1
|
Bao Y, Li L, Chen J, Cao W, Liu W, Ren G, Luo Z, Pan L, Duan X. Prediction of 3D printability and rheological properties of different pineapple gel formulations based on LF-NMR. Food Chem X 2024; 24:101906. [PMID: 39498246 PMCID: PMC11533049 DOI: 10.1016/j.fochx.2024.101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024] Open
Abstract
In this study, a pineapple-starch-xanthan gum system was prepared using fresh pineapple juice, maize starch, and xanthan gum (XG). The feasibility of using low-field nuclear magnetic resonance (LF-NMR) to predict pineapple gels' rheological properties and printability was evaluated. Results indicated that as maize starch and XG increased, the gel transformed from unable to support printed models to a stable shape, eventually becoming too viscous for printing. Principal component analysis and Fisher discriminant analysis classified the gels into four categories based on their rheological properties, aligning with the actual printing results. Pearson correlation analysis showed a strong correlation between the LF-NMR parameters and the rheological properties of gels. The partial least squares (PLS) and back-propagation artificial neural network (BP-ANN) models constructed using the LF-NMR parameters can effectively predict the rheological properties of pineapple gels. Therefore, LF-NMR is a valuable, non-destructive method for quickly assessing pineapple gels' 3D printing suitability.
Collapse
Affiliation(s)
- Yunfei Bao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Linlin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Agricultural Product Drying Equipment Engineering Technology Research Center in Henan Province, Henan University of Science and Technology, Luoyang 471023, China
- Agricultural Products Processing Equipment Engineering Research Center in Henan Province, Henan University of Science and Technology, Luoyang 471023, China
- R&D Center, Haitong Ninghai Foods Co., Ltd., Ninghai, Zhejiang, China
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Junliang Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Agricultural Product Drying Equipment Engineering Technology Research Center in Henan Province, Henan University of Science and Technology, Luoyang 471023, China
- Agricultural Products Processing Equipment Engineering Research Center in Henan Province, Henan University of Science and Technology, Luoyang 471023, China
| | - Weiwei Cao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Agricultural Product Drying Equipment Engineering Technology Research Center in Henan Province, Henan University of Science and Technology, Luoyang 471023, China
- Agricultural Products Processing Equipment Engineering Research Center in Henan Province, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenchao Liu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Agricultural Product Drying Equipment Engineering Technology Research Center in Henan Province, Henan University of Science and Technology, Luoyang 471023, China
- Agricultural Products Processing Equipment Engineering Research Center in Henan Province, Henan University of Science and Technology, Luoyang 471023, China
| | - Guangyue Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Agricultural Product Drying Equipment Engineering Technology Research Center in Henan Province, Henan University of Science and Technology, Luoyang 471023, China
- Agricultural Products Processing Equipment Engineering Research Center in Henan Province, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhenjiang Luo
- R&D Center, Haitong Ninghai Foods Co., Ltd., Ninghai, Zhejiang, China
| | - Lifeng Pan
- R&D Center, Haitong Ninghai Foods Co., Ltd., Ninghai, Zhejiang, China
| | - Xu Duan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Agricultural Product Drying Equipment Engineering Technology Research Center in Henan Province, Henan University of Science and Technology, Luoyang 471023, China
- Agricultural Products Processing Equipment Engineering Research Center in Henan Province, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
2
|
Hassoun A, Jagtap S, Trollman H, Garcia-Garcia G, Duong LNK, Saxena P, Bouzembrak Y, Treiblmaier H, Para-López C, Carmona-Torres C, Dev K, Mhlanga D, Aït-Kaddour A. From Food Industry 4.0 to Food Industry 5.0: Identifying technological enablers and potential future applications in the food sector. Compr Rev Food Sci Food Saf 2024; 23:e370040. [PMID: 39437193 DOI: 10.1111/1541-4337.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/11/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Although several food-related fields have yet to fully grasp the speed and breadth of the fourth industrial revolution (also known as Industry 4.0), growing literature from other sectors shows that Industry 5.0 (referring to the fifth industrial revolution) is already underway. Food Industry 4.0 has been characterized by the fusion of physical, digital, and biological advances in food science and technology, whereas future Food Industry 5.0 could be seen as a more holistic, multidisciplinary, and multidimensional approach. This review will focus on identifying potential enabling technologies of Industry 5.0 that could be harnessed to shape the future of food in the coming years. We will review the state-of-the-art studies on the use of innovative technologies in various food and agriculture applications over the last 5 years. In addition, opportunities and challenges will be highlighted, and future directions and conclusions will be drawn. Preliminary evidence suggests that Industry 5.0 is the outcome of an evolutionary process and not of a revolution, as is often claimed. Our results show that regenerative and/or conversational artificial intelligence, the Internet of Everything, miniaturized and nanosensors, 4D printing and beyond, cobots and advanced drones, edge computing, redactable blockchain, metaverse and immersive techniques, cyber-physical systems, digital twins, and sixth-generation wireless and beyond are likely to be among the main driving technologies of Food Industry 5.0. Although the framework, vision, and value of Industry 5.0 are becoming popular research topics in various academic and industrial fields, the agri-food sector has just started to embrace some aspects and dimensions of Industry 5.0.
Collapse
Affiliation(s)
- Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
- College of Business and Economics, University of Johannesburg, Johannesburg, South Africa
| | - Sandeep Jagtap
- Division of Engineering Logistics, Department of Mechanical Engineering Sciences, Faculty of Engineering, Lund University, Lund, Sweden
- Sustainable Manufacturing Systems Centre, Cranfield University, Cranfield, UK
| | - Hana Trollman
- School of Business, University of Leicester, Leicester, UK
| | - Guillermo Garcia-Garcia
- Department of Chemical Engineering, Faculty of Sciences, University of Granada, Granada, Spain
| | - Linh N K Duong
- Bristol Business School, University of the West of England, Bristol, UK
| | - Prateek Saxena
- School of Mechanical and Materials Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Yamine Bouzembrak
- Information Technology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Horst Treiblmaier
- School of International Management, Modul University Vienna, Vienna, Austria
| | - Carlos Para-López
- Department of Agrifood System Economics, Institute of Agricultural and Fisheries Research and Training (IFAPA), Granada, Spain
| | - Carmen Carmona-Torres
- Department of Agrifood System Economics, Institute of Agricultural and Fisheries Research and Training (IFAPA), Granada, Spain
- Institute of Regional Development, University of Granada, Rector López Argüeta, s/n. 18071, Granada, Spain
| | - Kapal Dev
- ADAPT Centre and Department of Computer Science, Munster Technological University, Cork, Ireland
- Department of Electrical and Computer Engineering, Lebanese American University, Byblos, Lebanon, and Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - David Mhlanga
- College of Business and Economics, University of Johannesburg, Johannesburg, South Africa
| | - Abderrahmane Aït-Kaddour
- Unité Mixte de Recherche sur le Fromage UMRF, Université Clermont-Auvergne, INRAE, VetAgro Sup, Clermont-Ferrand, France
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
3
|
Neamah HA, Tandio J. Towards the development of foods 3D printer: Trends and technologies for foods printing. Heliyon 2024; 10:e33882. [PMID: 39050479 PMCID: PMC11268349 DOI: 10.1016/j.heliyon.2024.e33882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
3D printing of food materials is among the innovations that could revolutionize people's food choices and consumption. Food innovation and production have advanced considerably in recent years and its market has shown rapid annual expansion. Printing food technologies are considered as a potential solution for producing customized foods such as military food, and astronaut food. The printable food ink material still lacks standardization and superior extrusion process compared to other 3D printing industries. This review paper aimed to provide a comprehensive review of the current foods 3D printing and the latest technology in certain terms and with its concrete applications. In particular, the following issues are discussed: the printing techniques, exudations classes, business prospects, technologies, printing parameters, food materials, safety, and challenges and limitations of food 3D printing along with possible improvement recommendations. Significant printing parameters have been summarized and the safety of the food printing has been evaluated. Moreover, this article also contains a detailed, tabular evaluation of technical approaches employed across researched based and commercially available systems. One of the major limitations that need to be resolved was standardization of food printing safety.
Collapse
Affiliation(s)
- Husam A. Neamah
- Department of Electrical and Mechatronics Engineering, University of Debrecen, Debrecen, 4028, Hungary
- Technical Engineering College, Al-Ayen University, Thi-Qar, 64001, Iraq
- Department of Business Management, Al-imam University College, Balad, Iraq
| | - Joseph Tandio
- Mechatronic Systems Design, Eindhoven University of Technology, Eindhoven, 5612, Netherlands
| |
Collapse
|
4
|
Koltsaki M, Mavri M. A Comprehensive Overview of Additive Manufacturing Processes Through a Time-Based Classification Model. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:363-382. [PMID: 38389694 PMCID: PMC10880673 DOI: 10.1089/3dp.2022.0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The ongoing crisis caused by the COVID-19 pandemic produced major reshuffles on the world map, bringing imbalance, uncertainty, and accumulated stress. Due to supply chain disruptions, the need for innovation has emerged both as a priority and a necessity and three-dimensional printing (3DP) proved to be a primary, smart, effective, and innovative additive manufacturing (AM) method. AM refers to the direct fabrication of complex geometries, using a computer-aided design (CAD) model or a three-dimensional scanner output. This article presents a literature review of AM technologies, chronologically sorted, and proposes a multilevel classification model. The suggested research approach appears a triangular methodology that encompasses the current ISO/ASTM 52900:2021 report. The first objective of this article is to form two double-level classification models of AM processes, depending on the technology and material factors. The second objective is to clarify in which of the proposed categories each AM process is included; and the third one is to investigate if the proposed taxonomy is related to the time spot, in which AM processes were invented. The contribution of this article lies in determining the factors that are crucial for the growth of AM ecosystem. The novelty of the proposed classification lies in the definition of an optimal option for each industrial application based on the different AM processes, the variety of materials, and the evolution of technology over the years. In this way, investing in AM is more systematic and less risky.
Collapse
Affiliation(s)
- Maria Koltsaki
- Department of Business Administration, University of the Aegean, Chios, Greece
| | - Maria Mavri
- Department of Business Administration, University of the Aegean, Chios, Greece
| |
Collapse
|
5
|
Zhu W, Iskandar MM, Baeghbali V, Kubow S. Three-Dimensional Printing of Foods: A Critical Review of the Present State in Healthcare Applications, and Potential Risks and Benefits. Foods 2023; 12:3287. [PMID: 37685220 PMCID: PMC10487194 DOI: 10.3390/foods12173287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Three-dimensional printing is one of the most precise manufacturing technologies with a wide variety of applications. Three-dimensional food printing offers potential benefits for food production in terms of modifying texture, personalized nutrition, and adaptation to specific consumers' needs, among others. It could enable innovative and complex foods to be presented attractively, create uniquely textured foods tailored to patients with dysphagia, and support sustainability by reducing waste, utilizing by-products, and incorporating eco-friendly ingredients. Notable applications to date include, but are not limited to, printing novel shapes and complex geometries from candy, chocolate, or pasta, and bio-printed meats. The main challenges of 3D printing include nutritional quality and manufacturing issues. Currently, little research has explored the impact of 3D food printing on nutrient density, bioaccessibility/bioavailability, and the impact of matrix integrity loss on diet quality. The technology also faces challenges such as consumer acceptability, food safety and regulatory concerns. Possible adverse health effects due to overconsumption or the ultra-processed nature of 3D printed foods are major potential pitfalls. This review describes the state-of-the-art of 3D food printing technology from a nutritional perspective, highlighting potential applications and current limitations of this technology, and discusses the potential nutritional risks and benefits of 3D food printing.
Collapse
Affiliation(s)
- Wenxi Zhu
- School of Human Nutrition, McGill University, Montreal, QC H9X 3V9, Canada; (W.Z.); (M.M.I.)
| | - Michèle M. Iskandar
- School of Human Nutrition, McGill University, Montreal, QC H9X 3V9, Canada; (W.Z.); (M.M.I.)
| | - Vahid Baeghbali
- Food and Markets Department, Natural Resources Institute, University of Greenwich, Medway, Kent ME4 4TB, UK;
| | - Stan Kubow
- School of Human Nutrition, McGill University, Montreal, QC H9X 3V9, Canada; (W.Z.); (M.M.I.)
| |
Collapse
|
6
|
Exploring the mechanism of variation in 3D printing accuracy of cassava starch gels during freezing process. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
7
|
In J, Im S, Min SC. Cold plasma treatment to improve jelly production using a fused deposition modeling 3D printer. Food Sci Biotechnol 2023; 32:39-46. [PMID: 36606093 PMCID: PMC9807690 DOI: 10.1007/s10068-022-01170-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 01/09/2023] Open
Abstract
Herein, the effects of cold plasma (CP) on the rheological properties of gelatin-based solutions for 3D jelly printing using a fused deposition modeling method were investigated. The gelatin powder was packaged in a nylon/polyethylene pouch with nitrogen gas and subjected to CP treatment at 15 W for 10 min using atmospheric dielectric barrier discharge plasma treatment. CP treatment reduced the relative proportion of polar functional groups on the surface of the gelatin powder and forged new bonds (e.g., C-C) that reduced the hydrophilicity of the material. Furthermore, it increased the storage modulus and yield stress of the jelly formulation and lowered the phase angle, improving the fidelity and shape retention of the 3D printed jelly. Using CP-treated gelatin, inferior jelly formulations could be tuned to satisfy established printing criteria. CP treatment can control the rheological properties involved in the 3D printing of jelly.
Collapse
Affiliation(s)
- Jiwon In
- Department of Food Science and Technology, Seoul Women’s University, 621 Hwarangro, Nowon-gu, Seoul, 01797 Republic of Korea
| | - Sera Im
- Department of Food Science and Technology, Seoul Women’s University, 621 Hwarangro, Nowon-gu, Seoul, 01797 Republic of Korea
| | - Sea C. Min
- Department of Food Science and Technology, Seoul Women’s University, 621 Hwarangro, Nowon-gu, Seoul, 01797 Republic of Korea
| |
Collapse
|
8
|
Brancewicz-Steinmetz E, Sawicki J. Bonding and Strengthening the PLA Biopolymer in Multi-Material Additive Manufacturing. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15165563. [PMID: 36013700 PMCID: PMC9416234 DOI: 10.3390/ma15165563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 06/01/2023]
Abstract
3D printing is a revolutionary additive manufacturing method that enables rapid prototyping and design flexibility. A variety of thermoplastic polymers can be used in printing. As it is necessary to reduce the consumption of petrochemical resources, alternative solutions are being researched, and the interest in using bioplastics and biocomposites is constantly growing. Often, however, the properties of biopolymers are insufficient and need to be improved to compete with petroleum-based plastics. The paper aims to analyze the available information on elements produced from more than one material, with additive manufacturing resulting from 3D printing using biopolymer Polylactic Acid (PLA). The study notes the possibility of modifying and improving the properties of PLA using layered printing or by modifying PLA filaments. Several modifications improving and changing the properties of PLA were also noted, including printing parameters when combined with other materials: process temperatures, filling, and surface development for various sample geometries.
Collapse
|
9
|
Saadi MASR, Maguire A, Pottackal NT, Thakur MSH, Ikram MM, Hart AJ, Ajayan PM, Rahman MM. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108855. [PMID: 35246886 DOI: 10.1002/adma.202108855] [Citation(s) in RCA: 176] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Additive manufacturing (AM) has gained significant attention due to its ability to drive technological development as a sustainable, flexible, and customizable manufacturing scheme. Among the various AM techniques, direct ink writing (DIW) has emerged as the most versatile 3D printing technique for the broadest range of materials. DIW allows printing of practically any material, as long as the precursor ink can be engineered to demonstrate appropriate rheological behavior. This technique acts as a unique pathway to introduce design freedom, multifunctionality, and stability simultaneously into its printed structures. Here, a comprehensive review of DIW of complex 3D structures from various materials, including polymers, ceramics, glass, cement, graphene, metals, and their combinations through multimaterial printing is presented. The review begins with an overview of the fundamentals of ink rheology, followed by an in-depth discussion of the various methods to tailor the ink for DIW of different classes of materials. Then, the diverse applications of DIW ranging from electronics to food to biomedical industries are discussed. Finally, the current challenges and limitations of this technique are highlighted, followed by its prospects as a guideline toward possible futuristic innovations.
Collapse
Affiliation(s)
- M A S R Saadi
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Alianna Maguire
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Neethu T Pottackal
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | | | - Maruf Md Ikram
- Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - A John Hart
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Muhammad M Rahman
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
10
|
Phuhongsung P, Zhang M, Devahastin S, Mujumdar AS. Defects in 3D/4D food printing and their possible solutions: A comprehensive review. Compr Rev Food Sci Food Saf 2022; 21:3455-3479. [PMID: 35678036 DOI: 10.1111/1541-4337.12984] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/15/2022] [Accepted: 05/03/2022] [Indexed: 12/01/2022]
Abstract
3D food printing has recently attracted significant attention, both from academic and industrial researchers, due to its ability to manufacture customized products in such terms as size, shape, texture, color, and nutrition to meet demands of individual consumers. 4D printing, which is a technique that allows evolution of various characteristics/properties of 3D printed objects over time through external stimulation, has also been gaining more attention. In order to produce defect-free printed objects via both 3D and 4D printing, it is necessary to first identify the causes of defects and then their mitigation strategies. Comprehensive review on these important issues is nevertheless missing. The purpose of this review is to investigate causes and characteristics of defects occurring during and/or after 3D food printing, with a focus on how different factors affect the printing accuracy. Various techniques that can potentially minimize or eliminate printing defects and produce high-quality 3D/4D printed food products without the need for time-consuming trial and error printing experiments are critically discussed. Guidelines to avoid defects to improve the efficiency of future 3D/4D printed food production are given.
Collapse
Affiliation(s)
- Pattarapon Phuhongsung
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Tungkru, Bangkok, Thailand
| | - Arun S Mujumdar
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China.,Department of Bioresource Engineering, McGill University, Quebec, Canada
| |
Collapse
|
11
|
Tejada-Ortigoza V, Cuan-Urquizo E. Towards the Development of 3D-Printed Food: A Rheological and Mechanical Approach. Foods 2022; 11:1191. [PMID: 35563914 PMCID: PMC9103916 DOI: 10.3390/foods11091191] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023] Open
Abstract
Additive manufacturing, or 3D printing, has raised interest in many areas, such as the food industry. In food, 3D printing can be used to personalize nutrition and customize the sensorial characteristics of the final product. The rheological properties of the material are the main parameters that impact the 3D-printing process and are crucial to assuring the printability of formulations, although a clear relationship between these properties and printability has not been studied in depth. In addition, an understanding of the mechanical properties of 3D-printed food is crucial for consumer satisfaction, as they are related to the texture of food products. In 3D-printing technologies, each manufacturing parameter has an impact on the resulting mechanical properties; therefore, a thorough characterization of these parameters is necessary prior to the consumption of any 3D-printed food. This review focuses on the rheological and mechanical properties of printed food materials by exploring cutting-edge research working towards developing printed food for personalized nutrition.
Collapse
Affiliation(s)
| | - Enrique Cuan-Urquizo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Querétaro 76130, Mexico;
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADIT), Apodaca 66629, Mexico
| |
Collapse
|
12
|
Abstract
3D printing technology is rapidly transforming supply chains across diverse manufacturing sectors, enabling personalisation of consumer goods ranging from car parts, medical devices, toys, houses, and even clothing. Food production is also included in the breadth of applications of this expanding technology. Increasing consumer awareness about sustainability, including the problem of food waste, as well as growing interest in customised nutrition have led to the emergence of food industry research focused on aspects, such as packaging, portion size, and healthy sustainable ingredients, to satisfy consumer demands. The growing market for personalised food options in particular, requires increased flexibility and agility to tailor ingredients to an individual’s specific requirements. Such specificity is not easily fulfilled using traditional mass production methods; however, the emerging technology of 3D food printing (3DFP) may be one solution. This paper evaluates the opportunities, risks, and challenges associated with 3DFP, with a focus on developing sustainable supply chains for future growth. Drawing on 12 semi-structured interviews with 3DFP industry managers and current literature in the domain, we propose three supply chain models for 3DFP services, as well as an overview of the key business drivers.
Collapse
|
13
|
Clarissa WHY, Chia CH, Zakaria S, Evyan YCY. Recent advancement in 3-D printing: nanocomposites with added functionality. PROGRESS IN ADDITIVE MANUFACTURING 2021; 7:325-350. [PMID: 38624631 PMCID: PMC8556779 DOI: 10.1007/s40964-021-00232-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/17/2021] [Indexed: 05/05/2023]
Abstract
Three-Dimentional (3-D) printing is currently a popular printing technique that is used in many sectors. Potentially, this technology is expected to replace conventional manufacturing in the coming years. It is accelerating in gaining attention due to its design freedom where objects can be produced without imagination boundaries. The review presents a perspective on the application of 3-D printing application based on various fields. However, the ordinary 3-D printed products with a single type of raw often lack robustness leading to broken parts. Improving the mechanical property of a 3-D printed part is crucial for its applications in many fields. One of the promising solutions is to incorporate nanoparticles or fillers into the raw material. The review aims to provide information about the types of additive manufacturing. There are few types of raw materials can be used as foundation template in the printing, enhanced properties of the printed polymer nanocomposites with different types of nanoparticles as additives in the printing. The article reviews the advantages and disadvantages of different materials that are used as raw materials or base materials in 3-D printing. This can be a guideline for the readers to compare and analyse the raw materials prior to a decision on the type of material to be selected. The review prepares an overview for the researchers to choose the types of nanoparticles to be added in the printing of the products depending on the targeted application. With the added functionality of the 3-D polymer nanocomposites, it will help in widespread of the application of 3-D printing technology in various sector.
Collapse
Affiliation(s)
- Wu Hui-Yan Clarissa
- Faculty of Engineering, Science and Technology, Nilai University, 71800 Nilai, Negeri Sembilan Malaysia
| | - Chin Hua Chia
- Bioresource & Biorefinery Laboratory, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Sarani Zakaria
- Bioresource & Biorefinery Laboratory, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Yang Chia-Yan Evyan
- Faculty of Engineering, Science and Technology, Nilai University, 71800 Nilai, Negeri Sembilan Malaysia
| |
Collapse
|
14
|
Kewuyemi YO, Kesa H, Adebo OA. Trends in functional food development with three-dimensional (3D) food printing technology: prospects for value-added traditionally processed food products. Crit Rev Food Sci Nutr 2021; 62:7866-7904. [PMID: 33970701 DOI: 10.1080/10408398.2021.1920569] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
One of the recent, innovative, and digital food revolutions gradually gaining acceptance is three-dimensional food printing (3DFP), an additive technique used to develop products, with the possibility of obtaining foods with complex geometries. Recent interest in this technology has opened the possibilities of complementing existing processes with 3DFP for better value addition. Fermentation and malting are age-long traditional food processes known to improve food value, functionality, and beneficial health constituents. Several studies have demonstrated the applicability of 3D printing to manufacture varieties of food constructs, especially cereal-based, from root and tubers, fruit and vegetables as well as milk and milk products, with potential for much more value-added products. This review discusses the extrusion-based 3D printing of foods and the major factors affecting the process development of successful edible 3D structures. Though some novel food products have emanated from 3DFP, considering the beneficial effects of traditional food processes, particularly fermentation and malting in food, concerted efforts should also be directed toward developing 3D products using substrates from these conventional techniques. Such experimental findings will significantly promote the availability of minimally processed, affordable, and convenient meals customized in complex geometric structures with enhanced functional and nutritional values.
Collapse
Affiliation(s)
- Yusuf Olamide Kewuyemi
- School of Tourism and Hospitality, College of Business and Economics, University of Johannesburg, Gauteng, South Africa
| | - Hema Kesa
- School of Tourism and Hospitality, College of Business and Economics, University of Johannesburg, Gauteng, South Africa
| | - Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Gauteng, South Africa
| |
Collapse
|
15
|
Prasong W, Ishigami A, Thumsorn S, Kurose T, Ito H. Improvement of Interlayer Adhesion and Heat Resistance of Biodegradable Ternary Blend Composite 3D Printing. Polymers (Basel) 2021; 13:740. [PMID: 33673591 PMCID: PMC7957628 DOI: 10.3390/polym13050740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Poly(lactic acid) (PLA) filaments have been the most used in fused deposition modeling (FDM) 3D printing. The filaments, based on PLA, are continuing to be developed to overcome brittleness, low heat resistance, and obtain superior mechanical performance in 3D printing. From our previous study, the binary blend composites from PLA and poly(butylene adipate-co-terephthalate) (PBAT) with nano talc (PLA/PBAT/nano talc) at 70/30/10 showed an improvement in toughness and printability in FDM 3D printing. Nevertheless, interlayer adhesion, anisotropic characteristics, and heat resistance have been promoted for further application in FDM 3D printing. In this study, binary and ternary blend composites from PLA/PBAT and poly(butylene succinate) (PBS) with nano talc were prepared at a ratio of PLA 70 wt. % and blending with PBAT or PBS at 30 wt. % and nano talc at 10 wt. %. The materials were compounded via a twin-screw extruder and applied to the filament using a capillary rheometer. PLA/PBAT/PBS/nano talc blend composites were printed using FDM 3D printing. Thermal analysis, viscosity, interlayer adhesion, mechanical properties, and dimensional accuracy of binary and ternary blend composite 3D prints were investigated. The incorporation of of PBS-enhanced crystallinity of the blend composite 3D prints resulted in an improvement to mechanical properties, heat resistance, and anisotropic characteristics. Flexibility of the blend composites was obtained by presentation of PBAT. It should be noted that the core-shell morphology of the ternary blend influenced the reduction of volume shrinkage, which obtained good surface roughness and dimensional accuracy in the ternary blend composite 3D printing.
Collapse
Affiliation(s)
- Wattanachai Prasong
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; (W.P.); (A.I.)
| | - Akira Ishigami
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; (W.P.); (A.I.)
- Research Center for GREEN Materials and Advanced Processing (GMAP), 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; (S.T.); (T.K.)
| | - Supaphorn Thumsorn
- Research Center for GREEN Materials and Advanced Processing (GMAP), 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; (S.T.); (T.K.)
| | - Takashi Kurose
- Research Center for GREEN Materials and Advanced Processing (GMAP), 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; (S.T.); (T.K.)
| | - Hiroshi Ito
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; (W.P.); (A.I.)
- Research Center for GREEN Materials and Advanced Processing (GMAP), 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; (S.T.); (T.K.)
| |
Collapse
|
16
|
Jiang Q, Zhang M, Mujumdar AS. Novel evaluation technology for the demand characteristics of 3D food printing materials: a review. Crit Rev Food Sci Nutr 2021; 62:4669-4683. [PMID: 33523706 DOI: 10.1080/10408398.2021.1878099] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As a recently developed way of food manufacturing - 3D printing - is bringing about a revolution in the food industry. Rheological and mechanical properties of food material being printed are the determinants of their printability. Therefore, it is important to analyze the requirements of different 3D printing technologies on material properties and to evaluate the performance of the printed materials. In this review, the printing characteristics and classification of food materials are discussed. The four commonly used 3D printing techniques e.g. extrusion-based printing, selective sintering printing (SLS), binder jetting, and inkjet printing, are outlined along with suitable material characteristics required for each printing technique. Finally, recent technologies for evaluation of 3D printed products including low field nuclear magnetic resonance (LF-NMR), computer numerical simulation, applied reference material, morphological identification, and some novel instrumental analysis techniques are highlighted.
Collapse
Affiliation(s)
- Qiyong Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Durga Prasad Reddy R, Sharma V. Additive manufacturing in drug delivery applications: A review. Int J Pharm 2020; 589:119820. [DOI: 10.1016/j.ijpharm.2020.119820] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
|
18
|
Aguilar-de-Leyva Á, Linares V, Casas M, Caraballo I. 3D Printed Drug Delivery Systems Based on Natural Products. Pharmaceutics 2020; 12:E620. [PMID: 32635214 PMCID: PMC7407805 DOI: 10.3390/pharmaceutics12070620] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 01/28/2023] Open
Abstract
In the last few years, the employment of 3D printing technologies in the manufacture of drug delivery systems has increased, due to the advantages that they offer for personalized medicine. Thus, the possibility of producing sophisticated and tailor-made structures loaded with drugs intended for tissue engineering and optimizing the drug dose is particularly interesting in the case of pediatric and geriatric population. Natural products provide a wide range of advantages for their application as pharmaceutical excipients, as well as in scaffolds purposed for tissue engineering prepared by 3D printing technologies. The ability of biopolymers to form hydrogels is exploited in pressure assisted microsyringe and inkjet techniques, resulting in suitable porous matrices for the printing of living cells, as well as thermolabile drugs. In this review, we analyze the 3D printing technologies employed for the preparation of drug delivery systems based on natural products. Moreover, the 3D printed drug delivery systems containing natural products are described, highlighting the advantages offered by these types of excipients.
Collapse
Affiliation(s)
| | | | - Marta Casas
- Department of Pharmacy and Pharmaceutical Technology, University of Seville, 41012 Seville, Spain; (Á.A.-d.-L.); (V.L.); (I.C.)
| | | |
Collapse
|