
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Wenzhou, Zhejiang, China
| | - Xuanbo Hu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Wenzhou, Zhejiang, China
| | - Zaizai Lin
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Wenzhou, Zhejiang, China
| | - Yongqiang Lin
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Wenzhou, Zhejiang, China
| | - Qingfeng Xie
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Wenzhou, Zhejiang, China
| | - Shaobo Ni
- The Third Affiliated Hospital of Wenzhou Medical University, No. 108, Wansong Road, Ruian, Zhejiang, China
| | - Hui Cheng
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Wenzhou, Zhejiang, China
| | - Qiaoya Lu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Wenzhou, Zhejiang, China
| | - Shanshan Lai
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Wenzhou, Zhejiang, China
| | - Guoyuan Pan
- Tongde Hospital of Zhejiang Province, No. 234, Gucui Road, Hangzhou, Zhejiang, China
| | - Xiang Chen
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Wenzhou, Zhejiang, China.
| | - Wei Pang
- The Third Affiliated Hospital of Jiamusi University, No. 419, Dexiang Street, Jiamusi, Heilongjiang, China.
| | - Chan Liu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Shrinkage Properties and Their Relationship with Degradation of Proteins Linking the Endomysium and Myofibril in Lamb Meat Submitted to Heating or Air Drying. Foods 2022; 11:foods11152242. [PMID: 35954013 PMCID: PMC9368109 DOI: 10.3390/foods11152242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
The shrinkage of the connective tissue and myofiber of lamb meat submitted to heat treatment or air drying at different storage stages (1, 5 and 7 days) was evaluated herein. The longitudinal and transverse shrinkage of heated lamb meat was significantly influenced by storage time and water bath heating temperature (50 °C, 70 °C and 90 °C) (p < 0.001). In contrast, the shrinkage of air-dried lamb meat was not influenced by storage time (p > 0.05). The microstructure of heated lamb meat, namely, the distance between muscle fascicles, the distance between myofibril networks, the area of myofibril networks, and the endomysium circumference, was significantly influenced by storage time (p < 0.05). During storage, the proportion of muscle fibers completely detached from endomysium increased, which could be due to the progressive degradation of proteins linking the endomysium and myofibril, including β-dystroglycan, α-dystroglycan, integrin-β1, and dystrophin. However, degradation of such proteins did not influence the shrinkage of lamb meat stored for five days or longer, since the decreased distance between myofibril networks indicated a higher shrinkage ratio of the endomysium compared to myofibers in samples air-dried at 35 °C or heated at 90 °C. The effect of these proteins on the shrinkage of heated lamb meat (raw meat stored for 1 day or less time) requires further elucidation.
Collapse
|
3
|
Extracellular matrix: an important regulator of cell functions and skeletal muscle development. Cell Biosci 2021; 11:65. [PMID: 33789727 PMCID: PMC8011170 DOI: 10.1186/s13578-021-00579-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular matrix (ECM) is a kind of connective tissue in the cell microenvironment, which is of great significance to tissue development. ECM in muscle fiber niche consists of three layers: the epimysium, the perimysium, and the endomysium (basal lamina). These three layers of connective tissue structure can not only maintain the morphology of skeletal muscle, but also play an important role in the physiological functions of muscle cells, such as the transmission of mechanical force, the regeneration of muscle fiber, and the formation of neuromuscular junction. In this paper, detailed discussions are made for the structure and key components of ECM in skeletal muscle tissue, the role of ECM in skeletal muscle development, and the application of ECM in biomedical engineering. This review will provide the reader with a comprehensive overview of ECM, as well as a comprehensive understanding of the structure, physiological function, and application of ECM in skeletal muscle tissue.
Collapse
|
4
|
Young CNJ, Chira N, Róg J, Al-Khalidi R, Benard M, Galas L, Chan P, Vaudry D, Zablocki K, Górecki DC. Sustained activation of P2X7 induces MMP-2-evoked cleavage and functional purinoceptor inhibition. J Mol Cell Biol 2019; 10:229-242. [PMID: 28992079 DOI: 10.1093/jmcb/mjx030] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022] Open
Abstract
P2X7 purinoceptor promotes survival or cytotoxicity depending on extracellular adenosine triphosphate (ATP) stimulus intensity controlling its ion channel or P2X7-dependent large pore (LP) functions. Mechanisms governing this operational divergence and functional idiosyncrasy are ill-understood. We have discovered a feedback loop where sustained activation of P2X7 triggers release of active matrix metalloproteinase 2 (MMP-2), which halts ion channel and LP responses via the MMP-2-dependent receptor cleavage. This mechanism operates in cells as diverse as macrophages, dystrophic myoblasts, P2X7-transfected HEK293, and human tumour cells. Given that serum-born MMP-2 activity also blocked receptor functions, P2X7 responses in vivo may decrease in organs with permeable capillaries. Therefore, this mechanism represents an important fine-tuning of P2X7 functions, reliant on both cell-autonomous and extraneous factors. Indeed, it allowed evasion from the ATP-induced cytotoxicity in macrophages and human cancer cells with high P2X7 expression levels. Finally, we demonstrate that P2X7 ablation eliminated gelatinase activity in inflamed dystrophic muscles in vivo. Thus, P2X7 antagonists could be used as an alternative to highly toxic MMP inhibitors in treatments of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Christopher N J Young
- School of Allied Health Sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Natalia Chira
- Molecular Medicine Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Justyna Róg
- Laboratory of Cellular Metabolism, Department of Biochemistry, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Pasteur Str., Warsaw, Poland
| | - Rasha Al-Khalidi
- Molecular Medicine Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Magalie Benard
- PRIMACEN, Cell Imaging Platform of Normandy, Inserm, IBiSA and PISSARO Proteomic Platform, Institute for Research and Innovation in Biomedicine, University of Rouen, Mont-Saint-Aignan, France
| | - Ludovic Galas
- PRIMACEN, Cell Imaging Platform of Normandy, Inserm, IBiSA and PISSARO Proteomic Platform, Institute for Research and Innovation in Biomedicine, University of Rouen, Mont-Saint-Aignan, France
| | - Philippe Chan
- PRIMACEN, Cell Imaging Platform of Normandy, Inserm, IBiSA and PISSARO Proteomic Platform, Institute for Research and Innovation in Biomedicine, University of Rouen, Mont-Saint-Aignan, France
| | - David Vaudry
- PRIMACEN, Cell Imaging Platform of Normandy, Inserm, IBiSA and PISSARO Proteomic Platform, Institute for Research and Innovation in Biomedicine, University of Rouen, Mont-Saint-Aignan, France
| | - Krzysztof Zablocki
- Laboratory of Cellular Metabolism, Department of Biochemistry, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Pasteur Str., Warsaw, Poland
| | - Dariusz C Górecki
- Molecular Medicine Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
5
|
Brancaccio A. A molecular overview of the primary dystroglycanopathies. J Cell Mol Med 2019; 23:3058-3062. [PMID: 30838779 PMCID: PMC6484290 DOI: 10.1111/jcmm.14218] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 01/17/2023] Open
Abstract
Dystroglycan is a major non-integrin adhesion complex that connects the cytoskeleton to the surrounding basement membranes, thus providing stability to skeletal muscle. In Vertebrates, hypoglycosylation of α-dystroglycan has been strongly linked to muscular dystrophy phenotypes, some of which also show variable degrees of cognitive impairments, collectively termed dystroglycanopathies. Only a small number of mutations in the dystroglycan gene, leading to the so called primary dystroglycanopathies, has been described so far, as opposed to the ever-growing number of identified secondary or tertiary dystroglycanopathies (caused by genetic abnormalities in glycosyltransferases or in enzymes involved in the synthesis of the carbohydrate building blocks). The few mutations found within the autonomous N-terminal domain of α-dystroglycan seem to destabilise it to different degrees, without influencing the overall folding and targeting of the dystroglycan complex. On the contrary other mutations, some located at the α/β interface of the dystroglycan complex, seem to be able to interfere with its maturation, thus compromising its stability and eventually leading to the intracellular engulfment and/or partial or even total degradation of the dystroglycan uncleaved precursor.
Collapse
Affiliation(s)
- Andrea Brancaccio
- School of Biochemistry, University of Bristol, Bristol, UK.,Istituto di Chimica del Riconoscimento Molecolare - CNR c/o Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
6
|
Azuara-Medina PM, Sandoval-Duarte AM, Morales-Lázaro SL, Modragón-González R, Vélez-Aguilera G, Gómez-López JDD, Jiménez-Gutiérrez GE, Tiburcio-Félix R, Martínez-Vieyra I, Suárez-Sánchez R, Längst G, Magaña JJ, Winder SJ, Ortega A, Ramos Perlingeiro RDC, Jacobs LA, Cisneros B. The intracellular domain of β-dystroglycan mediates the nucleolar stress response by suppressing UBF transcriptional activity. Cell Death Dis 2019; 10:196. [PMID: 30814495 PMCID: PMC6393529 DOI: 10.1038/s41419-019-1454-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/21/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022]
Abstract
β-dystroglycan (β-DG) is a key component of multiprotein complexes in the plasma membrane and nuclear envelope. In addition, β-DG undergoes two successive proteolytic cleavages that result in the liberation of its intracellular domain (ICD) into the cytosol and nucleus. However, stimuli-inducing ICD cleavage and the physiological relevance of this proteolytic fragment are largely unknown. In this study we show for the first time that β-DG ICD is targeted to the nucleolus where it interacts with the nuclear proteins B23 and UBF (central factor of Pol I-mediated rRNA gene transcription) and binds to rDNA promoter regions. Interestingly DG silencing results in reduced B23 and UBF levels and aberrant nucleolar morphology. Furthermore, β-DG ICD cleavage is induced by different nucleolar stressors, including oxidative stress, acidosis, and UV irradiation, which implies its participation in the response to nucleolar stress. Consistent with this idea, overexpression of β-DG elicited mislocalization and decreased levels of UBF and suppression of rRNA expression, which in turn provoked altered ribosome profiling and decreased cell growth. Collectively our data reveal that β-DG ICD acts as negative regulator of rDNA transcription by impeding the transcriptional activity of UBF, as a part of the protective mechanism activated in response to nucleolar stress.
Collapse
Affiliation(s)
- Paulina Margarita Azuara-Medina
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Ariana María Sandoval-Duarte
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Sara L Morales-Lázaro
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Ricardo Modragón-González
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Griselda Vélez-Aguilera
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Juan de Dios Gómez-López
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Guadalupe Elizabeth Jiménez-Gutiérrez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Reynaldo Tiburcio-Félix
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Ivette Martínez-Vieyra
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, 07320, Ciudad de México, Mexico
| | - Rocío Suárez-Sánchez
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación, 14389, Ciudad de México, Mexico
| | - Gernot Längst
- Biochemistry Centre Regensburg (BCR), Universität Regensburg, 93053, Regensburg, Germany
| | - Jonathan Javier Magaña
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación, 14389, Ciudad de México, Mexico
| | - Steve J Winder
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07000, Ciudad de México, Mexico
| | | | - Laura A Jacobs
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico.
| |
Collapse
|
7
|
Alameddine HS, Morgan JE. Matrix Metalloproteinases and Tissue Inhibitor of Metalloproteinases in Inflammation and Fibrosis of Skeletal Muscles. J Neuromuscul Dis 2018; 3:455-473. [PMID: 27911334 PMCID: PMC5240616 DOI: 10.3233/jnd-160183] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In skeletal muscles, levels and activity of Matrix MetalloProteinases (MMPs) and Tissue Inhibitors of MetalloProteinases (TIMPs) have been involved in myoblast migration, fusion and various physiological and pathological remodeling situations including neuromuscular diseases. This has opened perspectives for the use of MMPs' overexpression to improve the efficiency of cell therapy in muscular dystrophies and resolve fibrosis. Alternatively, inhibition of individual MMPs in animal models of muscular dystrophies has provided evidence of beneficial, dual or adverse effects on muscle morphology or function. We review here the role played by MMPs/TIMPs in skeletal muscle inflammation and fibrosis, two major hurdles that limit the success of cell and gene therapy. We report and analyze the consequences of genetic or pharmacological modulation of MMP levels on the inflammation of skeletal muscles and their repair in light of experimental findings. We further discuss how the interplay between MMPs/TIMPs levels, cytokines/chemokines, growth factors and permanent low-grade inflammation favor cellular and molecular modifications resulting in fibrosis.
Collapse
Affiliation(s)
- Hala S Alameddine
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, UK
| |
Collapse
|
8
|
Gioia M, Fasciglione GF, Sbardella D, Sciandra F, Casella M, Camerini S, Crescenzi M, Gori A, Tarantino U, Cozza P, Brancaccio A, Coletta M, Bozzi M. The enzymatic processing of α-dystroglycan by MMP-2 is controlled by two anchoring sites distinct from the active site. PLoS One 2018; 13:e0192651. [PMID: 29447293 PMCID: PMC5813964 DOI: 10.1371/journal.pone.0192651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/26/2018] [Indexed: 11/19/2022] Open
Abstract
Dystroglycan (DG) is a membrane receptor, belonging to the dystrophin-glycoprotein complex (DGC) and formed by two subunits, α-dystroglycan (α-DG) and β-dystroglycan (β -DG). The C-terminal domain of α-DG and the N-terminal extracellular domain of β -DG are connected, providing a link between the extracellular matrix and the cytosol. Under pathological conditions, such as cancer and muscular dystrophies, DG may be the target of metalloproteinases MMP-2 and MMP-9, contributing to disease progression. Previously, we reported that the C-terminal domain α-DG (483–628) domain is particularly susceptible to the catalytic activity of MMP-2; here we show that the α-DG 621–628 region is required to carry out its complete digestion, suggesting that this portion may represent a MMP-2 anchoring site. Following this observation, we synthesized an α-DG based-peptide, spanning the (613–651) C-terminal region. The analysis of the kinetic and thermodynamic parameters of the whole and the isolated catalytic domain of MMP-2 (cdMMP-2) has shown its inhibitory properties, indicating the presence of (at least) two binding sites for the peptide, both located within the catalytic domain, only one of the two being topologically distinct from the catalytic active groove. However, the different behavior between whole MMP-2 and cdMMP-2 envisages the occurrence of an additional binding site for the peptide on the hemopexin-like domain of MMP-2. Interestingly, mass spectrometry analysis has shown that α-DG (613–651) peptide is cleavable even though it is a very poor substrate of MMP-2, a feature that renders this molecule a promising template for developing a selective MMP-2 inhibitor.
Collapse
Affiliation(s)
- Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Roma, Italy
- CIRCMSB, Bari, Italy
- * E-mail: (MG); (MB)
| | - Giovanni Francesco Fasciglione
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Roma, Italy
- CIRCMSB, Bari, Italy
| | - Diego Sbardella
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Roma, Italy
- CIRCMSB, Bari, Italy
| | | | | | | | | | | | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Roma, Italy
| | - Paola Cozza
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Roma, Italy
| | - Andrea Brancaccio
- CNR Institute for Molecular Recognition, Roma Italy
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Roma, Italy
- CIRCMSB, Bari, Italy
| | - Manuela Bozzi
- CNR Institute for Molecular Recognition, Roma Italy
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Roma Italy
- * E-mail: (MG); (MB)
| |
Collapse
|
9
|
Préclinique. Med Sci (Paris) 2017; 33 Hors série n°1:58-60. [PMID: 29139390 DOI: 10.1051/medsci/201733s113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
β-Dystroglycan cleavage by matrix metalloproteinase-2/-9 disturbs aquaporin-4 polarization and influences brain edema in acute cerebral ischemia. Neuroscience 2016; 326:141-157. [PMID: 27038751 DOI: 10.1016/j.neuroscience.2016.03.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 03/19/2016] [Accepted: 03/23/2016] [Indexed: 01/31/2023]
Abstract
Dystroglycan (DG) is widely expressed in various tissues, and throughout the cerebral microvasculature. It consists of two subunits, α-DG and β-DG, and the cleavage of the latter by matrix metalloproteinase (MMP)-2 and -9 underlies a number of physiological and pathological processes. However, the involvement of MMP-2/-9-mediated β-DG cleavage in cerebral ischemia remains uncertain. In astrocytes, DG is crucial for maintaining the polarization of aquaporin-4 (AQP4), which plays a role in the regulation of cytotoxic and vasogenic edema. The present study aimed to explore the effects of MMP-2/-9-mediated β-DG cleavage on AQP4 polarization and brain edema in acute cerebral ischemia. A model of cerebral ischemia was established via permanent middle cerebral artery occlusion (pMCAO) in male C57BL/6 mice. Western blotting, real-time polymerase chain reaction (PCR), immunohistochemical staining, immunofluorescent staining, electron microscopy, and light microscopy were used. Captopril was applied as a selective MMP-2/-9 inhibitor. Recombinant mouse MMP (rmMMP)-2 and -9 were used in an in vitro cleavage experiment. The present study demonstrated evidence of β-DG cleavage by MMP-2/-9 in pMCAO mouse brains; this cleavage was implicated in AQP4 redistribution and brain edema in cerebral ischemia. In addition, captopril exacerbated cytotoxic edema and ameliorated vasogenic edema at 24h after pMCAO, and alleviated brain edema and neurological deficit at 48h and 72h. In conclusion, this study provides novel insight into the effects of MMP-2/-9-mediated β-DG cleavage in acute cerebral ischemia. Such findings might facilitate the development of a therapeutic strategy for the optimization of MMP-2/-9 targeted treatment in cerebral ischemia.
Collapse
|
11
|
Anaya-Segura MA, García-Martínez FA, Montes-Almanza LA, Díaz BG, Avila-Ramírez G, Alvarez-Maya I, Coral-Vazquez RM, Mondragón-Terán P, Escobar-Cedillo RE, García-Calderón N, Vazquez-Cardenas NA, García S, López-Hernandez LB. Non-Invasive Biomarkers for Duchenne Muscular Dystrophy and Carrier Detection. Molecules 2015; 20:11154-72. [PMID: 26091074 PMCID: PMC6272409 DOI: 10.3390/molecules200611154] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 01/16/2023] Open
Abstract
Non-invasive biological indicators of the absence/presence or progress of the disease that could be used to support diagnosis and to evaluate the effectiveness of treatment are of utmost importance in Duchenne Muscular Dystrophy (DMD). This neuromuscular disorder affects male children, causing weakness and disability, whereas female relatives are at risk of being carriers of the disease. A biomarker with both high sensitivity and specificity for accurate prediction is preferred. Until now creatine kinase (CK) levels have been used for DMD diagnosis but these fail to assess disease progression. Herein we examined the potential applicability of serum levels of matrix metalloproteinase 9 (MMP-9) and matrix metalloproteinase 2 (MMP-2), tissue inhibitor of metalloproteinases 1 (TIMP-1), myostatin (GDF-8) and follistatin (FSTN) as non-invasive biomarkers to distinguish between DMD steroid naïve patients and healthy controls of similar age and also for carrier detection. Our data suggest that serum levels of MMP-9, GDF-8 and FSTN are useful to discriminate DMD from controls (p < 0.05), to correlate with some neuromuscular assessments for DMD, and also to differentiate between Becker muscular dystrophy (BMD) and Limb-girdle muscular dystrophy (LGMD) patients. In DMD individuals under steroid treatment, GDF-8 levels increased as FSTN levels decreased, resembling the proportions of these proteins in healthy controls and also the baseline ratio of patients without steroids. GDF-8 and FSTN serum levels were also useful for carrier detection (p < 0.05). Longitudinal studies with larger cohorts are necessary to confirm that these molecules correlate with disease progression. The biomarkers presented herein could potentially outperform CK levels for carrier detection and also harbor potential for monitoring disease progression.
Collapse
Affiliation(s)
- Monica Alejandra Anaya-Segura
- Research Center in Technology and Design Assistance of Jalisco State (CIATEJ, AC), National Council of Science and Technology (CONACYT), Guadalajara 44270, Mexico.
| | | | - Luis Angel Montes-Almanza
- National Medical Centre \"20 de Noviembre\", Institute for Social Security of State Workers, Mexico City 03100, Mexico.
| | | | | | - Ikuri Alvarez-Maya
- Research Center in Technology and Design Assistance of Jalisco State (CIATEJ, AC), National Council of Science and Technology (CONACYT), Guadalajara 44270, Mexico.
| | - Ramón Mauricio Coral-Vazquez
- Studies Section of Postgraduate and Research, School of Medicine, National Polytechnic Institute, Mexico City 11340, Mexico.
| | - Paul Mondragón-Terán
- National Medical Centre \"20 de Noviembre\", Institute for Social Security of State Workers, Mexico City 03100, Mexico.
| | | | - Noemí García-Calderón
- Asociación de Distrofia Muscular de Occidente A.C., Guadalajara 44380, Mexico.
- Mexican Institute of Social Security-CMNO, Guadalajara 44340, Mexico.
| | | | - Silvia García
- National Medical Centre \"20 de Noviembre\", Institute for Social Security of State Workers, Mexico City 03100, Mexico.
| | - Luz Berenice López-Hernandez
- National Medical Centre \"20 de Noviembre\", Institute for Social Security of State Workers, Mexico City 03100, Mexico.
| |
Collapse
|
12
|
Bozzi M, Sciandra F, Brancaccio A. Role of gelatinases in pathological and physiological processes involving the dystrophin–glycoprotein complex. Matrix Biol 2015; 44-46:130-7. [DOI: 10.1016/j.matbio.2015.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 12/16/2022]
|