1
|
He Y, Deng S, Wang Y, Wang X, Huang Q, Cheng J, Wang D, Lyu G. Evaluation of ovarian stiffness and its biological mechanism using shear wave elastography in polycystic ovary syndrome. Sci Rep 2025; 15:585. [PMID: 39747947 PMCID: PMC11695736 DOI: 10.1038/s41598-024-84338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder with various contributing factors. Shear wave elastography (SWE) is a contemporary noninvasive imaging technique that reports on the elasticity of tissues. This study aimed to evaluate ovarian stiffness in patients with PCOS using transvaginal SWE, and investigate the potential biological mechanisms underlying increased ovarian stiffness. Patients with PCOS and healthy controls underwent transvaginal 2D ultrasound and SWE to measure the number of follicles, ovarian volume, and ovarian elasticity. Multivariate logistic regression analysis was conducted to identify risk factors for PCOS. A rat model of PCOS was established to further investigate the biological basis of increased ovarian stiffness. Histological analysis, enzyme-linked immunosorbent assay, quantitative reverse transcription-polymerase chain reaction, western blotting, transcriptomics, and proteomics were performed to assess alterations in fibrosis and basement membrane (BM) gene expression. The results demonstrated that patients with PCOS (n = 59) showed an increased number of follicles, ovarian volume, and SWE (mean and max) compared with controls (n = 56; P < 0.001). The number of follicles, ovarian volume, and SWE_mean were identified as independent risk factors for PCOS (P < 0.05). SWE_mean ≥ 12.5 kPa demonstrated an area under the curve of 0.816 for PCOS diagnosis and was positively correlated with AMH levels (r = 0.6776, P < 0.0001). In the rat model, increased ovarian stiffness was associated with significant fibrosis and altered expression of fibrosis-related markers. Transcriptomic and proteomic analyses revealed that BM gene alterations were correlated with ovarian stiffness, which was further validated using PCOS patient data from the Gene Expression Omnibus database. In conclusion, SWE is a valuable technique for diagnosing PCOS by detecting increased ovarian stiffness, which may be associated with alterations in the expression of BMs, thereby mediating ovarian fibrosis.
Collapse
Affiliation(s)
- Yifang He
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Shuangping Deng
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Yanli Wang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Xiali Wang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
- Quanzhou Medical College, Quanzhou, China
| | - Qingqing Huang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Jing Cheng
- Quanzhou Medical College, Quanzhou, China
| | - Dandan Wang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Guorong Lyu
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
- Quanzhou Medical College, Quanzhou, China.
| |
Collapse
|
2
|
Makhlouf A, Wang A, Sato N, Rosa VS, Shahbazi MN. Integrin signaling in pluripotent cells acts as a gatekeeper of mouse germline entry. SCIENCE ADVANCES 2024; 10:eadk2252. [PMID: 39231227 PMCID: PMC11373592 DOI: 10.1126/sciadv.adk2252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Primordial germ cells (PGCs) are the precursors of gametes and the sole mechanism by which animals transmit genetic information across generations. In the mouse embryo, the transcriptional and epigenetic regulation of PGC specification has been extensively characterized. However, the initial event that triggers the soma-germline segregation remains poorly understood. Here, we uncover a critical role for the basement membrane in regulating germline entry. We show that PGCs arise in a region of the mouse embryo that lacks contact with the basement membrane, and the addition of exogenous extracellular matrix (ECM) inhibits both PGC and PGC-like cell (PGCLC) specification in mouse embryos and stem cell models, respectively. Mechanistically, we demonstrate that the engagement of β1 integrin with laminin blocks PGCLC specification by preventing the Wnt signaling-dependent down-regulation of the PGC transcriptional repressor, Otx2. In this way, the physical segregation of cells away from the basement membrane acts as a morphogenetic fate switch that controls the soma-germline bifurcation.
Collapse
Affiliation(s)
- Aly Makhlouf
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Anfu Wang
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Nanami Sato
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Viviane S Rosa
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | |
Collapse
|
3
|
Li J, You D, Hu L, Yang Y, Gao S, Bai W. Identification and validation of basement membrane-associated gene AGRN as prognostic and immune-associated biomarkers in colorectal cancer patients. J Cell Mol Med 2024; 28:e70010. [PMID: 39183444 PMCID: PMC11345205 DOI: 10.1111/jcmm.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/16/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer (COCA) has a poor prognosis, with growing evidence implicating basement membranes (BMs) in cancer progression. Our goal was to investigate the role and predictive significance of BMs in COCA patients. We obtained BMs-related genes from cutting-edge research and used TCGA and GTEx databases for mRNA expression and patient information. Cox regression and LASSO regression were used for prognostic gene selection and risk model construction. We compared prognosis using Kaplan-Meier analysis and examined drug sensitivity differences. The CMAP dataset identified potential small molecule drugs. In vitro tests involved suppressing a crucial gene to observe its impact on tumour metastasis. We developed a 12 BMs-based approach, finding it to be an independent prognostic factor. Functional analysis showed BMs concentrated in cancer-associated pathways, correlating with immune cell infiltration and immune checkpoint activation. High-risk individuals exhibited increased drug sensitivity. AGRN levels were linked to decreased progression-free survival (p < 0.001). AGRN knockdown suppressed tumour growth and metastasis. Our study offers new perspectives on BMs in COCA, concluding that AGRN is a dependable biomarker for patient survival and prognosis.
Collapse
Affiliation(s)
- Jianrong Li
- Department of General Surgery Sciences, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer HospitalChinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanChina
| | - Daofeng You
- Emergency Department of First Hospital Affiliated to Hebei Medical UniversityShijiazhuangChina
| | - Linjie Hu
- Department of General Surgery Sciences, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer HospitalChinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanChina
| | - Yusi Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi HospitalTaiyuanChina
| | - Sheng Gao
- Department of General Surgery Sciences, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer HospitalChinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanChina
| | - Wenqi Bai
- Department of General Surgery Sciences, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer HospitalChinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
4
|
Li B, Che Y, Zhu P, Xu Y, Yu H, Li D, Ding X. A novel basement membrane-related gene signature predicts prognosis and immunotherapy response in hepatocellular carcinoma. Front Oncol 2024; 14:1388016. [PMID: 39070142 PMCID: PMC11272612 DOI: 10.3389/fonc.2024.1388016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Background Basement membranes (BMs) have recently emerged as significant players in cancer progression and metastasis, rendering them promising targets for potential anti-cancer therapies. Here, we aimed to develop a novel signature of basement membrane-related genes (BMRGs) for the prediction of clinical prognosis and tumor microenvironment in hepatocellular carcinoma (HCC). Methods The differentially expressed BMRGs were subjected to univariate Cox regression analysis to identify BMRGs with prognostic significance. A six-BMRGs risk score model was constructed using Least Absolute Shrinkage Selection Operator (LASSO) Cox regression. Furthermore, a nomogram incorporating the BMRGs score and other clinicopathological features was developed for accurate prediction of survival rate in patients with HCC. Results A total of 121 differentially expressed BMRGs were screened from the TCGA HCC cohort. The functions of these BMRGs were significantly enriched in the extracellular matrix structure and signal transduction. The six-BMRGs risk score, comprising CD151, CTSA, MMP1, ROBO3, ADAMTS5 and MEP1A, was established for the prediction of clinical prognosis, tumor microenvironment characteristics, and immunotherapy response in HCC. Kaplan-Meier analysis revealed that the BMRGs score-high group showed a significantly shorter overall survival than BMRGs score-low group. A nomogram showed that the BMRGs score could be used as a new effective clinical predictor and can be combined with other clinical variables to improve the prognosis of patients with HCC. Furthermore, the high BMRGs score subgroup exhibited an immunosuppressive state characterized by infiltration of macrophages and T-regulatory cells, elevated tumor immune dysfunction and exclusion (TIDE) score, as well as enhanced expression of immune checkpoints including PD-1, PD-L1, CTLA4, PD-L2, HAVCR2, and TIGIT. Finally, a multi-step analysis was conducted to identify two pivotal hub genes, PKM and ITGA3, in the high-scoring group of BMRGs, which exhibited significant associations with an unfavorable prognosis in HCC. Conclusion Our study suggests that the BMRGs score can serve as a robust biomarker for predicting clinical outcomes and evaluating the tumor microenvironment in patients with HCC, thereby facilitating more effective clinical implementation of immunotherapy.
Collapse
Affiliation(s)
- Bingyao Li
- Henan Provincial People’s Hospital, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Provincial Key Medical Laboratory for Hepatobiliary and Pancreatic Diseases, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Yingkun Che
- Henan Provincial Key Medical Laboratory for Hepatobiliary and Pancreatic Diseases, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Puhua Zhu
- Henan Provincial Key Medical Laboratory for Hepatobiliary and Pancreatic Diseases, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
- Department of Hepatobiliary Pancreatic Surgery, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Yuanpeng Xu
- Henan Provincial Key Medical Laboratory for Hepatobiliary and Pancreatic Diseases, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Haibo Yu
- Henan Provincial People’s Hospital, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Hepatobiliary Pancreatic Surgery, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Deyu Li
- Henan Provincial People’s Hospital, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Provincial Key Medical Laboratory for Hepatobiliary and Pancreatic Diseases, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
- Department of Hepatobiliary Pancreatic Surgery, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Xiangming Ding
- Henan Provincial People’s Hospital, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Gastroenterology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
- Henan Key Medical Laboratory for Molecular Immunology of Digestive Diseases, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Shengxiao X, Xinxin S, Yunxiang Z, Zhijie T, Xiaofei T. Identification of a basement membrane-related gene signature for predicting prognosis, immune infiltration, and drug sensitivity in colorectal cancer. Front Oncol 2024; 14:1428176. [PMID: 39011483 PMCID: PMC11246870 DOI: 10.3389/fonc.2024.1428176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
Background Colorectal cancer (CRC) is the most common malignancy affecting the gastrointestinal tract. Extensive research indicates that basement membranes (BMs) may play a crucial role in the initiation and progression of the disease. Methods Data on the RNA expression patterns and clinicopathological information of patients with CRC were sourced from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. A BM-linked risk signature for the prediction of overall survival (OS) was formulated using univariate Cox regression and combined machine learning techniques. Survival outcomes, functional pathways, the tumor microenvironment (TME), and responses to both immunotherapy and chemotherapy within varying risk classifications were also investigated. The expression trends of the model genes were evaluated by reverse transcription polymerase chain reaction (RT-PCR) and the Human Protein Atlas (HPA) database. Results A nine-gene risk signature containing UNC5C, TINAG, TIMP1, SPOCK3, MMP1, AGRN, UNC5A, ADAMTS4, and ITGA7 was constructed for the prediction of outcomes in patients with CRC. The expression profiles of these candidate genes were verified using RT-PCR and the HPA database and were found to be consistent with the findings on differential gene expression in the TCGA dataset. The validity of the signature was confirmed using the GEO cohort. The patients were stratified into different risk groups according to differences in clinicopathological characteristics, TME features, enrichment functions, and drug sensitivities. Lastly, the prognostic nomogram model based on the risk score was found to be effective in identifying high-risk patients and predicting OS. Conclusion A basement membrane-related risk signature was constructed and found to be effective for predicting the prognosis of patients with CRC.
Collapse
Affiliation(s)
- Xiang Shengxiao
- Department of Science and Education, Suqian First Hospital, Suqian, Jiangsu, China
| | - Sun Xinxin
- Department of Science and Education, Yangzhou Maternal and Child Health Hospital, Yangzhou, Jiangsu, China
| | - Zhu Yunxiang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Tang Zhijie
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Tang Xiaofei
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Yurchenco PD, Kulczyk AW. Polymerizing laminins in development, health, and disease. J Biol Chem 2024; 300:107429. [PMID: 38825010 PMCID: PMC11260871 DOI: 10.1016/j.jbc.2024.107429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/12/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
Polymerizing laminins are multi-domain basement membrane (BM) glycoproteins that self-assemble into cell-anchored planar lattices to establish the initial BM scaffold. Nidogens, collagen-IV and proteoglycans then bind to the scaffold at different domain loci to create a mature BM. The LN domains of adjacent laminins bind to each other to form a polymer node, while the LG domains attach to cytoskeletal-anchoring integrins and dystroglycan, as well as to sulfatides and heparan sulfates. The polymer node, the repeating unit of the polymer scaffold, is organized into a near-symmetrical triskelion. The structure, recently solved by cryo-electron microscopy in combination with AlphaFold2 modeling and biochemical studies, reveals how the LN surface residues interact with each other and how mutations cause failures of self-assembly in an emerging group of diseases, the LN-lamininopathies, that include LAMA2-related dystrophy and Pierson syndrome.
Collapse
Affiliation(s)
- Peter D Yurchenco
- Department of Pathology & Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA.
| | - Arkadiusz W Kulczyk
- Department of Biochemistry and Microbiology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
7
|
Zhou F, Liu Y, Liu D, Xie Y, Zhou X. Identification of basement membrane-related signatures for estimating prognosis, immune infiltration landscape and drug candidates in pancreatic adenocarcinoma. J Cancer 2024; 15:401-417. [PMID: 38169540 PMCID: PMC10758037 DOI: 10.7150/jca.89665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024] Open
Abstract
Background: Pancreatic adenocarcinoma (PAAD) is a frequent digestive system cancer, which has high mortality and bad outcome. However, the role of basement membrane (BM)-related gene in assessing patient's outcome, microenvironment and treatment response remain unclear. Methods: Basement membrane (BM)-associated genes were detected by univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses using data from the TCGA databases. A risk score system was constructed to distinguish patients in the high- and low-risk groups. Prognostic gene distribution in various immune cell forms was explored through scRNA-seq. Immune cell infiltration was assessed using CIBERSORT and ESTIMATE. The IC50 of common chemotherapeutic drugs and useful molecule compounds were evaluated. The mRNA and protein expression of important signatures were validated utilizing GEPIA and HPA databases. Results: Compared to low risk PAAD patients, PAAD patients with high risk showed a significant much worse overall survival (OS). Risk score of BM-associated genes could estimate patient outcome well, and areas under the curve (AUC) of receiver operating characteristic (ROC) survival curve were 0.76, 0.85, and 0.85 at 1-, 3-, and 5-year. Clinical impact curve (CIC) curve demonstrated the clinical importance of risk score. scRNA-seq revealed that BM-related genes were mainly distributed in malignant cells. Significant variations existed in the immune microenvironment, immune checkpoint expression and chemotherapy response between the studied groups. Furthermore, the mRNA expression levels of FAM83A, LY6D, MET, MUC16, MYEOV, and WNT7A were elevated in PAAD tissues, while the protein expression patterns of LY6D, MET, MUC16, and WNT7A were higher in tumor sample. RO-90-7501, Scriptaid, TG-101348, XMD-892, and XMD-1150 may be valuable small molecule drugs to treat PAAD. Conclusions: In conclusion, we develop a novel BM-related gene signature provide new insights and targets for the diagnosis, outcome estimation, candidate drugs and therapy management of PAAD patients.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi Province, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi Province, China
| | - Yang Liu
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi Province, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi Province, China
| | - Dingwei Liu
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi Province, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi Province, China
| | - Yong Xie
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi Province, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi Province, China
| | - Xiaojiang Zhou
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi Province, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi Province, China
| |
Collapse
|
8
|
Lv R, Duan L, Gao J, Si J, Feng C, Hu J, Zheng X. Bioinformatics-based analysis of the roles of basement membrane-related gene AGRN in systemic lupus erythematosus and pan-cancer development. Front Immunol 2023; 14:1231611. [PMID: 37841281 PMCID: PMC10570813 DOI: 10.3389/fimmu.2023.1231611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is an autoimmune disease involving many systems and organs, and individuals with SLE exhibit unique cancer risk characteristics. The significance of the basement membrane (BM) in the occurrence and progression of human autoimmune diseases and tumors has been established through research. However, the roles of BM-related genes and their protein expression mechanisms in the pathogenesis of SLE and pan-cancer development has not been elucidated. Methods In this study, we applied bioinformatics methods to perform differential expression analysis of BM-related genes in datasets from SLE patients. We utilized LASSO logistic regression, SVM-RFE, and RandomForest to screen for feature genes and construct a diagnosis model for SLE. In order to attain a comprehensive comprehension of the biological functionalities of the feature genes, we conducted GSEA analysis, ROC analysis, and computed levels of immune cell infiltration. Finally, we sourced pan-cancer expression profiles from the TCGA and GTEx databases and performed pan-cancer analysis. Results We screened six feature genes (AGRN, PHF13, SPOCK2, TGFBI, COL4A3, and COLQ) to construct an SLE diagnostic model. Immune infiltration analysis showed a significant correlation between AGRN and immune cell functions such as parainflammation and type I IFN response. After further gene expression validation, we finally selected AGRN for pan-cancer analysis. The results showed that AGRN's expression level varied according to distinct tumor types and was closely correlated with some tumor patients' prognosis, immune cell infiltration, and other indicators. Discussion In conclusion, BM-related genes play a pivotal role in the pathogenesis of SLE, and AGRN shows immense promise as a target in SLE and the progression of multiple tumors.
Collapse
Affiliation(s)
- Rundong Lv
- Department of Clinical Pharmacy, Zibo Central Hospital, Zibo, Shandong, China
| | - Lei Duan
- Department of Clinical Pharmacy, Zibo Central Hospital, Zibo, Shandong, China
| | - Jie Gao
- Department of Clinical Pharmacy, Zibo Central Hospital, Zibo, Shandong, China
| | - Jigang Si
- Department of Clinical Pharmacy, Zibo Central Hospital, Zibo, Shandong, China
| | - Chen Feng
- Department of Pharmacy, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Hu
- Department of Children’s Health, Zibo Central Hospital, Zibo, Shandong, China
| | - Xiulan Zheng
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Wang Z, Qin H, Yang Q, Jia J, Yang L, Zhong S, Yuan G. Identification of Basement Membrane Genes and Related Molecular Subtypes in Nonalcoholic Fatty Liver Disease. Horm Metab Res 2023; 55:546-554. [PMID: 37268001 DOI: 10.1055/a-2081-1098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Basement membranes (BMs) are widely distributed and highly specialized extracellular matrix (ECM). The goal of this study was to explore novel genes associated with nonalcoholic fatty liver disease (NAFLD) from the perspective of BMs. Sequencing results of 304 liver biopsy samples about NAFLD were systematically obtained from the Gene Expression Omnibus (GEO) database. Biological changes during NAFLD progression and hub BM-associated genes were investigated by differential gene analysis and weighted gene co-expression network analysis (WGCNA), respectively. The nonalcoholic steatohepatitis (NASH) subgroups were identified based on hub BM-associated genes expression, as well as the differences in Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways and immune microenvironment between different subgroups were compared. Extracellular matrix (ECM) seems to play an important role in the development of NAFLD. Three representative BM-associated genes (ADAMTS2, COL5A1, and LAMC3) were finally identified. Subgroup analysis results suggested that there were significant changes in KEGG signaling pathways related to metabolism, extracellular matrix, cell proliferation, differentiation, and death. There were also changes in macrophage polarization, neutrophils, and dendritic cells abundance, and so on. In conclusion, the present study identified novel potential BM-associated biomarkers and further explored the heterogeneity of NASH that might provide new insights into the diagnosis, assessment, management, and personalized treatment of NAFLD.
Collapse
Affiliation(s)
- Zhaoxiang Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Huijuan Qin
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qichao Yang
- Department of Endocrinology, Jiangsu University Affiliated Wujin Hospital, Changzhou, China
| | - Jue Jia
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ling Yang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shao Zhong
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Gui H, Chen X, Ye L, Ma H. Seven basement membrane-specific expressed genes are considered potential biomarkers for the diagnosis and treatment of diabetic nephropathy. Acta Diabetol 2023; 60:493-505. [PMID: 36627452 DOI: 10.1007/s00592-022-02027-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023]
Abstract
AIMS Diabetic nephropathy (DN) is a diabetes-related chronic vasculitis. DN diminishes kidney function over time and, of course, leads to end stage renal disease in people (ESRD). In spite of the advances in diagnostic and treatment methods for DN, DN continues to impose a significant physical and psychological burden on patients, severely impacting their quality of life, making the hunt for novel therapeutic targets necessary. METHODS The Gene Expression Omnibus (GEO) microarray datasets GSE1009, GSE30122, GSE142153, and GSE96804 were downloaded to identify differentially expressed genes (DEGs) in kidney tissues from patients in the DN group and normal controls. These three datasets were examined for genes associated with basement membranes (BMs) with differential gene expression. The target genes were then subjected to gene ontology (GO) annotation and Kyoto Gene and Genome Encyclopedia (KEGG) pathway enrichment analysis. BM-related genes underwent PPI network analysis and screening of the top 10 hub genes, along with immune infiltration analysis and column line graph model development. Finally, we conducted DN therapeutic medication prediction and the creation of something like a miRNA network for genetic markers with BMs. RESULTS Seven candidate BM-related genes (COL4A1, COL4A2, COL6A2, COL6A3, FN1, ITGQ4, and LAMB1) with acceptable helps the healthcare were discovered. Enrichment analysis of diabetes-related genes event occurred the role of biological processes including extracellular matrix organization, extracellular structural organization, and collagen-containing extracellular matrix, as well as the PI3K-Akt signaling pathway and the AGE-RAGE signaling pathway, in diabetic complications. These genes may also be associated in immune cells and autoimmune activities, such as Macrophages and MHC class I, in order to impact the immune process in DN. In the meanwhile, based on these seven BM-related genes, we discovered that Ginsenoside Rh1 was very significant for drug targeting. CONCLUSIONS This research identified seven BM-related genes as possible diagnostic and therapeutic biomarkers for DN. Analysis of inflammatory infiltration indicated that these genes may be important in inflammatory processes through Macrophages and MHC class I, hence impacting the course and development of DN illness. The development of a correlated column line graph model for it also shown excellent predictive capabilities. In addition, we have found pharmaceuticals, such as Ginsenoside Rh1, that may provide fresh insights into the personalized management of patients with DN.
Collapse
Affiliation(s)
- HouShan Gui
- School of Chemistry and Biological Engineering, Yichun University, Yichun, 336000, China
| | - Xin Chen
- School of Chemistry and Biological Engineering, Yichun University, Yichun, 336000, China
| | - LuFen Ye
- School of Chemistry and Biological Engineering, Yichun University, Yichun, 336000, China
| | - Hao Ma
- Yichun University School of Aesthetic Medicine, No. 576 Yuanzhou District, Yichun, 336000, Jiangxi Province, China.
| |
Collapse
|
11
|
Lin K, Xu D, Wang X, Shi J, Gao W. Development of a basement membrane gene signature and identification of the potential candidate therapeutic targets for pancreatic cancer. Gland Surg 2023; 12:263-281. [PMID: 36915817 PMCID: PMC10005979 DOI: 10.21037/gs-23-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023]
Abstract
Background Pancreatic cancer is a deadly cancer with a poor prognosis. In light of mounting evidence that basement membrane genes (BMGs) play a role in the development of cancer, we sought to examine the prognostic importance and role of BMGs in pancreatic ductal adenocarcinoma (PDAC) patients. Methods BMGs were obtained from previous top research studies. The clinical and messenger ribonucleic acid expression data were retrieved from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) data sets, respectively. Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses were used for the PDAC risk modeling and gene identification. The Kaplan-Meier method was used to compare outcomes between the low- and high-risk groups. Finally, we analyzed small-molecule drugs that could be used to target BMGs for treatment using the Enrichr data set and validated the function of the tubulointerstitial nephritis antigen (TINAG) in pancreatic cancer. Results We successfully constructed and validated a 7 BMG-based model to predict PDAC patient outcomes. Additionally, we discovered that 7 BMG-based model was an independent predictive factor for PDAC. According to our functional analysis, the majority of the signaling pathways enriched in BMGs were those connected to malignancy. Immune cell infiltration and immunological checkpoints were also linked to the BMG-based model. Further, we identified 5 small-molecule drugs that may be useful in treating PDAC patients. We also found that TINAG promoted cell proliferation in pancreatic cancer. Conclusions Our study extended understandings of how BMGs work in PDAC. We identified a credible predictive biomarker for PDAC patients' survival.
Collapse
Affiliation(s)
- Kai Lin
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dong Xu
- Department of General Surgery, Gaochun People’s Hospital, Nanjing, China
| | - Xiaoxiao Wang
- Department of GCP Research Center, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Shi
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wentao Gao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Rousselle P, Laigle C, Rousselet G. The basement membrane in epidermal polarity, stemness, and regeneration. Am J Physiol Cell Physiol 2022; 323:C1807-C1822. [PMID: 36374168 DOI: 10.1152/ajpcell.00069.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epidermis is a specialized epithelium that constitutes the outermost layer of the skin, and it provides a protective barrier against environmental assaults. Primarily consisting of multilayered keratinocytes, the epidermis is continuously renewed by proliferation of stem cells and the differentiation of their progeny, which undergo terminal differentiation as they leave the basal layer and move upward toward the surface, where they die and slough off. Basal keratinocytes rest on a basement membrane at the dermal-epidermal junction that is composed of specific extracellular matrix proteins organized into interactive and mechanically supportive networks. Firm attachment of basal keratinocytes, and their dynamic regulation via focal adhesions and hemidesmosomes, is essential for maintaining major skin processes, such as self-renewal, barrier function, and resistance to physical and chemical stresses. The adhesive integrin receptors expressed by epidermal cells serve structural, signaling, and mechanosensory roles that are critical for epidermal cell anchorage and tissue homeostasis. More specifically, the basement membrane components play key roles in preserving the stem cell pool, and establishing cell polarity cues enabling asymmetric cell divisions, which result in the transition from a proliferative basal cell layer to suprabasal cells committed to terminal differentiation. Finally, through a well-regulated sequence of synthesis and remodeling, the components of the dermal-epidermal junction play an essential role in regeneration of the epidermis during skin healing. Here too, they provide biological and mechanical signals that are essential to the restoration of barrier function.
Collapse
Affiliation(s)
- Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| | - Chloé Laigle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| | - Gaelle Rousselet
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| |
Collapse
|
13
|
Gianakas CA, Keeley DP, Ramos-Lewis W, Park K, Jayadev R, Kenny IW, Chi Q, Sherwood DR. Hemicentin-mediated type IV collagen assembly strengthens juxtaposed basement membrane linkage. J Cell Biol 2022; 222:213571. [PMID: 36282214 PMCID: PMC9597354 DOI: 10.1083/jcb.202112096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/16/2022] [Accepted: 09/26/2022] [Indexed: 01/07/2023] Open
Abstract
Basement membrane (BM) matrices surround and separate most tissues. However, through poorly understood mechanisms, BMs of adjacent tissue can also stably link to support organ structure and function. Using endogenous knock-in fluorescent proteins, conditional RNAi, optogenetics, and quantitative live imaging, we identified extracellular matrix proteins mediating a BM linkage (B-LINK) between the uterine utse and epidermal seam cell BMs in Caenorhabditis elegans that supports the uterus during egg-laying. We found that hemicentin is secreted by the utse and promotes fibulin-1 assembly to jointly initiate the B-LINK. During egg-laying, however, both proteins' levels decline and are not required for B-LINK maintenance. Instead, we discovered that hemicentin recruits ADAMTS9/20, which facilitates the assembly of high levels of type IV collagen that sustains the B-LINK during the mechanically active egg-laying period. This work reveals mechanisms underlying BM-BM linkage maturation and identifies a crucial function for hemicentin and fibulin-1 in initiating attachment and type IV collagen in strengthening this specialized form of tissue linkage.
Collapse
Affiliation(s)
- Claire A. Gianakas
- Department of Biology, Duke University, Durham, NC,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | | | | | - Kieop Park
- Department of Biology, Duke University, Durham, NC
| | | | | | - Qiuyi Chi
- Department of Biology, Duke University, Durham, NC
| | - David R. Sherwood
- Department of Biology, Duke University, Durham, NC,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC,Correspondence to David R. Sherwood:
| |
Collapse
|
14
|
Tao J, Li X, Liang C, Liu Y, Zhou J. Expression of basement membrane genes and their prognostic significance in clear cell renal cell carcinoma patients. Front Oncol 2022; 12:1026331. [PMID: 36353536 PMCID: PMC9637577 DOI: 10.3389/fonc.2022.1026331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/06/2022] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a malignant tumor with limited treatment options. A recent study confirmed the involvement of basement membrane (BM) genes in the progression of many cancers. Therefore, we studied the role and prognostic significance of BM genes in ccRCC. METHODS Co-expression analysis of ccRCC-related information deposited in The Cancer Genome Atlas database and a BM geneset from a recent study was conducted. The differentially expressed BM genes were validated using quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Least absolute shrinkage and selection operator regression and univariate Cox regression analyses were performed to identify a BM gene signature with prognostic significance for ccRCC. Multivariate Cox regression, time-dependent receiver operating characteristic, Kaplan-Meier, and nomogram analyses were implemented to appraise the prognostic ability of the signature and the findings were further verified using a Gene Expression Omnibus dataset. Additionally, immune cell infiltration and and pathway enrichment analyses were performed using ImmuCellAI and Gene Set Enrichment Analysis (GSEA), respectively. Finally, the DSIGDB dataset was used to screen small-molecule therapeutic drugs that may be useful in treating ccRCC patients. RESULTS We identified 108 BM genes exhibiting different expression levels compared to that in normal kidney tissues, among which 32 genes had prognostic values. The qRT-PCR analyses confirmed that the expression patterns of four of the ten selected genes were the same as the predicted ones. Additionally, we successfully established and validated a ccRCC patient prediction model based on 16 BM genes and observed that the model function is an independent predictor. GSEA revealed that differentially expressed BM genes mainly displayed significant enrichment of tumor and metabolic signaling cascades. The BM gene signature was also associated with immune cell infiltration and checkpoints. Eight small-molecule drugs may have therapeutic effects on ccRCC patients. CONCLUSION This study explored the function of BM genes in ccRCC for the first time. Reliable prognostic biomarkers that affect the survival of ccRCC patients were determined, and a BM gene-based prognostic model was established.
Collapse
Affiliation(s)
- Junyue Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Xiao Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Yi Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Zhou T, Chen W, Wu Z, Cai J, Zhou C. A newly defined basement membrane-related gene signature for the prognosis of clear-cell renal cell carcinoma. Front Genet 2022; 13:994208. [PMID: 36186476 PMCID: PMC9520985 DOI: 10.3389/fgene.2022.994208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Basement membranes (BMs) are associated with cell polarity, differentiation, migration, and survival. Previous studies have shown that BMs play a key role in the progression of cancer, and thus could serve as potential targets for inhibiting the development of cancer. However, the association between basement membrane-related genes (BMRGs) and clear cell renal cell carcinoma (ccRCC) remains unclear. To address that gap, we constructed a novel risk signature utilizing BMRGs to explore the relationship between ccRCC and BMs.Methods: We gathered transcriptome and clinical data from The Cancer Genome Atlas (TCGA) and randomly separated the data into training and test sets to look for new potential biomarkers and create a predictive signature of BMRGs for ccRCC. We applied univariate, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analyses to establish the model. The risk signature was further verified and evaluated through principal component analysis (PCA), the Kaplan-Meier technique, and time-dependent receiver operating characteristics (ROC). A nomogram was constructed to predict the overall survival (OS). The possible biological pathways were investigated through functional enrichment analysis. In this study, we also determined tumor mutation burden (TMB) and performed immunological analysis and immunotherapeutic drug analysis between the high- and low-risk groups.Results: We identified 33 differentially expressed genes and constructed a risk model of eight BMRGs, including COL4A4, FREM1, CSPG4, COL4A5, ITGB6, ADAMTS14, MMP17, and THBS4. The PCA analysis showed that the signature could distinguish the high- and low-risk groups well. The K-M and ROC analysis demonstrated that the model could predict the prognosis well from the areas under the curves (AUCs), which was 0.731. Moreover, the nomogram showed good predictability. Univariate and multivariate Cox regression analysis validated that the model results supported the hypothesis that BMRGs were independent risk factors for ccRCC. Furthermore, immune cell infiltration, immunological checkpoints, TMB, and the half-inhibitory concentration varied considerably between high- and low-risk groups.Conclusion: Employing eight BMRGs to construct a risk model as a prognostic indicator of ccRCC could provide us with a potential progression trajectory as well as predictions of therapeutic response.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weikang Chen
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhigang Wu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Zhigang Wu, ; Jian Cai, ; Chaofeng Zhou,
| | - Jian Cai
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Zhigang Wu, ; Jian Cai, ; Chaofeng Zhou,
| | - Chaofeng Zhou
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Zhigang Wu, ; Jian Cai, ; Chaofeng Zhou,
| |
Collapse
|
16
|
Jayadev R, Morais MRPT, Ellingford JM, Srinivasan S, Naylor RW, Lawless C, Li AS, Ingham JF, Hastie E, Chi Q, Fresquet M, Koudis NM, Thomas HB, O’Keefe RT, Williams E, Adamson A, Stuart HM, Banka S, Smedley D, Sherwood DR, Lennon R. A basement membrane discovery pipeline uncovers network complexity, regulators, and human disease associations. SCIENCE ADVANCES 2022; 8:eabn2265. [PMID: 35584218 PMCID: PMC9116610 DOI: 10.1126/sciadv.abn2265] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/22/2022] [Indexed: 05/17/2023]
Abstract
Basement membranes (BMs) are ubiquitous extracellular matrices whose composition remains elusive, limiting our understanding of BM regulation and function. By developing a bioinformatic and in vivo discovery pipeline, we define a network of 222 human proteins and their animal orthologs localized to BMs. Network analysis and screening in C. elegans and zebrafish uncovered BM regulators, including ADAMTS, ROBO, and TGFβ. More than 100 BM network genes associate with human phenotypes, and by screening 63,039 genomes from families with rare disorders, we found loss-of-function variants in LAMA5, MPZL2, and MATN2 and show that they regulate BM composition and function. This cross-disciplinary study establishes the immense complexity of BMs and their impact on in human health.
Collapse
Affiliation(s)
- Ranjay Jayadev
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Mychel R. P. T. Morais
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Jamie M. Ellingford
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Sandhya Srinivasan
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Richard W. Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Craig Lawless
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Anna S. Li
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Jack F. Ingham
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Eric Hastie
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Qiuyi Chi
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Maryline Fresquet
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Nikki-Maria Koudis
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Huw B. Thomas
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Raymond T. O’Keefe
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Emily Williams
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Antony Adamson
- Genome Editing Unit Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Helen M. Stuart
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Damian Smedley
- William Harvey Research Institute, Charterhouse Square, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Genomics England Research Consortium
- William Harvey Research Institute, Charterhouse Square, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
- Genomics England, London, UK
| | - David R. Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
- Department of Paediatric Nephrology, Royal Manchester Children’s Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| |
Collapse
|
17
|
Sherwood DR. Basement membrane remodeling guides cell migration and cell morphogenesis during development. Curr Opin Cell Biol 2021; 72:19-27. [PMID: 34015751 DOI: 10.1016/j.ceb.2021.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/31/2023]
Abstract
Basement membranes (BMs) are thin, dense forms of extracellular matrix that underlie or surround most animal tissues. BMs are enormously complex and harbor numerous proteins that provide essential signaling, mechanical, and barrier support for tissues during their development and normal functioning. As BMs are found throughout animal tissues, cells frequently migrate, change shape, and extend processes along BMs. Although sometimes used only as passive surfaces by cells, studies in developmental contexts are finding that BMs are often actively modified to help guide cell motility and cell morphogenesis. Here, I provide an overview of recent work revealing how BMs are remodeled in remarkably diverse ways to direct cell migration, cell orientation, axon guidance, and dendrite branching events during animal development.
Collapse
Affiliation(s)
- David R Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA; Regeneration Next, Duke University, Durham 27710, USA.
| |
Collapse
|
18
|
What we can learn from embryos to understand the mesenchymal-to-epithelial transition in tumor progression. Biochem J 2021; 478:1809-1825. [PMID: 33988704 DOI: 10.1042/bcj20210083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Epithelial plasticity involved the terminal and transitional stages that occur during epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET), both are essential at different stages of early embryonic development that have been co-opted by cancer cells to undergo tumor metastasis. These processes are regulated at multiple instances, whereas the post-transcriptional regulation of key genes mediated by microRNAs is gaining major attention as a common and conserved pathway. In this review, we focus on discussing the latest findings of the cellular and molecular basis of the less characterized process of MET during embryonic development, with special attention to the role of microRNAs. Although we take in consideration the necessity of being cautious when extrapolating the obtained evidence, we propose some commonalities between early embryonic development and cancer progression that can shed light into our current understanding of this complex event and might aid in the design of specific therapeutic approaches.
Collapse
|
19
|
Molè MA, Weberling A, Fässler R, Campbell A, Fishel S, Zernicka-Goetz M. Integrin β1 coordinates survival and morphogenesis of the embryonic lineage upon implantation and pluripotency transition. Cell Rep 2021; 34:108834. [PMID: 33691117 PMCID: PMC7966855 DOI: 10.1016/j.celrep.2021.108834] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/30/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
At implantation, the embryo establishes contacts with the maternal endometrium. This stage is associated with a high incidence of preclinical pregnancy losses. While the maternal factors underlying uterine receptivity have been investigated, the signals required by the embryo for successful peri-implantation development remain elusive. To explore these, we studied integrin β1 signaling, as embryos deficient for this receptor degenerate at implantation. We demonstrate that the coordinated action of pro-survival signals and localized actomyosin suppression via integrin β1 permits the development of the embryo beyond implantation. Failure of either process leads to developmental arrest and apoptosis. Pharmacological stimulation through fibroblast growth factor 2 (FGF2) and insulin-like growth factor 1 (IGF1), coupled with ROCK-mediated actomyosin inhibition, rescues the deficiency of integrin β1, promoting progression to post-implantation stages. Mutual exclusion between integrin β1 and actomyosin seems to be conserved in the human embryo, suggesting the possibility that these mechanisms could also underlie the transition of the human epiblast from pre- to post-implantation.
Collapse
Affiliation(s)
- Matteo Amitaba Molè
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Antonia Weberling
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Alison Campbell
- CARE Fertility Group, John Webster House, 6 Lawrence Drive, Nottingham Business Park, Nottingham NG8 6PZ, UK
| | - Simon Fishel
- CARE Fertility Group, John Webster House, 6 Lawrence Drive, Nottingham Business Park, Nottingham NG8 6PZ, UK; School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; Plasticity and Self-Organization Group, Division of Biology and Biological Engineering, California Institute of Technology (Caltech), Pasadena, CA 91125, USA.
| |
Collapse
|
20
|
EPB41L5 controls podocyte extracellular matrix assembly by adhesome-dependent force transmission. Cell Rep 2021; 34:108883. [PMID: 33761352 DOI: 10.1016/j.celrep.2021.108883] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/21/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
The integrity of the kidney filtration barrier essentially relies on the balanced interplay of podocytes and the glomerular basement membrane (GBM). Here, we show by analysis of in vitro and in vivo models that a loss of the podocyte-specific FERM-domain protein EPB41L5 results in impaired extracellular matrix (ECM) assembly. By using quantitative proteomics analysis of the secretome and matrisome, we demonstrate a shift in ECM composition characterized by diminished deposition of core GBM components, such as LAMA5. Integrin adhesome proteomics reveals that EPB41L5 recruits PDLIM5 and ACTN4 to integrin adhesion complexes (IACs). Consecutively, EPB41L5 knockout podocytes show insufficient maturation of integrin adhesion sites, which translates into impaired force transmission and ECM assembly. These observations build the framework for a model in which EPB41L5 functions as a cell-type-specific regulator of the podocyte adhesome and controls a localized adaptive module in order to prevent podocyte detachment and thereby ensures GBM integrity.
Collapse
|
21
|
Barad M, Csukasi F, Bosakova M, Martin JH, Zhang W, Paige Taylor S, Lachman RS, Zieba J, Bamshad M, Nickerson D, Chong JX, Cohn DH, Krejci P, Krakow D, Duran I. Biallelic mutations in LAMA5 disrupts a skeletal noncanonical focal adhesion pathway and produces a distinct bent bone dysplasia. EBioMedicine 2020; 62:103075. [PMID: 33242826 PMCID: PMC7695969 DOI: 10.1016/j.ebiom.2020.103075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Background Beyond its structural role in the skeleton, the extracellular matrix (ECM), particularly basement membrane proteins, facilitates communication with intracellular signaling pathways and cell to cell interactions to control differentiation, proliferation, migration and survival. Alterations in extracellular proteins cause a number of skeletal disorders, yet the consequences of an abnormal ECM on cellular communication remains less well understood Methods Clinical and radiographic examinations defined the phenotype in this unappreciated bent bone skeletal disorder. Exome analysis identified the genetic alteration, confirmed by Sanger sequencing. Quantitative PCR, western blot analyses, immunohistochemistry, luciferase assay for WNT signaling were employed to determine RNA, proteins levels and localization, and dissect out the underlying cell signaling abnormalities. Migration and wound healing assays examined cell migration properties. Findings This bent bone dysplasia resulted from biallelic mutations in LAMA5, the gene encoding the alpha-5 laminin basement membrane protein. This finding uncovered a mechanism of disease driven by ECM-cell interactions between alpha-5-containing laminins, and integrin-mediated focal adhesion signaling, particularly in cartilage. Loss of LAMA5 altered β1 integrin signaling through the non-canonical kinase PYK2 and the skeletal enriched SRC kinase, FYN. Loss of LAMA5 negatively impacted the actin cytoskeleton, vinculin localization, and WNT signaling. Interpretation This newly described mechanism revealed a LAMA5-β1 Integrin-PYK2-FYN focal adhesion complex that regulates skeletogenesis, impacted WNT signaling and, when dysregulated, produced a distinct skeletal disorder. Funding Supported by NIH awards R01 AR066124, R01 DE019567, R01 HD070394, and U54HG006493, and Czech Republic grants INTER-ACTION LTAUSA19030, V18-08-00567 and GA19-20123S.
Collapse
Affiliation(s)
- Maya Barad
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States
| | - Fabiana Csukasi
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States; Laboratory of Bioengineering and Tissue Regeneration-LABRET, Department of Cell Biology, Genetics and Physiology, University of Málaga, IBIMA, Málaga 29071, Spain
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 65691, Czech Republic
| | - Jorge H Martin
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States
| | - Wenjuan Zhang
- Department of Molecular, Cell and Developmental Biology, University of California- Los Angeles, Los Angeles, CA 90095, United States
| | - S Paige Taylor
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States
| | - Ralph S Lachman
- International Skeletal Dysplasia Registry, University of California, Los Angeles, CA 90095 United States
| | - Jennifer Zieba
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States
| | - Michael Bamshad
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, WA 98195 United States
| | - Deborah Nickerson
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, WA 98195 United States
| | - Jessica X Chong
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, WA 98195 United States
| | - Daniel H Cohn
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States; Department of Molecular, Cell and Developmental Biology, University of California- Los Angeles, Los Angeles, CA 90095, United States; Orthopaedic Institute for Children, University of California-Los Angeles, Los Angeles, CA 90095, United States
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 65691, Czech Republic
| | - Deborah Krakow
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States; International Skeletal Dysplasia Registry, University of California, Los Angeles, CA 90095 United States; Orthopaedic Institute for Children, University of California-Los Angeles, Los Angeles, CA 90095, United States; Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA 90095, United States; Department of Obstetrics and Gynecology, University of California-Los Angeles, Los Angeles, CA 90095, United States.
| | - Ivan Duran
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States; Laboratory of Bioengineering and Tissue Regeneration-LABRET, Department of Cell Biology, Genetics and Physiology, University of Málaga, IBIMA, Málaga 29071, Spain; Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Severo Ochoa 35, Málaga 29590, Spain
| |
Collapse
|
22
|
Nickolls AR, Lee MM, Zukosky K, Mallon BS, Bönnemann CG. Human embryoid bodies as a 3D tissue model of the extracellular matrix and α-dystroglycanopathies. Dis Model Mech 2020; 13:dmm042986. [PMID: 32423971 PMCID: PMC7328151 DOI: 10.1242/dmm.042986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
The basal lamina is a specialized sheet of dense extracellular matrix (ECM) linked to the plasma membrane of specific cell types in their tissue context, which serves as a structural scaffold for organ genesis and maintenance. Disruption of the basal lamina and its functions is central to many disease processes, including cancer metastasis, kidney disease, eye disease, muscular dystrophies and specific types of brain malformation. The latter three pathologies occur in the α-dystroglycanopathies, which are caused by dysfunction of the ECM receptor α-dystroglycan. However, opportunities to study the basal lamina in various human disease tissues are restricted owing to its limited accessibility. Here, we report the generation of embryoid bodies from human induced pluripotent stem cells that model the basal lamina. Embryoid bodies cultured via this protocol mimic pre-gastrulation embryonic development, consisting of an epithelial core surrounded by a basal lamina and a peripheral layer of ECM-secreting endoderm. In α-dystroglycanopathy patient embryoid bodies, electron and fluorescence microscopy reveal ultrastructural basal lamina defects and reduced ECM accumulation. By starting from patient-derived cells, these results establish a method for the in vitro synthesis of patient-specific basal lamina and recapitulate disease-relevant ECM defects seen in the α-dystroglycanopathies. Finally, we apply this system to evaluate an experimental ribitol supplement therapy on genetically diverse α-dystroglycanopathy patient samples.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Alec R Nickolls
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Michelle M Lee
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristen Zukosky
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Barbara S Mallon
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Dietinger V, García de Durango CR, Wiechmann S, Boos SL, Michl M, Neumann J, Hermeking H, Kuster B, Jung P. Wnt-driven LARGE2 mediates laminin-adhesive O-glycosylation in human colonic epithelial cells and colorectal cancer. Cell Commun Signal 2020; 18:102. [PMID: 32586342 PMCID: PMC7315491 DOI: 10.1186/s12964-020-00561-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Wnt signaling drives epithelial self-renewal and disease progression in human colonic epithelium and colorectal cancer (CRC). Characterization of Wnt effector pathways is key for our understanding of these processes and for developing therapeutic strategies that aim to preserve tissue homeostasis. O-glycosylated cell surface proteins, such as α-dystroglycan (α-DG), mediate cellular adhesion to extracellular matrix components. We revealed a Wnt/LARGE2/α-DG signaling pathway which triggers this mode of colonic epithelial cell-to-matrix interaction in health and disease. METHODS Next generation sequencing upon shRNA-mediated silencing of adenomatous polyposis coli (APC), and quantitative chromatin immunoprecipitation (qChIP) combined with CRISPR/Cas9-mediated transcription factor binding site targeting characterized LARGE2 as a Wnt target gene. Quantitative mass spectrometry analysis on size-fractionated, glycoprotein-enriched samples revealed functional O-glycosylation of α-DG by LARGE2 in CRC. The biology of Wnt/LARGE2/α-DG signaling was assessed by affinity-based glycoprotein enrichment, laminin overlay, CRC-to-endothelial cell adhesion, and transwell migration assays. Experiments on primary tissue, human colonic (tumor) organoids, and bioinformatic analysis of CRC cohort data confirmed the biological relevance of our findings. RESULTS Next generation sequencing identified the LARGE2 O-glycosyltransferase encoding gene as differentially expressed upon Wnt activation in CRC. Silencing of APC, conditional expression of oncogenic β-catenin and endogenous β-catenin-sequestration affected LARGE2 expression. The first intron of LARGE2 contained a CTTTGATC motif essential for Wnt-driven LARGE2 expression, showed occupation by the Wnt transcription factor TCF7L2, and Wnt activation triggered LARGE2-dependent α-DG O-glycosylation and laminin-adhesion in CRC cells. Colonic crypts and organoids expressed LARGE2 mainly in stem cell-enriched subpopulations. In human adenoma organoids, activity of the LARGE2/α-DG axis was Wnt-dose dependent. LARGE2 expression was elevated in CRC and correlated with the Wnt-driven molecular subtype and intestinal stem cell features. O-glycosylated α-DG represented a Wnt/LARGE2-dependent feature in CRC cell lines and patient-derived tumor organoids. Modulation of LARGE2/α-DG signaling affected CRC cell migration through laminin-coated membranes and adhesion to endothelial cells. CONCLUSIONS We conclude that the LARGE2 O-glycosyltransferase-encoding gene represents a direct target of canonical Wnt signaling and mediates functional O-glycosylation of α-dystroglycan (α-DG) in human colonic stem/progenitor cells and Wnt-driven CRC. Our work implies that aberrant Wnt activation augments CRC cell-matrix adhesion by increasing LARGE/α-DG-mediated laminin-adhesiveness. Video abstract.
Collapse
Affiliation(s)
- Vanessa Dietinger
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,DKTK Research Group, Oncogenic Signaling Pathways of Colorectal Cancer, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Cira R García de Durango
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,DKTK Research Group, Oncogenic Signaling Pathways of Colorectal Cancer, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Svenja Wiechmann
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Sophie L Boos
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,DKTK Research Group, Oncogenic Signaling Pathways of Colorectal Cancer, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marlies Michl
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jens Neumann
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heiko Hermeking
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bernhard Kuster
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.,Bavarian Center for Biomolecular Mass Spectrometry, Freising, Germany
| | - Peter Jung
- German Cancer Research Center (DKFZ), Heidelberg, Germany. .,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany. .,DKTK Research Group, Oncogenic Signaling Pathways of Colorectal Cancer, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany. .,DKTK AG Oncogenic Signal Transduction Pathways in Colorectal/Pancreatic Cancer, Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, DKTK Partnerstandort München, Institut für Pathologie der Ludwig-Maximilians-Universität (LMU) München, Thalkirchner Straße 36, D-80337, Munich, Germany.
| |
Collapse
|
24
|
Keeley DP, Hastie E, Jayadev R, Kelley LC, Chi Q, Payne SG, Jeger JL, Hoffman BD, Sherwood DR. Comprehensive Endogenous Tagging of Basement Membrane Components Reveals Dynamic Movement within the Matrix Scaffolding. Dev Cell 2020; 54:60-74.e7. [PMID: 32585132 DOI: 10.1016/j.devcel.2020.05.022] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/09/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022]
Abstract
Basement membranes (BMs) are supramolecular matrices built on laminin and type IV collagen networks that provide structural and signaling support to tissues. BM complexity, however, has hindered an understanding of its formation, dynamics, and regulation. Using genome editing, we tagged 29 BM matrix components and receptors in C. elegans with mNeonGreen. Here, we report a common template that initiates BM formation, which rapidly diversifies during tissue differentiation. Through photobleaching studies, we show that BMs are not static-surprisingly, many matrix proteins move within the laminin and collagen scaffoldings. Finally, quantitative imaging, conditional knockdown, and optical highlighting indicate that papilin, a poorly studied glycoprotein, is the most abundant component in the gonadal BM, where it facilitates type IV collagen removal during BM expansion and tissue growth. Together, this work introduces methods for holistic investigation of BM regulation and reveals that BMs are highly dynamic and capable of rapid change to support tissues.
Collapse
Affiliation(s)
- Daniel P Keeley
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Eric Hastie
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Ranjay Jayadev
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Laura C Kelley
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Qiuyi Chi
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Sara G Payne
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA; Department of Cell Biology, Duke University, Box 3709, Durham, NC 27710, USA
| | - Jonathan L Jeger
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Box 90281, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA; Regeneration Next Initiative, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
25
|
Hamidi S, Nakaya Y, Nagai H, Alev C, Kasukawa T, Chhabra S, Lee R, Niwa H, Warmflash A, Shibata T, Sheng G. Mesenchymal-epithelial transition regulates initiation of pluripotency exit before gastrulation. Development 2020; 147:147/3/dev184960. [PMID: 32014865 DOI: 10.1242/dev.184960] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/30/2019] [Indexed: 12/22/2022]
Abstract
The pluripotent epiblast gives rise to all tissues and organs in the adult body. Its differentiation starts at gastrulation, when the epiblast generates mesoderm and endoderm germ layers through epithelial-mesenchymal transition (EMT). Although gastrulation EMT coincides with loss of epiblast pluripotency, pluripotent cells in development and in vitro can adopt either mesenchymal or epithelial morphology. The relationship between epiblast cellular morphology and its pluripotency is not well understood. Here, using chicken epiblast and mammalian pluripotency stem cell (PSC) models, we show that PSCs undergo a mesenchymal-epithelial transition (MET) prior to EMT-associated pluripotency loss. Epiblast MET and its subsequent EMT are two distinct processes. The former, a partial MET, is associated with reversible initiation of pluripotency exit, whereas the latter, a full EMT, is associated with complete and irreversible pluripotency loss. We provide evidence that integrin-mediated cell-matrix interaction is a key player in pluripotency exit regulation. We propose that epiblast partial MET is an evolutionarily conserved process among all amniotic vertebrates and that epiblast pluripotency is restricted to an intermediate cellular state residing between the fully mesenchymal and fully epithelial states.
Collapse
Affiliation(s)
- Sofiane Hamidi
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan
| | - Yukiko Nakaya
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kobe 650-0047, Japan
| | - Hiroki Nagai
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan.,Center for Biosystems Dynamics Research (BDR), RIKEN, Kobe 650-0047, Japan
| | - Cantas Alev
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kobe 650-0047, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8507, Japan
| | - Takeya Kasukawa
- Center for Integrative Medical Sciences, RIKEN, Yokohama 230-0045, Japan
| | - Sapna Chhabra
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX 77251, USA
| | - Ruda Lee
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
| | - Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Aryeh Warmflash
- Department of Biosciences and Bioengineering, Rice University, Houston, TX 77005, USA
| | - Tatsuo Shibata
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kobe 650-0047, Japan
| | - Guojun Sheng
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan .,Center for Biosystems Dynamics Research (BDR), RIKEN, Kobe 650-0047, Japan
| |
Collapse
|
26
|
Young BM, Shankar K, Tho CK, Pellegrino AR, Heise RL. Laminin-driven Epac/Rap1 regulation of epithelial barriers on decellularized matrix. Acta Biomater 2019; 100:223-234. [PMID: 31593773 DOI: 10.1016/j.actbio.2019.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022]
Abstract
Decellularized tissues offer a unique tool for developing regenerative biomaterials or in vitro platforms for the study of cell-extracellular matrix (ECM) interactions. One main challenge associated with decellularized lung tissue is that ECM components can be stripped away or altered by the detergents used to remove cellular debris. Without characterizing the composition of lung decellularized ECM (dECM) and the cellular response caused by the altered composition, it is difficult to utilize dECM for regeneration and specifically, engineering the complexities of the alveolar-capillary barrier. This study takes steps towards uncovering if dECM must be enhanced with lost ECM proteins to achieve proper epithelial barrier formation. To achieve this, the epithelial barrier function was assessed on dECM coatings with and without the systematic addition of several key basement membrane proteins. After comparing barrier function on collagen I, fibronectin, laminin, and dECM in varying combinations as an in vitro coating, the alveolar epithelium exhibited superior barrier function when dECM was supplemented with laminin as evidenced by trans-epithelial electrical resistance (TEER) and permeability assays. Increased barrier resistance with laminin addition was associated with upregulation of Claudin-18, E-cadherin, and junction adhesion molecule (JAM)-A, and stabilization of zonula occludens (ZO)-1 at junction complexes. The Epac/Rap1 pathway was observed to play a role in the ECM-mediated barrier function determined by protein expression and Epac inhibition. These findings revealed potential ECM coatings and molecular therapeutic targets for improved regeneration with decellularized scaffolds. STATEMENT OF SIGNIFICANCE: Efforts to produce a transplantable organ-scale biomaterial for lung regeneration has not been entirely successful to date, due to incomplete cell-cell junction formation, ultimately leading to severe edema in vivo. To fully understand the process of alveolar junction formation on ECM-derived biomaterials, this research has characterized and tailored decellularized ECM (dECM) to mitigate reductions in barrier strength or cell attachment caused by abnormal ECM compositions or detergent damage to dECM. These results indicate that laminin-driven Epac signaling plays a vital role in the stabilization of the alveolar barrier. Addition of laminin or Epac agonists during alveolar regeneration can reduce epithelial permeability within bioengineered lungs.
Collapse
Affiliation(s)
- Bethany M Young
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St, Room 1071, Richmond, VA 23219, United States
| | - Keerthana Shankar
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St, Room 1071, Richmond, VA 23219, United States
| | - Cindy K Tho
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St, Room 1071, Richmond, VA 23219, United States
| | - Amanda R Pellegrino
- Department of Biomedical Engineering and Nursing, Duquesne University, 600 Forbes Ave, Pittsburg, Pennsylvania 15282, United States
| | - Rebecca L Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St, Room 1071, Richmond, VA 23219, United States; Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, 1101 East Marshall St, Richmond, Virginia 23298, United States.
| |
Collapse
|
27
|
Fields MA, Del Priore LV, Adelman RA, Rizzolo LJ. Interactions of the choroid, Bruch's membrane, retinal pigment epithelium, and neurosensory retina collaborate to form the outer blood-retinal-barrier. Prog Retin Eye Res 2019; 76:100803. [PMID: 31704339 DOI: 10.1016/j.preteyeres.2019.100803] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023]
Abstract
The three interacting components of the outer blood-retinal barrier are the retinal pigment epithelium (RPE), choriocapillaris, and Bruch's membrane, the extracellular matrix that lies between them. Although previously reviewed independently, this review integrates these components into a more wholistic view of the barrier and discusses reconstitution models to explore the interactions among them. After updating our understanding of each component's contribution to barrier function, we discuss recent efforts to examine how the components interact. Recent studies demonstrate that claudin-19 regulates multiple aspects of RPE's barrier function and identifies a barrier function whereby mutations of claudin-19 affect retinal development. Co-culture approaches to reconstitute components of the outer blood-retinal barrier are beginning to reveal two-way interactions between the RPE and choriocapillaris. These interactions affect barrier function and the composition of the intervening Bruch's membrane. Normal or disease models of Bruch's membrane, reconstituted with healthy or diseased RPE, demonstrate adverse effects of diseased matrix on RPE metabolism. A stumbling block for reconstitution studies is the substrates typically used to culture cells are inadequate substitutes for Bruch's membrane. Together with human stem cells, the alternative substrates that have been designed offer an opportunity to engineer second-generation culture models of the outer blood-retinal barrier.
Collapse
Affiliation(s)
- Mark A Fields
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA
| | - Lucian V Del Priore
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA
| | - Ron A Adelman
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA
| | - Lawrence J Rizzolo
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA; Department of Surgery, Yale University School of Medicine, PO Box 208062, New Haven, CT, 06520-8062, USA.
| |
Collapse
|
28
|
Jayadev R, Chi Q, Keeley DP, Hastie EL, Kelley LC, Sherwood DR. α-Integrins dictate distinct modes of type IV collagen recruitment to basement membranes. J Cell Biol 2019; 218:3098-3116. [PMID: 31387941 PMCID: PMC6719451 DOI: 10.1083/jcb.201903124] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/16/2019] [Accepted: 07/10/2019] [Indexed: 01/04/2023] Open
Abstract
Basement membranes (BMs) are cell-associated extracellular matrices that support tissue integrity, signaling, and barrier properties. Type IV collagen is critical for BM function, yet how it is directed into BMs in vivo is unclear. Through live-cell imaging of endogenous localization, conditional knockdown, and misexpression experiments, we uncovered distinct mechanisms of integrin-mediated collagen recruitment to Caenorhabditis elegans postembryonic gonadal and pharyngeal BMs. The putative laminin-binding αINA-1/βPAT-3 integrin was selectively activated in the gonad and recruited laminin, which directed moderate collagen incorporation. In contrast, the putative Arg-Gly-Asp (RGD)-binding αPAT-2/βPAT-3 integrin was activated in the pharynx and recruited high levels of collagen in an apparently laminin-independent manner. Through an RNAi screen, we further identified the small GTPase RAP-3 (Rap1) as a pharyngeal-specific PAT-2/PAT-3 activator that modulates collagen levels. Together, these studies demonstrate that tissues can use distinct mechanisms to direct collagen incorporation into BMs to precisely control collagen levels and construct diverse BMs.
Collapse
Affiliation(s)
- Ranjay Jayadev
- Department of Biology, Regeneration Next, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Qiuyi Chi
- Department of Biology, Regeneration Next, Duke University, Durham, NC
| | - Daniel P Keeley
- Department of Biology, Regeneration Next, Duke University, Durham, NC
| | - Eric L Hastie
- Department of Biology, Regeneration Next, Duke University, Durham, NC
| | - Laura C Kelley
- Department of Biology, Regeneration Next, Duke University, Durham, NC
| | - David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| |
Collapse
|
29
|
Howard AM, LaFever KS, Fenix AM, Scurrah CR, Lau KS, Burnette DT, Bhave G, Ferrell N, Page-McCaw A. DSS-induced damage to basement membranes is repaired by matrix replacement and crosslinking. J Cell Sci 2019; 132:jcs.226860. [PMID: 30837285 DOI: 10.1242/jcs.226860] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/22/2019] [Indexed: 12/12/2022] Open
Abstract
Basement membranes are an ancient form of animal extracellular matrix. As important structural and functional components of tissues, basement membranes are subject to environmental damage and must be repaired while maintaining functions. Little is known about how basement membranes get repaired. This paucity stems from a lack of suitable in vivo models for analyzing such repair. Here, we show that dextran sodium sulfate (DSS) directly damages the gut basement membrane when fed to adult Drosophila DSS becomes incorporated into the basement membrane, promoting its expansion while decreasing its stiffness, which causes morphological changes to the underlying muscles. Remarkably, two days after withdrawal of DSS, the basement membrane is repaired by all measures of analysis. We used this new damage model to determine that repair requires collagen crosslinking and replacement of damaged components. Genetic and biochemical evidence indicates that crosslinking is required to stabilize the newly incorporated repaired Collagen IV rather than to stabilize the damaged Collagen IV. These results suggest that basement membranes are surprisingly dynamic.
Collapse
Affiliation(s)
- Angela M Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kimberly S LaFever
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA
| | - Aidan M Fenix
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA
| | - Cherie' R Scurrah
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA.,Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA.,Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dylan T Burnette
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA.,Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Gautam Bhave
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nicholas Ferrell
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235-1631, USA
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA .,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
30
|
Abstract
A growing body of research demonstrates modulation of autophagy by a variety of matrix constituents, including decorin, endorepellin, and endostatin. These matrix proteins are both pro-autophagic and anti-angiogenic. Here, we detail a series of methods to monitor matrix-induced autophagy and its concurrent effects on angiogenesis. We first discuss cloning and purifying proteoglycan fragment and core proteins in the laboratory and review relevant techniques spanning from cell culture to treatment with these purified proteoglycans in vitro and ex vivo. Further, we cover protocols in monitoring autophagic progression via morphological and microscopic characterization, biochemical western blot analysis, and signaling pathway investigation. Downstream angiogenic effects using in vivo approaches are then discussed using wild-type mice and the GFP-LC3 transgenic mouse model. Finally, we explore matrix-induced mitophagy via monitoring changes in mitochondrial DNA and permeability.
Collapse
Affiliation(s)
- Carolyn Chen
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Aastha Kapoor
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Nickolls AR, Bönnemann CG. The roles of dystroglycan in the nervous system: insights from animal models of muscular dystrophy. Dis Model Mech 2018; 11:11/12/dmm035931. [PMID: 30578246 PMCID: PMC6307911 DOI: 10.1242/dmm.035931] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dystroglycan is a cell membrane protein that binds to the extracellular matrix in a variety of mammalian tissues. The α-subunit of dystroglycan (αDG) is heavily glycosylated, including a special O-mannosyl glycoepitope, relying upon this unique glycosylation to bind its matrix ligands. A distinct group of muscular dystrophies results from specific hypoglycosylation of αDG, and they are frequently associated with central nervous system involvement, ranging from profound brain malformation to intellectual disability without evident morphological defects. There is an expanding literature addressing the function of αDG in the nervous system, with recent reports demonstrating important roles in brain development and in the maintenance of neuronal synapses. Much of these data are derived from an increasingly rich array of experimental animal models. This Review aims to synthesize the information from such diverse models, formulating an up-to-date understanding about the various functions of αDG in neurons and glia of the central and peripheral nervous systems. Where possible, we integrate these data with our knowledge of the human disorders to promote translation from basic mechanistic findings to clinical therapies that take the neural phenotypes into account. Summary: Dystroglycan is a ubiquitous matrix receptor linked to brain and muscle disease. Unraveling the functions of this protein will inform basic and translational research on neural development and muscular dystrophies.
Collapse
Affiliation(s)
- Alec R Nickolls
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
Ramos-Lewis W, LaFever KS, Page-McCaw A. A scar-like lesion is apparent in basement membrane after wound repair in vivo. Matrix Biol 2018; 74:101-120. [PMID: 29981372 PMCID: PMC6250587 DOI: 10.1016/j.matbio.2018.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 01/02/2023]
Abstract
Basement membrane is a highly conserved sheet-like extracellular matrix in animals, underlying simple and complex epithelia, and wrapping around tissues like muscles and nerves. Like the tissues they support, basement membranes become damaged by environmental insults. Although it is clear that basement membranes are repaired after damage, virtually nothing is known about this process. For example, it is not known how repaired basement membranes compare to undamaged ones, whether basement membrane components are necessary for epithelial wound closure, or whether there is a hierarchy of assembly that repairing basement membranes follow, similar to the hierarchy of assembly of embryonic basement membranes. In this report, we address these questions using the basement membrane of the Drosophila larval epidermis as a model system. By analyzing the four main basement membrane proteins - laminin, collagen IV, perlecan, and nidogen - we find that although basement membranes are repaired within a day after mechanical damage in vivo, thickened and disorganized matrix scars are evident with all four protein components. The new matrix proteins that repair damaged basement membranes are provided by distant adipose and muscle tissues rather than by the local epithelium, the same distant tissues that provide matrix proteins for growth of unwounded epithelial basement membranes. To identify a hierarchy of repair, we tested the dependency of each of the basement membrane proteins on the others for incorporation after damage. For proper incorporation after damage, nidogen requires laminin, and perlecan requires collagen IV, but surprisingly collagen IV does not to depend on laminin. Thus, the rules of basement membrane repair are subtly different than those of de novo assembly.
Collapse
Affiliation(s)
- William Ramos-Lewis
- Department of Cell and Developmental Biology, Program in Developmental Biology, Center for Matrix Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kimberly S LaFever
- Department of Cell and Developmental Biology, Program in Developmental Biology, Center for Matrix Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology, Program in Developmental Biology, Center for Matrix Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
33
|
Prostate cancer sheds the αvβ3 integrin in vivo through exosomes. Matrix Biol 2018; 77:41-57. [PMID: 30098419 DOI: 10.1016/j.matbio.2018.08.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 12/14/2022]
Abstract
The αvβ3 integrin has been shown to promote aggressive phenotypes in many types of cancers, including prostate cancer. We show that GFP-labeled αvβ3 derived from cancer cells circulates in the blood and is detected in distant lesions in NOD scid gamma (NSG) mice. We, therefore, hypothesized that αvβ3 travels through exosomes and tested its levels in pools of vesicles, which we designate extracellular vesicles highly enriched in exosomes (ExVs), and in exosomes isolated from the plasma of prostate cancer patients. Here, we show that the αvβ3 integrin is found in patient blood exosomes purified by sucrose or iodixanol density gradients. In addition, we provide evidence that the αvβ3 integrin is transferred through ExVs isolated from prostate cancer patient plasma to β3-negative recipient cells. We also demonstrate the intracellular localization of β3-GFP transferred via cancer cell-derived ExVs. We show that the ExVs present in plasma from prostate cancer patients contain higher levels of αvβ3 and CD9 as compared to plasma ExVs from age-matched subjects who are not affected by cancer. Furthermore, using PSMA antibody-bead mediated immunocapture, we show that the αvβ3 integrin is expressed in a subset of exosomes characterized by PSMA, CD9, CD63, and an epithelial-specific marker, Trop-2. Finally, we present evidence that the levels of αvβ3, CD63, and CD9 remain unaltered in ExVs isolated from the blood of prostate cancer patients treated with enzalutamide. Our results suggest that detecting exosomal αvβ3 integrin in prostate cancer patients could be a clinically useful and non-invasive biomarker to follow prostate cancer progression. Moreover, the ability of αvβ3 integrin to be transferred from ExVs to recipient cells provides a strong rationale for further investigating the role of αvβ3 integrin in the pathogenesis of prostate cancer and as a potential therapeutic target.
Collapse
|
34
|
Chermnykh E, Kalabusheva E, Vorotelyak E. Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate. Int J Mol Sci 2018; 19:ijms19041003. [PMID: 29584689 PMCID: PMC5979429 DOI: 10.3390/ijms19041003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/15/2018] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Epidermal stem cells reside within the specific anatomic location, called niche, which is a microenvironment that interacts with stem cells to regulate their fate. Regulation of many important processes, including maintenance of stem cell quiescence, self-renewal, and homeostasis, as well as the regulation of division and differentiation, are common functions of the stem cell niche. As it was shown in multiple studies, extracellular matrix (ECM) contributes a lot to stem cell niches in various tissues, including that of skin. In epidermis, ECM is represented, primarily, by a highly specialized ECM structure, basement membrane (BM), which separates the epidermal and dermal compartments. Epidermal stem cells contact with BM, but when they lose the contact and migrate to the overlying layers, they undergo terminal differentiation. When considering all of these factors, ECM is of fundamental importance in regulating epidermal stem cells maintenance, proper mobilization, and differentiation. Here, we summarize the remarkable progress that has recently been made in the research of ECM role in regulating epidermal stem cell fate, paying special attention to the hair follicle stem cell niche. We show that the destruction of ECM components impairs epidermal stem cell morphogenesis and homeostasis. A deep understanding of ECM molecular structure as well as the development of in vitro system for stem cell maintaining by ECM proteins may bring us to developing new approaches for regenerative medicine.
Collapse
Affiliation(s)
- Elina Chermnykh
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow 119334, Russia.
- Department of Regenerative Medicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
| | - Ekaterina Kalabusheva
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow 119334, Russia.
- Department of Regenerative Medicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
| | - Ekaterina Vorotelyak
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow 119334, Russia.
- Department of Regenerative Medicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
35
|
Lu H, Bowler N, Harshyne LA, Craig Hooper D, Krishn SR, Kurtoglu S, Fedele C, Liu Q, Tang HY, Kossenkov AV, Kelly WK, Wang K, Kean RB, Weinreb PH, Yu L, Dutta A, Fortina P, Ertel A, Stanczak M, Forsberg F, Gabrilovich DI, Speicher DW, Altieri DC, Languino LR. Exosomal αvβ6 integrin is required for monocyte M2 polarization in prostate cancer. Matrix Biol 2018. [PMID: 29530483 DOI: 10.1016/j.matbio.2018.03.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Therapeutic approaches aimed at curing prostate cancer are only partially successful given the occurrence of highly metastatic resistant phenotypes that frequently develop in response to therapies. Recently, we have described αvβ6, a surface receptor of the integrin family as a novel therapeutic target for prostate cancer; this epithelial-specific molecule is an ideal target since, unlike other integrins, it is found in different types of cancer but not in normal tissues. We describe a novel αvβ6-mediated signaling pathway that has profound effects on the microenvironment. We show that αvβ6 is transferred from cancer cells to monocytes, including β6-null monocytes, by exosomes and that monocytes from prostate cancer patients, but not from healthy volunteers, express αvβ6. Cancer cell exosomes, purified via density gradients, promote M2 polarization, whereas αvβ6 down-regulation in exosomes inhibits M2 polarization in recipient monocytes. Also, as evaluated by our proteomic analysis, αvβ6 down-regulation causes a significant increase in donor cancer cells, and their exosomes, of two molecules that have a tumor suppressive role, STAT1 and MX1/2. Finally, using the Ptenpc-/- prostate cancer mouse model, which carries a prostate epithelial-specific Pten deletion, we demonstrate that αvβ6 inhibition in vivo causes up-regulation of STAT1 in cancer cells. Our results provide evidence of a novel mechanism that regulates M2 polarization and prostate cancer progression through transfer of αvβ6 from cancer cells to monocytes through exosomes.
Collapse
Affiliation(s)
- Huimin Lu
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Nicholas Bowler
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Larry A Harshyne
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - D Craig Hooper
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Shiv Ram Krishn
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Senem Kurtoglu
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Carmine Fedele
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Qin Liu
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA, USA
| | - Hsin-Yao Tang
- Center for Systems and Computational Biology, Wistar Institute, Philadelphia, PA, USA
| | - Andrew V Kossenkov
- Center for Systems and Computational Biology, Wistar Institute, Philadelphia, PA, USA
| | - William K Kelly
- Departments of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kerith Wang
- Departments of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rhonda B Kean
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Lei Yu
- Flow Cytometry Core Facility, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anindita Dutta
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Paolo Fortina
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Cancer Genomics and Bioinformatics Laboratory, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam Ertel
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Cancer Genomics and Bioinformatics Laboratory, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maria Stanczak
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dmitry I Gabrilovich
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Immunology, Microenvironment and Metastasis Program, Wistar Institute, Philadelphia, PA, USA
| | - David W Speicher
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA, USA; Center for Systems and Computational Biology, Wistar Institute, Philadelphia, PA, USA
| | - Dario C Altieri
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Immunology, Microenvironment and Metastasis Program, Wistar Institute, Philadelphia, PA, USA
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
36
|
Susek KH, Korpos E, Huppert J, Wu C, Savelyeva I, Rosenbauer F, Müller-Tidow C, Koschmieder S, Sorokin L. Bone marrow laminins influence hematopoietic stem and progenitor cell cycling and homing to the bone marrow. Matrix Biol 2018; 67:47-62. [PMID: 29360499 DOI: 10.1016/j.matbio.2018.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/16/2022]
Abstract
Hematopoietic stem and progenitor cell (HSPC) functions are regulated by a specialized microenvironment in the bone marrow - the hematopoietic stem cell niche - of which the extracellular matrix (ECM) is an integral component. We describe here the localization of ECM molecules, in particular the laminin α4, α3 and α5 containing isoforms in the bone marrow. Laminin 421 (composed of laminin α4, β2, γ1 chains) is identified as a major component of the bone marrow ECM, occurring abundantly surrounding venous sinuses and in a specialized reticular fiber network of the intersinusoidal spaces of murine bone marrow (BM) in close association with HSPC. Bone marrow from Lama4-/- mice is significantly less efficient in reconstituting the hematopoietic system of irradiated wildtype (WT) recipients in competitive bone marrow transplantation assays and shows reduced colony formation in vitro. This is partially due to retention of Lin-c-kit+Sca-1+CD48- long-term and short-term hematopoietic stem cells (LT-HSC/ST-HSC) in the G0 phase of the cell cycle in Lama4-/- bone marrow and hence a more quiescent phenotype. In addition, the extravasation of WT BM cells into Lama4-/- bone marrow is impaired, influencing the recirculation of HSPC. Our data suggest that these effects are mediated by a compensatory expression of laminin α5 containing isoforms (laminin 521/522) in Lama4-/- bone marrow. Collectively, these intrinsic and extrinsic effects lead to reduced HSPC numbers in Lama4-/- bone marrow and reduced hematopoietic potential.
Collapse
Affiliation(s)
- Katharina Helene Susek
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | - Eva Korpos
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | - Jula Huppert
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | - Chuan Wu
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Germany; Experimental Immunology Branch, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Irina Savelyeva
- Institute of Molecular Tumor Biology, University of Muenster, Germany
| | - Frank Rosenbauer
- Cells-in-Motion Cluster of Excellence, University of Muenster, Germany; Institute of Molecular Tumor Biology, University of Muenster, Germany
| | - Carsten Müller-Tidow
- Cells-in-Motion Cluster of Excellence, University of Muenster, Germany; Department of Medicine A-Hematology, Oncology and Pneumology, University Hospital Muenster, Germany; Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg Germany
| | - Steffen Koschmieder
- Cells-in-Motion Cluster of Excellence, University of Muenster, Germany; Department of Medicine A-Hematology, Oncology and Pneumology, University Hospital Muenster, Germany; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Germany.
| |
Collapse
|
37
|
Perry G, Xiao W, Welsh GI, Perriman AW, Lennon R. Engineered basement membranes: from in vivo considerations to cell-based assays. Integr Biol (Camb) 2018; 10:680-695. [DOI: 10.1039/c8ib00138c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Engineered basement membranes are required to mimic in vivo properties within cell-based assays.
Collapse
Affiliation(s)
- Guillaume Perry
- Sorbonne Université, Laboratoire d’Electronique et d’Electromagnétisme
- F-75005 Paris
- France
| | - Wenjin Xiao
- School of Cellular and Molecular Medicine, University of Bristol
- BS8 1TD Bristol
- UK
| | - Gavin I. Welsh
- Bristol Renal, Bristol Medical School, University of Bristol
- BS1 3NY Bristol
- UK
| | - Adam W. Perriman
- School of Cellular and Molecular Medicine, University of Bristol
- BS8 1TD Bristol
- UK
| | - Rachel Lennon
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester
- M13 9PT Manchester
- UK
| |
Collapse
|