1
|
Stanfar K, Hawes C, Ghajar M, Byham-Gray L, Radler DR. Diet modification reduces pain and improves function in adults with osteoarthritis: a systematic review. J Hum Nutr Diet 2024; 37:847-884. [PMID: 38739860 DOI: 10.1111/jhn.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/14/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND The effect of dietary modifications on pain and joint function in adults with osteoarthritis (OA) is an emerging area of study. This systematic review aimed to evaluate if adults with OA who consume diets with a higher proportion of plant phenols and omega-3 fatty acids would have less pain and improved joint function than those with a higher proportion of saturated fatty acids, omega-6 fatty acids and refined carbohydrates. METHODS Database searches of CINAHL (EBSCO), Clinical Trials (NIH-NLM), Cochrane Library (Wiley), Dissertation & Thesis Global (ProQuest), Embase (Elsevier), Medline (OVID), PubMed (NLM), Scopus (Elsevier), Web of Sciences (Clarivate) for clinical trials identified 7763 articles published between January 2015 and May 2023. After an independent review of the articles, seven randomised clinical trials and one nonrandomised clinical trial were included in the analysis. Because of the heterogeneity of the outcome measures, a meta-analysis was not possible. RESULTS Participants who were instructed to consume high-phenol/high-omega-3 fatty acid diets reported significant improvements in pain and physical function scores. The greatest improvement was reported by those who consumed a diet that had the most omega-3 fatty acids. CONCLUSION Because of the high risk of bias, the strength of the evidence is limited. However, there is evidence that counselling adults with OA to replace refined grains and processed foods with whole plant foods, fish and plant oils may have a favourable effect on pain and physical function. Routine follow-up care regarding these diet modifications may be necessary to ensure adherence to this therapy.
Collapse
Affiliation(s)
- Karen Stanfar
- Department of Clinical and Preventive Nutrition Sciences, School of Health Professions, Rutgers University, Newark, New Jersey, USA
| | - Corey Hawes
- Department of Clinical and Preventive Nutrition Sciences, School of Health Professions, Rutgers University, Newark, New Jersey, USA
| | - Mina Ghajar
- Department of Clinical and Preventive Nutrition Sciences, School of Health Professions, Rutgers University, Newark, New Jersey, USA
| | - Laura Byham-Gray
- Department of Clinical and Preventive Nutrition Sciences, School of Health Professions, Rutgers University, Newark, New Jersey, USA
| | - Diane R Radler
- Department of Clinical and Preventive Nutrition Sciences, School of Health Professions, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
2
|
Kim H, Jung J, Lee M, Kim M, Kang N, Kim OK, Lee J. Curcuma longa L. extract exhibits anti-inflammatory and cytoprotective functions in the articular cartilage of monoiodoacetate-injected rats. Food Nutr Res 2024; 68:10402. [PMID: 38571919 PMCID: PMC10989232 DOI: 10.29219/fnr.v68.10402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 04/05/2024] Open
Abstract
Background Osteoarthritis (OA), the most prevalent form of arthritis, is a degenerative joint disease marked by the progressive deterioration of articular cartilage, leading to clinical manifestations such as joint pain. Objective This study investigated the effects of Curcuma longa L. extract (CL) containing curcumin, demethoxycurcumin, and bisdemethoxycurcumin on monosodium iodoacetate (MIA)-induced OA rats. Design Sprague-Dawley rats with MIA-induced OA received CL supplementation at doses of 5, 25, and 40 mg/kg body weight. Results CL extract administration suppressed mineralisation parameters and morphological modifications and decreased arachidonate5-lipoxygenase and leukotriene B4 levels in articular cartilage. Additionally, it decreased serum prostaglandin E2, NO, and glycosaminoglycanlevels as well as the protein expression of phosphorylated inhibitor kappa B-alpha, phosphorylated p65, cyclooxygenase-2, and inducible nitric oxide synthase in the cartilage of MIA-injected rats. Furthermore, it also reduced matrix metalloproteinases and elevated SMAD family member 3 phosphorylation, tissue inhibitor of metalloproteinases, aggrecan, collagen type I, and collagen type II levels in the articular cartilage of MIA-induced OA rats. Conclusions This study's findings suggest that CL supplementation helps prevent OA development and is an effective therapy for OA.
Collapse
Affiliation(s)
- Hyelim Kim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jaeeun Jung
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Minhee Lee
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Food Innovation and Health, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Minha Kim
- Nutrione Co., Ltd, Seoul 05510, Republic of Korea
| | - Namgil Kang
- Nutrione Co., Ltd, Seoul 05510, Republic of Korea
| | - Ok-Kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Food Innovation and Health, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
3
|
Zhou C, Yang Y, Duan M, Chen C, Pi C, Zhang D, Liu X, Xie J. Biomimetic Fibers Based on Equidistant Micropillar Arrays Determines Chondrocyte Fate via Mechanoadaptability. Adv Healthc Mater 2023; 12:e2301685. [PMID: 37596884 DOI: 10.1002/adhm.202301685] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/02/2023] [Indexed: 08/20/2023]
Abstract
It is recognized that the changes in the physical properties of extracellular matrix (ECM) result in fine-tuned cell responses including cell morphology, proliferation and differentiation. In this study, a novel patterned equidistant micropillar substrate based on polydimethylsiloxane (PDMS) is designed to mimic the collagen fiber-like network of the cartilage matrix. By changing the component of the curing agent to an oligomeric base, micropillar substrates with the same topology but different stiffnesses are obtained and it is found that chondrocytes seeded onto the soft micropillar substrate maintain their phenotype by gathering type II collagen and aggrecan more effectively than those seeded onto the stiff micropillar substrate. Moreover, chondrocytes sense and respond to micropillar substrates with different stiffnesses by altering the ECM-cytoskeleton-focal adhesion axis. Further, it is found that the soft substrate-preserved chondrocyte phenotype is dependent on the activation of Wnt/β-catenin signaling. Finally, it is indicated that the changes in osteoid-like region formation and cartilage phenotype loss in the stiffened sclerotic area of osteoarthritis cartilage to validate the changes triggered by micropillar substrates with different stiffnesses. This study provides the cell behavior changes that are more similar to those of real chondrocytes at tissue level during the transition from a normal state to a state of osteoarthritis.
Collapse
Affiliation(s)
- Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Yueyi Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Cheng Chen
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610064, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610064, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
4
|
Cho W, Park J, Kim J, Lee M, Park SJ, Kim KS, Jun W, Kim OK, Lee J. Low-Molecular-Weight Fish Collagen Peptide (Valine-Glycine-Proline-Hydroxyproline-Glycine-Proline-Alanine-Glycine) Prevents Osteoarthritis Symptoms in Chondrocytes and Monoiodoacetate-Injected Rats. Mar Drugs 2023; 21:608. [PMID: 38132929 PMCID: PMC10744650 DOI: 10.3390/md21120608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
The objective of this study was to investigate the effect of low-molecular-weight fish collagen (valine-glycine-proline-hydroxyproline-glycine-proline-alanine-glycine; LMWCP) on H2O2- or LPS-treated primary chondrocytes and monoiodoacetate (MIA)-induced osteoarthritis rat models. Our findings indicated that LMWCP treatment exhibited protective effects by preventing chondrocyte death and reducing matrix degradation in both H2O2-treated primary chondrocytes and cartilage tissue from MIA-induced osteoarthritis rats. This was achieved by increasing the levels of aggrecan, collagen type I, collagen type II, TIMP-1, and TIMP-3, while simultaneously decreasing catabolic factors such as phosphorylation of Smad, MMP-3, and MMP-13. Additionally, LMWCP treatment effectively suppressed the activation of inflammation and apoptosis pathways in both LPS-treated primary chondrocytes and cartilage tissue from MIA-induced osteoarthritis rats. These results suggest that LMWCP supplementation ameliorates the progression of osteoarthritis through its direct impact on inflammation and apoptosis in chondrocytes.
Collapse
Affiliation(s)
- Wonhee Cho
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Republic of Korea; (W.C.); (J.K.)
| | - Jeongjin Park
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Republic of Korea; (J.P.); (W.J.)
| | - Jinhee Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Republic of Korea; (W.C.); (J.K.)
| | - Minhee Lee
- Department of Food Innovation and Health, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - So Jung Park
- Suheung Co., Ltd., Seoul 02643, Republic of Korea; (S.J.P.); (K.S.K.)
| | - Kyung Seok Kim
- Suheung Co., Ltd., Seoul 02643, Republic of Korea; (S.J.P.); (K.S.K.)
| | - Woojin Jun
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Republic of Korea; (J.P.); (W.J.)
| | - Ok-Kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Republic of Korea; (J.P.); (W.J.)
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Republic of Korea; (W.C.); (J.K.)
- Department of Food Innovation and Health, Kyung Hee University, Yongin 17104, Republic of Korea;
| |
Collapse
|
5
|
Buck AN, Vincent HK, Newman CB, Batsis JA, Abbate LM, Huffman KF, Bodley J, Vos N, Callahan LF, Shultz SP. Evidence-Based Dietary Practices to Improve Osteoarthritis Symptoms: An Umbrella Review. Nutrients 2023; 15:3050. [PMID: 37447376 PMCID: PMC10347206 DOI: 10.3390/nu15133050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
While there is some research investigating whole foods or diets that are easily understood and accessible to patients with osteoarthritis, specific nutrients or nutraceuticals are more commonly identified. Unfortunately, guidelines and evidence surrounding individual nutrients, extracts, and nutraceuticals are conflicting and are more difficult to interpret and implement for patients with osteoarthritis. The purpose of this umbrella review is to provide a comprehensive understanding of the existing evidence of whole foods and dietary patterns effects on osteoarthritis-related outcomes to inform evidence-based recommendations for healthcare professionals and identify areas where more research is warranted. A literature search identified relevant systematic reviews/meta-analyses using five databases from inception to May 2022. Five systematic reviews/meta-analyses were included in the current umbrella review. Most evidence supported the Mediterranean diet improving osteoarthritis-related outcomes (e.g., pain, stiffness, inflammation, biomarkers of cartilage degeneration). There was little to no evidence supporting the effects of fruits and herbs on osteoarthritis-related outcomes; however, there was some suggestion that specific foods could potentiate symptom improvement through antioxidative mechanisms. The overall lack of homogeneity between the studies limits the conclusions that can be made and highlights the need for quality research that can identify consumer-accessible foods to improve osteoarthritis-related symptoms.
Collapse
Affiliation(s)
- Ashley N. Buck
- Kinesiology Department, Seattle University, Seattle, WA 98122, USA;
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC 27402, USA
- Osteoarthritis Action Alliance, Chapel Hill, NC 27599, USA; (H.K.V.); (C.B.N.); (J.A.B.); (L.M.A.); (K.F.H.); (N.V.); (L.F.C.)
| | - Heather K. Vincent
- Osteoarthritis Action Alliance, Chapel Hill, NC 27599, USA; (H.K.V.); (C.B.N.); (J.A.B.); (L.M.A.); (K.F.H.); (N.V.); (L.F.C.)
- Department of Physical Medicine and Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 33865, USA
| | - Connie B. Newman
- Osteoarthritis Action Alliance, Chapel Hill, NC 27599, USA; (H.K.V.); (C.B.N.); (J.A.B.); (L.M.A.); (K.F.H.); (N.V.); (L.F.C.)
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - John A. Batsis
- Osteoarthritis Action Alliance, Chapel Hill, NC 27599, USA; (H.K.V.); (C.B.N.); (J.A.B.); (L.M.A.); (K.F.H.); (N.V.); (L.F.C.)
- Division of Geriatric Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27402, USA
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27402, USA
| | - Lauren M. Abbate
- Osteoarthritis Action Alliance, Chapel Hill, NC 27599, USA; (H.K.V.); (C.B.N.); (J.A.B.); (L.M.A.); (K.F.H.); (N.V.); (L.F.C.)
- VA Eastern Colorado Geriatric Education and Clinical Center, Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Katie F. Huffman
- Osteoarthritis Action Alliance, Chapel Hill, NC 27599, USA; (H.K.V.); (C.B.N.); (J.A.B.); (L.M.A.); (K.F.H.); (N.V.); (L.F.C.)
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jennifer Bodley
- Lemieux Library, Seattle University, Seattle, WA 98122, USA;
| | - Natasha Vos
- Osteoarthritis Action Alliance, Chapel Hill, NC 27599, USA; (H.K.V.); (C.B.N.); (J.A.B.); (L.M.A.); (K.F.H.); (N.V.); (L.F.C.)
- North Carolina Center for Health and Wellness, University of North Carolina, Asheville, NC 28804, USA
| | - Leigh F. Callahan
- Osteoarthritis Action Alliance, Chapel Hill, NC 27599, USA; (H.K.V.); (C.B.N.); (J.A.B.); (L.M.A.); (K.F.H.); (N.V.); (L.F.C.)
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sarah P. Shultz
- Kinesiology Department, Seattle University, Seattle, WA 98122, USA;
- Osteoarthritis Action Alliance, Chapel Hill, NC 27599, USA; (H.K.V.); (C.B.N.); (J.A.B.); (L.M.A.); (K.F.H.); (N.V.); (L.F.C.)
- School of Nursing and Health Studies, Monmouth University, West Long Branch, NJ 07764, USA
| |
Collapse
|
6
|
Osteoarthritis in early modern population from Dąbrówki (Podlaskie Province). ANTHROPOLOGICAL REVIEW 2022. [DOI: 10.18778/1898-6773.85.3.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The aim of this analized is to evaluate the frequency of osteoarthritis in the early modern population of Dąbrówki (Poland). Evaluation of degenerative joint changes was based on standard methods commonly used in physical anthropology. Three types of changes were studied: osteophytes, porosities, and eburnations. They were analyzed in the shoulder, elbow, wrist, hip, knee, and proximal ankle joints. Osteoarthritic changes were assessed in 24 female, 20 male, and 8 undetermined sex individuals in the Dąbrówki population.
In the population from Dąbrówki the highest frequency of degenerative changes was noted in the hip joint, and the lowest in the knee joint. Osteophytes were the predominant type of lesions. The less frequent type was porosity, while polishing of the articular surfaces did not occur. In males, degenerative changes were noted more frequently than in females. Due to the existence of many interpretative limitations (there is no a complete picture of the population from Dąbrówki - skeletal material under exploration; not entirely clear and multifactorial etiology of degenerative joint changes), further analysis of the markers of environmental stress in the population from Dąbrówki is necessary.
Collapse
|
7
|
Adenot CC, Abdelhakim HE. Palatability assessment of oral dosage forms for companion animals: A systematic review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Velasco-Salgado C, Pontes-Quero GM, García-Fernández L, Aguilar MR, de Wit K, Vázquez-Lasa B, Rojo L, Abradelo C. The Role of Polymeric Biomaterials in the Treatment of Articular Osteoarthritis. Pharmaceutics 2022; 14:pharmaceutics14081644. [PMID: 36015270 PMCID: PMC9413163 DOI: 10.3390/pharmaceutics14081644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 12/03/2022] Open
Abstract
Osteoarthritis is a high-prevalence joint disease characterized by the degradation of cartilage, subchondral bone thickening, and synovitis. Due to the inability of cartilage to self-repair, regenerative medicine strategies have become highly relevant in the management of osteoarthritis. Despite the great advances in medical and pharmaceutical sciences, current therapies stay unfulfilled, due to the inability of cartilage to repair itself. Additionally, the multifactorial etiology of the disease, including endogenous genetic dysfunctions and exogenous factors in many cases, also limits the formation of new cartilage extracellular matrix or impairs the regular recruiting of chondroprogenitor cells. Hence, current strategies for osteoarthritis management involve not only analgesics, anti-inflammatory drugs, and/or viscosupplementation but also polymeric biomaterials that are able to drive native cells to heal and repair the damaged cartilage. This review updates the most relevant research on osteoarthritis management that employs polymeric biomaterials capable of restoring the viscoelastic properties of cartilage, reducing the symptomatology, and favoring adequate cartilage regeneration properties.
Collapse
Affiliation(s)
- Carmen Velasco-Salgado
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcon, Spain
| | - Gloria María Pontes-Quero
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Luis García-Fernández
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Kyra de Wit
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Blanca Vázquez-Lasa
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
- Correspondence: (L.R.); (C.A.)
| | - Cristina Abradelo
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcon, Spain
- Correspondence: (L.R.); (C.A.)
| |
Collapse
|
9
|
McClements DJ, Öztürk B. Utilization of Nanotechnology to Improve the Application and Bioavailability of Phytochemicals Derived from Waste Streams. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6884-6900. [PMID: 33787251 DOI: 10.1021/acs.jafc.1c03020] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Phytochemicals are relatively small molecular species found in edible plants that may exhibit a diverse range of techno- and biofunctional attributes. In particular, there has been great interest in the identification, isolation, and utilization of dietary phytochemicals that can be used as natural pigments, antioxidants, or antimicrobials or that may improve human health and wellbeing by preventing chronic diseases, such as cardiovascular diseases, diabetes, obesity, and cancer. Relatively high levels of these phytochemicals are often present in the waste streams produced by the food and agriculture industry, such as the peels, stems, roots, or leaves of plants, that are normally discarded or turned into animal foods. From an economic and environmental perspective, it would be advantageous to convert these waste streams into value-added functional ingredients, which is consistent with the creation of a more circular economy. Bioactive phytochemicals can be isolated from agricultural and food waste streams using green extraction methods and then incorporated into plant-based functional foods or biodegradable active packaging materials. The utilization of phytochemicals in the food industry is often challenging. They may chemically degrade in the presence of light, heat, oxygen, and some pH conditions, thereby altering their biological activity. They may have low solubility in aqueous solutions and gastrointestinal fluids, thereby making them difficult to introduce into foods and leading to a low bioavailability. These challenges can sometimes be overcome using nanoencapsulation, which involves trapping the phytochemicals inside tiny food-grade particles. These nanoparticles may be assembled from edible lipids, proteins, carbohydrates, and/or surfactants and include nanoemulsions, solid lipid nanoparticles, nanoliposomes, and biopolymer nanoparticles. In this manuscript, we review a number of important phytochemicals and nanoencapsulation methods used to improve their efficacy.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Bengü Öztürk
- Department of Food Engineering, Faculty of Engineering, Yeditepe University, Istanbul 34755, Turkey
| |
Collapse
|
10
|
Kim OK, Kim D, Lee M, Park SH, Jung J, Lee J. Krill Oil Attenuates Inflammation in Monosodium Iodoacetate-Induced Osteoarthritic Rats, SW982 Synovial Cell Line, and Primary Chondrocytes. J Med Food 2022; 25:239-250. [PMID: 35235416 DOI: 10.1089/jmf.2021.k.0152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to investigate the effects of krill oil (FJH-KO) in monoiodoacetate (MIA)-induced osteoarthritis in rat models, and H2O2- or lipopolysaccharide (LPS)-treated primary chondrocytes and the SW982 synovial cell line. We found that 150 mg/kg b.w. FJH-KO supplementation increased running speed, stride, and foot pressure in MIA-induced osteoarthritic rats. In the H2O2-treated SW982 synovial cell line and primary chondrocytes, FJH-KO treatment prevented cell death and suppressed matrix degradation by increasing the levels of anabolic factors of cartilage tissue, including aggrecan, collagen type Ⅰ, collagen type Ⅱ, tissue inhibitors of metalloproteinase (TIMP)-1, and TIMP-3, and decreasing those of catabolic factors of cartilage tissue, including phosphorylation of Smad, MMP-3, and MMP-13. In addition, FJH-KO treatment suppressed the activation of inflammation and apoptosis pathways in the LPS-treated SW982 synovial cell line and primary chondrocytes. We suggest that FJH-KO supplementation may help prevent osteoarthritis progression because of its direct effects on inflammation and apoptosis of chondrocytes.
Collapse
Affiliation(s)
- Ok-Kyung Kim
- Division of Food and Nutrition, Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| | - Dakyung Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gyeonggi, Korea
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gyeonggi, Korea
| | - Seong-Hoo Park
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gyeonggi, Korea
| | - Jaeeun Jung
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gyeonggi, Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gyeonggi, Korea.,Research Institute of Clinical Nutrition, Kyung Hee University, Seoul, Korea
| |
Collapse
|
11
|
Malek Mahdavi A, Javadivala Z. Systematic review of the effects of pomegranate ( Punica granatum) on osteoarthritis. Health Promot Perspect 2022; 11:411-425. [PMID: 35079584 PMCID: PMC8767078 DOI: 10.34172/hpp.2021.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/17/2021] [Indexed: 11/09/2022] Open
Abstract
Background: Considering limitations of the established osteoarthritis (OA) medications, attention to adjuvant and complementary treatments has increased in OA individuals. Recent investigations have reported advantages of pomegranate in OA and indicate that pomegranate can be a therapeutic option; nevertheless, no systematic review exists regarding OA and pomegranate. Therefore, we systematically studied accessible researches regarding pomegranate and OA in human, animal, and in vitro models and likely mechanistic pathways. Methods: Present systematic review study was recorded on the international prospective register of systematic reviews database. Electronic databases (Scopus, PubMed, Embase, WOS, ProQuest) and search engine Google Scholar were searched until February 2021. Search alerts were turned on to recognize papers published following the primary search. Two investigators independently searched using MESH and non-MESH words in title, abstract, and keywords. Inclusion criteria were related clinical, animal, and in vitro studies published in any language as a full text. Exclusion criteria were reviews, book chapters, conference abstracts, and articles regarding pomegranate in health problems other than OA. Hand searching was used to check the references or citations of eligible papers and grey literature (theses etc.) to find potential researches. Results: Twenty-three articles were included in our systematic review. Human, animal, and in vitro researches demonstrated favorable properties of pomegranate in improving clinical features and reducing inflammatory, oxidative stress, and apoptosis markers in OA. Conclusion: Present paper provides convincing evidence about the efficacy of pomegranate in OA and gives a justification for the importance of additional clinical studies.
Collapse
Affiliation(s)
- Aida Malek Mahdavi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Javadivala
- Department of Health Education & Promotion, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Brain K, Burrows TL, Bruggink L, Malfliet A, Hayes C, Hodson FJ, Collins CE. Diet and Chronic Non-Cancer Pain: The State of the Art and Future Directions. J Clin Med 2021; 10:5203. [PMID: 34768723 PMCID: PMC8584994 DOI: 10.3390/jcm10215203] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/28/2022] Open
Abstract
Nutrition plays an important role in pain management. Healthy eating patterns are associated with reduced systemic inflammation, as well as lower risk and severity of chronic non-cancer pain and associated comorbidities. The role of nutrition in chronic non-cancer pain management is an emerging field with increasing interest from clinicians and patients. Evidence from a number of recent systematic reviews shows that optimising diet quality and incorporating foods containing anti-inflammatory nutrients such as fruits, vegetables, long chain and monounsaturated fats, antioxidants, and fibre leads to reduction in pain severity and interference. This review describes the current state of the art and highlights why nutrition is critical within a person-centred approach to pain management. Recommendations are made to guide clinicians and highlight areas for future research.
Collapse
Affiliation(s)
- Katherine Brain
- School of Health Science, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (K.B.); (T.L.B.)
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Integrated Pain Service, Newcastle, NSW 2300, Australia; (L.B.); (C.H.); (F.J.H.)
| | - Tracy L. Burrows
- School of Health Science, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (K.B.); (T.L.B.)
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Laura Bruggink
- Hunter Integrated Pain Service, Newcastle, NSW 2300, Australia; (L.B.); (C.H.); (F.J.H.)
| | - Anneleen Malfliet
- Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1050 Brussels, Belgium;
- Pain in Motion International Research Group, 1000 Brussels, Belgium
- Research Foundation Flanders (FWO), 1000 Brussels, Belgium
- Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
| | - Chris Hayes
- Hunter Integrated Pain Service, Newcastle, NSW 2300, Australia; (L.B.); (C.H.); (F.J.H.)
| | - Fiona J. Hodson
- Hunter Integrated Pain Service, Newcastle, NSW 2300, Australia; (L.B.); (C.H.); (F.J.H.)
| | - Clare E. Collins
- School of Health Science, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (K.B.); (T.L.B.)
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
13
|
Tao Z, Zhou Y, Zeng B, Yang X, Su M. MicroRNA-183 attenuates osteoarthritic pain by inhibiting the TGFα-mediated CCL2/ CCR2 signalling axis. Bone Joint Res 2021; 10:548-557. [PMID: 34463129 PMCID: PMC8414439 DOI: 10.1302/2046-3758.108.bjr-2019-0308.r2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS MicroRNA-183 (miR-183) is known to play important roles in osteoarthritis (OA) pain. The aims of this study were to explore the specific functions of miR-183 in OA pain and to investigate the underlying mechanisms. METHODS Clinical samples were collected from patients with OA, and a mouse model of OA pain was constructed by surgically induced destabilization of the medial meniscus (DMM). Reverse transcription quantitative polymerase chain reaction was employed to measure the expression of miR-183, transforming growth factor α (TGFα), C-C motif chemokine ligand 2 (CCL2), proinflammatory cytokines (interleukin (IL)-6, IL-1β, and tumour necrosis factor-α (TNF-α)), and pain-related factors (transient receptor potential vanilloid subtype-1 (TRPV1), voltage-gated sodium 1.3, 1.7, and 1.8 (Nav1.3, Nav1.7, and Nav1.8)). Expression of miR-183 in the dorsal root ganglia (DRG) of mice was evaluated by in situ hybridization. TGFα, CCL2, and C-C chemokine receptor type 2 (CCR2) levels were examined by immunoblot analysis and interaction between miR-183 and TGFα, determined by luciferase reporter assay. The extent of pain in mice was measured using a behavioural assay, and OA severity assessed by Safranin O and Fast Green staining. Immunofluorescent staining was conducted to examine the infiltration of macrophages in mouse DRG. RESULTS miR-183 was downregulated in tissue samples from patients and mice with OA. In DMM mice, overexpression of miR-183 inhibited the expression of proinflammatory cytokines (IL-6, IL-1β, TNF-α) and pain-related factors (TRPV1, Nav1.3, Nav1.7, Nav1.8) in DRG. OA pain was relieved by miR-183-mediated inhibition of macrophage infiltration, and dual luciferase reporter assay demonstrated that miR-183 directly targeted TGFα. CONCLUSION Our data demonstrate that miR-183 can ameliorate OA pain by inhibiting the TGFα-CCL2/CCR2 signalling axis, providing an excellent therapeutic target for OA treatment. Cite this article: Bone Joint Res 2021;10(8):548-557.
Collapse
Affiliation(s)
- Zirong Tao
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, China
| | - Yang Zhou
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, China
| | - Biyun Zeng
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, China
| | - Xucheng Yang
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, China
| | - Manman Su
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
14
|
Zhang Z, Yang B, Zhou S, Wu J. CircRNA circ_SEC24A upregulates DNMT3A expression by sponging miR-26b-5p to aggravate osteoarthritis progression. Int Immunopharmacol 2021; 99:107957. [PMID: 34325283 DOI: 10.1016/j.intimp.2021.107957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic degenerative disease characterized by degeneration and injury of articular cartilage. Circular RNA_SEC24A (circ_SEC24A; circBase ID: hsa_circ_0005105) is upregulated and promotes multiple tumor processes. However, its role in OA progression remained mostly unknown. METHODS Quantitative real-time PCR (qRT-PCR) was used to detect the RNA expression of circ_SEC24A, miR-26b-5p and DNA methyltransferase 3 alpha (DNMT3A). Cell proliferation was verified by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) and 5-ethynyl-2'-deoxyuridine (EdU) assays. Flow cytometry was used to detect apoptosis. Western blot was used to detect protein expression of DNMT3A, proliferating cell nuclear antigen (PCNA), extracellular matrix (ECM) proteins (Collagen II and Aggrecan), and ECM degrading enzymes (matrix metalloproteinase-13 [MMP13] and metallopeptidase with thrombospondin type 1 motif 5 [ADAMTS5]). The target relationship between miR-26b-5p and circ_SEC24A or DNMT3A was predicted by Statbase3.0 or TargetScan and confirmed by dual-luciferase reporter assay, RNA pull-down assay and RNA immunoprecipitation. RESULTS Circ_SEC24A was upregulated in osteoarthritic cartilage tissues and IL-1β-induced chondrocytes, accompanying with miR-26b-5p downregulation and DNMT3A upregulation. Circ_SEC24A expression was resistant to RNase R digestion and mainly expressed in the cytoplasm. Interfering circ_SEC24A abolished IL-1β-induced effects on proliferation inhibition, apoptosis, and ECM degradation in chondrocytes, but overexpressing circ_SEC24A had the opposite effects. Inhibiting miR-26b-5p counteracted but upregulating miR-26a-5p mimicked the functions of circ_SEC24A silencing. Reinforcing DNMT3A reversed miR-26b-5p overexpression's role in IL-1β-induced chondrocytes. Mechanically, circ_SEC24A and DNMT3A were competitive endogenous RNAs (ceRNAs) for miR-26b-5p. CONCLUSION Circ_SEC24A was a promoting factor for IL-1β-induced OA progression via circ_SEC24A/miR-26b-5p/DNMT3A ceRNA axis.
Collapse
Affiliation(s)
- Zhongqiang Zhang
- Department of Joint Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang City, Hunan 421002, China
| | - Bo Yang
- Department of Joint Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang City, Hunan 421002, China
| | - Shuping Zhou
- Department of Sports Medicine, Affiliated Nanhua Hospital, University of South China, Hengyang City, Hunan 421002, China
| | - Junxing Wu
- Department of Sports Medicine, Affiliated Nanhua Hospital, University of South China, Hengyang City, Hunan 421002, China.
| |
Collapse
|
15
|
Wang B, Liu X. Long non-coding RNA KCNQ1OT1 promotes cell viability and migration as well as inhibiting degradation of CHON-001 cells by regulating miR-126-5p/TRPS1 axis. Adv Rheumatol 2021; 61:31. [PMID: 34108052 DOI: 10.1186/s42358-021-00187-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is defined as a degenerative disease. Pivotal roles of long non-coding RNA (lncRNAs) in OA are widely elucidated. Herein, we intend to explore the function and molecular mechanism of lncRNA KCNQ1OT1 in CHON-001 cells. METHODS Relative expression of KCNQ1OT1, miR-126-5p and TRPS1 was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability was examined by MTT assay. The migratory ability of chondrocytes was assessed by transwell assay. Western blot was used to determine relative protein expression of collagen II, MMP13 and TRPS1. Dual-luciferase reporter (DLR) assay was applied to test the target of lncRNA KCNQ1OT1 or miR-126-5p. RESULTS Relative expression of KCNQ1OT1 and TRPS1 was reduced, whereas miR-126-5p was augmented in cartilage tissues of post-traumatic OA patients compared to those of subjects without post-traumatic OA. Increased KCNQ1OT1 or decreased miR-126-5p enhanced cell viability and migration, and repressed extracellular matrix (ECM) degradation in CHON-001 cells. MiR-126-5p was the downstream target of KCNQ1OT1, and it could directly target TRPS1. There was an inverse correlation between KCNQ1OT1 and miR-126-5p or between miR-126-5p and TRPS1. Meantime, there was a positive correlation between KCNQ1OT1 and TRPS1. The promoting impacts of KCNQ1OT1 on cell viability and migration as well as the suppressive impact of KCNQ1OT1 on ECM degradation were partially abolished by miR-126-5p overexpression or TRPS1 knockdown in CHON-001 cells. CONCLUSIONS Overexpression of KCNQ1OT1 attenuates the development of OA by sponging miR-126-5p to target TRPS1. Our findings may provide a possible therapeutic strategy for human OA in clinic.
Collapse
Affiliation(s)
- Binfeng Wang
- Orthopaedic Ward 2 (Trauma Surgery), Chifeng Municipal Hospital, No.1, Zhaowuda Road, Chifeng City, 024000, Inner Mongolia, China
| | - Xiangwei Liu
- Orthopaedic Ward 2 (Trauma Surgery), Chifeng Municipal Hospital, No.1, Zhaowuda Road, Chifeng City, 024000, Inner Mongolia, China.
| |
Collapse
|
16
|
Pedersini P, Savoldi M, Berjano P, Villafañe JH. A probiotic intervention on pain hypersensitivity and microbiota composition in patients with osteoarthritis pain: Study protocol for a randomized controlled trial. Arch Rheumatol 2021; 36:296-301. [PMID: 34527936 PMCID: PMC8418770 DOI: 10.46497/archrheumatol.2021.7719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/15/2020] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES This study aims to examine the effects of probiotics on pain hypersensitivity at the end of a six-week intervention program in patients with osteoarthritis (OA)-related pain. PATIENTS AND METHODS This double-blind randomized controlled clinical trial with two parallel arms will be conducted between January 2021 and July 2022. At least 30 participants (age range, 50 to 90 years) of both sexes with a diagnosis of symptomatic hip or knee (Kellgren-Lawrence scale ≥3) will be recruited in each arm (total n=60) to achieve adequate statistical power in the analyses. The intervention will be administered for six weeks followed by a four-week follow-up period. The experimental group will receive a probiotic product plus the usual medical care. The control group will receive a probiotical sham plus the usual medical care. Assessment points will be measured at baseline, end of intervention, and one-month post-intervention. The outcomes of this intervention will be a change in visual analog scale pain and the gut microbiota composition. Group by time effects will be compared using mixed-model analysis of variance. CONCLUSION A reduction in pain hypersensitivity in patients with knee OA-related pain could suggest an involvement of microbiota, or part of it, in chronic pain state mechanisms.
Collapse
Affiliation(s)
- Paolo Pedersini
- Department of Clinical Research, IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Marco Savoldi
- Department of School of Physiotherapy, University of Brescia, Brescia, Italy
| | - Pedro Berjano
- Department of Spinal Surgery, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Jorge Hugo Villafañe
- Department of Clinical Research, IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| |
Collapse
|
17
|
Lakshmanan DK, Ravichandran G, Elangovan A, Jeyapaul P, Murugesan S, Thilagar S. Cissus quadrangularis (veldt grape) attenuates disease progression and anatomical changes in mono sodium iodoacetate (MIA)-induced knee osteoarthritis in the rat model. Food Funct 2021; 11:7842-7855. [PMID: 32812575 DOI: 10.1039/d0fo00992j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Cissus quadrangularis (CQ) stem has interesting nutritional and pharmacological properties to promote the health of the skeletal system. It is a well-recognized plant in the conventional system of medicine in India for treating bone and joint-associated complications. This study focuses on identifying the active constituents from the stem and root extracts of CQ and validating its anti-osteoarthritic activity by the in vivo model. Notable levels of phenolics and flavonoids were found in the ethanol extracts of both CQ stem (CQSE) and root (CQRE), among other solvent fractions. UPLC-MS/MS analysis of these selective extracts resulted in different classes of active compounds from both positive and negative ionization modes. By analyzing their mass spectra and fragmentation pattern, 25 active compounds were identified. The CQSE and CQRE extracts, along with the standard drug (naproxen), were further tested in mono-sodium iodoacetate-induced experimental OA animals. The modulatory effects of the test extracts were assessed by haematology, synovial and cartilage marker profiling, radiology and histopathological analysis. The in vivo findings from the biochemical and physiological studies have led to the conclusion that the CQSE extract is a good choice for the management of OA. The results were substantially better than CQ root extract and naproxen drug-treated groups. Thus, CQS has bioactive constituents, which could facilitate recovery from joint tissue damage, cellular metabolism and associated risk factors attributable to dysfunctions in OA incidence and progression.
Collapse
Affiliation(s)
- Dinesh Kumar Lakshmanan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India.
| | - Guna Ravichandran
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India.
| | - Abbirami Elangovan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India.
| | - Preethi Jeyapaul
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India
| | - Selvakumar Murugesan
- Department of Biotechnology, Anna University, BIT-Campus, Tiruchirappalli, Tamil Nadu 620024, India
| | - Sivasudha Thilagar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India.
| |
Collapse
|
18
|
Valsamidou E, Gioxari A, Amerikanou C, Zoumpoulakis P, Skarpas G, Kaliora AC. Dietary Interventions with Polyphenols in Osteoarthritis: A Systematic Review Directed from the Preclinical Data to Randomized Clinical Studies. Nutrients 2021; 13:1420. [PMID: 33922527 PMCID: PMC8145539 DOI: 10.3390/nu13051420] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/11/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis and a major cause of limited functionality and thus a decrease in the quality of life of the inflicted. Given the fact that the existing pharmacological treatments lack disease-modifying properties and their use entails significant side effects, nutraceuticals with bioactive compounds constitute an interesting field of research. Polyphenols are plant-derived molecules with established anti-inflammatory and antioxidant properties that have been extensively evaluated in clinical settings and preclinical models in OA. As more knowledge is gained in the research field, an interesting approach in the management of OA is the additive and/or synergistic effects that polyphenols may have in an optimized supplement. Therefore, the aim of this review was to summarize the recent literature regarding the use of combined polyphenols in the management of OA. For that purpose, a PubMed literature survey was conducted with a focus on some preclinical osteoarthritis models and randomized clinical trials on patients with osteoarthritis from 2018 to 2021 which have evaluated the effect of combinations of polyphenol-rich extracts and purified polyphenol constituents. Data indicate that combined polyphenols may be promising for the treatment of osteoarthritis in the future, but more clinical trials with novel approaches in the identification of the in-between relationship of such constituents are needed.
Collapse
Affiliation(s)
- Evdokia Valsamidou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 18345 Athens, Greece; (E.V.); (A.G.); (C.A.)
- Qualia Pharma, Ν. Kifissia, 14564 Attiki, Greece;
| | - Aristea Gioxari
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 18345 Athens, Greece; (E.V.); (A.G.); (C.A.)
| | - Charalampia Amerikanou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 18345 Athens, Greece; (E.V.); (A.G.); (C.A.)
| | - Panagiotis Zoumpoulakis
- Qualia Pharma, Ν. Kifissia, 14564 Attiki, Greece;
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, Egaleo, 12243 Athens, Greece
| | - George Skarpas
- Hellenic Open University/Sports Injuries & Regenarative Medicine Orthopaedic Clinic at “MITERA” Hospital, Marousi, 15123 Attiki, Greece;
| | - Andriana C. Kaliora
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 18345 Athens, Greece; (E.V.); (A.G.); (C.A.)
| |
Collapse
|
19
|
Clifford T, Acton JP, Cocksedge SP, Davies KAB, Bailey SJ. The effect of dietary phytochemicals on nuclear factor erythroid 2-related factor 2 (Nrf2) activation: a systematic review of human intervention trials. Mol Biol Rep 2021; 48:1745-1761. [PMID: 33515348 PMCID: PMC7925463 DOI: 10.1007/s11033-020-06041-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/28/2020] [Indexed: 01/06/2023]
Abstract
We conducted a systematic review of human trials examining the effects of dietary phytochemicals on Nrf2 activation. In accordance with the PRISMA guidelines, Medline, Embase and CAB abstracts were searched for articles from inception until March 2020. Studies in adult humans that measured Nrf2 activation (gene or protein expression changes) following ingestion of a phytochemical, either alone or in combination were included. The study was pre-registered on the Prospero database (Registration Number: CRD42020176121). Twenty-nine full-texts were retrieved and reviewed for analysis; of these, eighteen were included in the systematic review. Most of the included participants were healthy, obese or type 2 diabetics. Study quality was assessed using the Cochrane Collaboration Risk of Bias Assessment tool. Twelve different compounds were examined in the included studies: curcumin, resveratrol and sulforaphane were the most common (n = 3 each). Approximately half of the studies reported increases in Nrf2 activation (n = 10); however, many were of poor quality and had an unclear or high risk of bias. There is currently limited evidence that phytochemicals activate Nrf2 in humans. Well controlled human intervention trials are needed to corroborate the findings from in vitro and animal studies.
Collapse
Affiliation(s)
- Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.
| | - Jarred P Acton
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Stuart P Cocksedge
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Kelly A Bowden Davies
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, M15 6BH, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
20
|
Dowgray N, Comerford E. Feline musculoskeletal ageing: How are we diagnosing and treating musculoskeletal impairment? J Feline Med Surg 2020; 22:1069-1083. [PMID: 33100170 PMCID: PMC10814220 DOI: 10.1177/1098612x20965832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PRACTICAL RELEVANCE An understanding of the process of musculoskeletal ageing - which all senior and geriatric cats will experience - is vital to maintaining the health and welfare of our ageing cat population. CLINICAL CHALLENGES Assessment of the feline musculoskeletal system is not always straightforward. Diagnosis of impairment relies on input from owners and veterinarians in terms of visual observation, and clinical and orthopaedic examination, in addition to diagnostic imaging. AUDIENCE This review is written for the primary care veterinary team. AIMS The goals are to raise awareness and improve clinical diagnosis of musculoskeletal impairment as a result of ageing. The article also reviews therapeutic options and considers the evidence available for the prevention/deceleration of musculoskeletal ageing and impairment. EVIDENCE BASE There is good evidence of a high prevalence of osteoarthritis (OA) and degenerative joint disease (DJD) in older cats. There is also good evidence to indicate that functional impairment and chronic pain are sequelae of musculoskeletal disease. However, there is a paucity of information for what is best practice for the management and treatment of musculoskeletal impairment in a clinical situation. There is also a lack of evidence on how prevention of central stimulation of the nervous system caused by musculoskeletal impairment and, in turn the development of chronic pain, can be avoided.
Collapse
Affiliation(s)
| | - Eithne Comerford
- Institute of Life Course and Medical Sciences and School of Veterinary Science, University of Liverpool, UK
| |
Collapse
|
21
|
Chen X, Shi Y, Xue P, Ma X, Li J, Zhang J. Mesenchymal stem cell-derived exosomal microRNA-136-5p inhibits chondrocyte degeneration in traumatic osteoarthritis by targeting ELF3. Arthritis Res Ther 2020; 22:256. [PMID: 33109253 PMCID: PMC7590698 DOI: 10.1186/s13075-020-02325-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Emerging evidence suggests that microRNAs (miRs) are associated with the progression of osteoarthritis (OA). In this study, the role of exosomal miR-136-5p derived from mesenchymal stem cells (MSCs) in OA progression is investigated and the potential therapeutic mechanism explored. METHODS Bone marrow mesenchymal stem cells (BMMSCs) and their exosomes were isolated from patients and identified. The endocytosis of chondrocytes and the effects of exosome miR-136-5p on cartilage degradation were observed and examined by immunofluorescence and cartilage staining. Then, the targeting relationship between miR-136-5p and E74-like factor 3 (ELF3) was analyzed by dual-luciferase report assay. Based on gain- or loss-of-function experiments, the effects of exosomes and exosomal miR-136-5p on chondrocyte migration were examined by EdU and Transwell assay. Finally, a mouse model of post-traumatic OA was developed to evaluate effects of miR-136-5p on chondrocyte degeneration in vivo. RESULTS In the clinical samples of traumatic OA cartilage tissues, we detected increased ELF3 expression, and reduced miR-136-5p expression was determined. The BMMSC-derived exosomes showed an enriched level of miR-136-5p, which could be internalized by chondrocytes. The migration of chondrocyte was promoted by miR-136-5p, while collagen II, aggrecan, and SOX9 expression was increased and MMP-13 expression was reduced. miR-136-5p was verified to target ELF3 and could downregulate its expression. Moreover, the expression of ELF3 was reduced in chondrocytes after internalization of exosomes. In the mouse model of post-traumatic OA, exosomal miR-136-5p was found to reduce the degeneration of cartilage extracellular matrix. CONCLUSION These data provide evidence that BMMSC-derived exosomal miR-136-5p could promote chondrocyte migration in vitro and inhibit cartilage degeneration in vivo, thereby inhibiting OA pathology, which highlighted the transfer of exosomal miR-136-5p as a promising therapeutic strategy for patients with OA.
Collapse
Affiliation(s)
- Xue Chen
- Department of Orthopedics, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041 Jilin Province People’s Republic of China
| | - Yuanyuan Shi
- Department of Nursing, The Second Hospital of Jilin University, Changchun, 130041 People’s Republic of China
| | - Pan Xue
- Department of Orthopedics, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041 Jilin Province People’s Republic of China
| | - Xinli Ma
- Intensive Care Unit, The Second Hospital of Jilin University, Changchun, 130041 People’s Republic of China
| | - Junfeng Li
- Department of Clinical Laboratory, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041 Jilin Province People’s Republic of China
| | - Jun Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041 Jilin Province People’s Republic of China
| |
Collapse
|
22
|
Elmazoglu Z, Bek ZA, Sarıbaş GS, Özoğul C, Goker B, Bitik B, Aktekin CN, Karasu Ç. TLR4, RAGE, and p-JNK/JNK mediated inflammatory aggression in osteoathritic human chondrocytes are counteracted by redox-sensitive phenolic olive compounds: Comparison with ibuprofen. J Tissue Eng Regen Med 2020; 14:1841-1857. [PMID: 33010113 DOI: 10.1002/term.3138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/31/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022]
Abstract
Osteoarthritic chondrocytes show an over-activity of inflammatory catabolic mediators, and olive products have attracted attention because they were discovered to have some benefits on osteoarthritis patients. We investigated the mechanisms of action of olive leaf polyphenolic compounds in osteoarthritic chondrocytes (OACs) using a standardized leaf extract, ZeyEX, and its main phenolic component, oleuropein, also compared with anti-inflammatory drug ibuprofen. OACs, isolated from joint-cartilages of Grade 4 OA patients, were found to express COMP and MMP-9 throughout their culture period. ZeyEX, oleuropein, and ibuprofen increased cell viability at concentrations of 1-100 nM, did not change at 500 nM-50 μM, but inhibited at ≥100 μM. The adherence profile of OACs increased with 1 μM of ibuprofen or ZeyEX and 10 nM-1 μM oleuropein. Although the markers for oxidative and nitrosative stresses (ROS and 3-NT) generally inhibited by three agents, the inhibitory effect of ZeyEX on 3-NT emerged dramatically (1 nM-10 μM). Lipid-hydroperoxides and HNE-adducts were also inhibited by each agent, but AGE-adducts unchanged by oleuropein while reduced by ZeyEX and ibuprofen. Inflammatory biomarkers, IL-1β, IL-6, Casp-1/ICE, and TNF-α, were inhibited by three agents, however osteopontin and GM-CSF by only ZeyEX and ibuprofen. A decreased COMP, TLR4, and RAGE expression levels were observed by three agents, but only the effects of ZeyEX was concentration-dependent. In particular, ZeyEX and oleuropein improved COL2, inhibited p-JNK/JNK, and increased GPx. COX2 was only inhibited by ibuprofen. The results indicate that polyphenolic-olive compounds counteract redox-sensitive inflammatory aggressions in osteoarthritic chondrocytes that may stop the progression of pathology and allow regeneration.
Collapse
Affiliation(s)
- Zubeyir Elmazoglu
- Faculty of Medicine, Department of Medical Pharmacology, Cellular Stress Response & Signal Transduction Research Laboratory, Gazi University, Ankara, Turkey
| | - Zehra Aydın Bek
- Faculty of Medicine, Department of Medical Pharmacology, Cellular Stress Response & Signal Transduction Research Laboratory, Gazi University, Ankara, Turkey
| | - Gülistan Sanem Sarıbaş
- Faculty of Medicine, Department of Histology and Embryology, Kırsehir Ahi Evran University, Kırsehir, Turkey
| | - Candan Özoğul
- Faculty of Medicine, Department of Histology and Embryology, Kyrenia University, Kyrenia, Cyprus
| | - Berna Goker
- Faculty of Medicine, Department of Rheumatology, Gazi University, Ankara, Turkey
| | - Berivan Bitik
- Ankara Research and Education Hospital, Ankara, Turkey
| | - Cem Nuri Aktekin
- Faculty of Medicine, Department of Orthopedics and Traumatology, Yıldırım Beyazıt University, Ankara, Turkey
| | - Çimen Karasu
- Faculty of Medicine, Department of Medical Pharmacology, Cellular Stress Response & Signal Transduction Research Laboratory, Gazi University, Ankara, Turkey
| |
Collapse
|
23
|
Mobasheri A. COVID-19, osteoarthritis and women's health. Case Rep Womens Health 2020; 27:e00207. [PMID: 32328442 PMCID: PMC7177082 DOI: 10.1016/j.crwh.2020.e00207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 01/17/2023] Open
Affiliation(s)
- Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute, Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
- University Medical Center Utrecht, Departments of Orthopedics, Rheumatology & Clinical Immunology, 508 GA Utrecht, the Netherlands
- Centre for Sport, Exercise and Osteoarthritis Versus Arthritis, Queen's Medical Centre, Nottingham, United Kingdom
- Corresponding author at: Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
24
|
Mohammadinejad R, Ashrafizadeh M, Pardakhty A, Uzieliene I, Denkovskij J, Bernotiene E, Janssen L, Lorite GS, Saarakkala S, Mobasheri A. Nanotechnological Strategies for Osteoarthritis Diagnosis, Monitoring, Clinical Management, and Regenerative Medicine: Recent Advances and Future Opportunities. Curr Rheumatol Rep 2020; 22:12. [PMID: 32248371 PMCID: PMC7128005 DOI: 10.1007/s11926-020-0884-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW In this review article, we discuss the potential for employing nanotechnological strategies for the diagnosis, monitoring, and clinical management of osteoarthritis (OA) and explore how nanotechnology is being integrated rapidly into regenerative medicine for OA and related osteoarticular disorders. RECENT FINDINGS We review recent advances in this rapidly emerging field and discuss future opportunities for innovations in enhanced diagnosis, prognosis, and treatment of OA and other osteoarticular disorders, the smart delivery of drugs and biological agents, and the development of biomimetic regenerative platforms to support cell and gene therapies for arresting OA and promoting cartilage and bone repair. Nanotubes, magnetic nanoparticles, and other nanotechnology-based drug and gene delivery systems may be used for targeting molecular pathways and pathogenic mechanisms involved in OA development. Nanocomposites are also being explored as potential tools for promoting cartilage repair. Nanotechnology platforms may be combined with cell, gene, and biological therapies for the development of a new generation of future OA therapeutics. Graphical Abstract.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406, Vilnius, Lithuania
| | - Jaroslav Denkovskij
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406, Vilnius, Lithuania
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406, Vilnius, Lithuania
| | - Lauriane Janssen
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PL 4500, 3FI-90014, Oulu, Finland
| | - Gabriela S Lorite
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PL 4500, 3FI-90014, Oulu, Finland
| | - Simo Saarakkala
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406, Vilnius, Lithuania.
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
- Centre for Sport, Exercise and Osteoarthritis Versus Arthritis, Queen's Medical Centre, Nottingham, UK.
- Sheik Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis with Stem Cells, King AbdulAziz University, Jeddah, Saudi Arabia.
- University Medical Center Utrecht, Department of Orthopedics and Department of Rheumatology & Clinical Immunology, 508 GA, Utrecht, The Netherlands.
| |
Collapse
|
25
|
Wauquier F, Mevel E, Krisa S, Richard T, Valls J, Hornedo-Ortega R, Granel H, Boutin-Wittrant L, Urban N, Berger J, Descamps S, Guicheux J, Vinatier CS, Beck L, Meunier N, Blot A, Wittrant Y. Chondroprotective Properties of Human-Enriched Serum Following Polyphenol Extract Absorption: Results from an Exploratory Clinical Trial. Nutrients 2019; 11:nu11123071. [PMID: 31888255 PMCID: PMC6950735 DOI: 10.3390/nu11123071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Polyphenols are widely acknowledged for their health benefits, especially for the prevention of inflammatory and age-related diseases. We previously demonstrated that hydroxytyrosol (HT) and procyanidins (PCy), alone or in combination, drive preventive anti-osteoathritic effects in vivo. However, the lack of sufficient clinical evidences on the relationship between dietary phytochemicals and osteoarthritis remains. In this light, we investigated in humans the potential osteoarticular benefit of a grapeseed and olive extract (OPCO) characterized for its hydroxytyrosol (HT) and procyanidins (PCy) content. We first validated, in vitro, the anti-inflammatory and chondroprotective properties of the extract on primary cultured human articular chondrocytes stimulated by interleukin-1 beta (IL-1 β). The sparing effect involved a molecular mechanism dependent on the nuclear transcription factor-kappa B (NF-κB) pathway. To confirm the clinical relevance of such a nutritional strategy, we designed an innovative clinical approach taking into account the metabolites that are formed during the digestion process and that appear in circulation after the ingestion of the OPCO extract. Blood samples from volunteers were collected following ingestion, absorption, and metabolization of the extract and then were processed and applied on human primary chondrocyte cultures. This original ex vivo methodology confirmed at a clinical level the chondroprotective properties previously observed in vitro and in vivo.
Collapse
Affiliation(s)
- Fabien Wauquier
- Clermont Auvergne University, INRA, UNH, 63000 Clermont-Ferrand, France; (F.W.); (H.G.); (L.B.-W.)
| | - Elsa Mevel
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, F-44042 Nantes, France; (E.M.); (J.G.); (C.S.V.); (L.B.)
- UFR Odontologie, Université de Nantes, F-44042 Nantes, France
| | - Stephanie Krisa
- UR Oenologie, Université de Bordeaux, ISVV, EA 4577, USC 1366 INRA, IPB4, F-33140 Villenave d’Ornon, France; (S.K.); (T.R.); (J.V.); (R.H.-O.)
| | - Tristan Richard
- UR Oenologie, Université de Bordeaux, ISVV, EA 4577, USC 1366 INRA, IPB4, F-33140 Villenave d’Ornon, France; (S.K.); (T.R.); (J.V.); (R.H.-O.)
| | - Josep Valls
- UR Oenologie, Université de Bordeaux, ISVV, EA 4577, USC 1366 INRA, IPB4, F-33140 Villenave d’Ornon, France; (S.K.); (T.R.); (J.V.); (R.H.-O.)
| | - Ruth Hornedo-Ortega
- UR Oenologie, Université de Bordeaux, ISVV, EA 4577, USC 1366 INRA, IPB4, F-33140 Villenave d’Ornon, France; (S.K.); (T.R.); (J.V.); (R.H.-O.)
| | - Henri Granel
- Clermont Auvergne University, INRA, UNH, 63000 Clermont-Ferrand, France; (F.W.); (H.G.); (L.B.-W.)
- INRAE, UMR 1019, UNH, 63122 Saint-Genès Champanelle, France
| | - Line Boutin-Wittrant
- Clermont Auvergne University, INRA, UNH, 63000 Clermont-Ferrand, France; (F.W.); (H.G.); (L.B.-W.)
| | - Nelly Urban
- Grap’sud/Inosud, 120 chemin de la regor, 30360 Cruviers-Lascours, France;
| | - Juliette Berger
- CRB Auvergne, Hématologie Biologique, Equipe d’Accueil 7453 CHELTER, CHU Estaing, 1 place Lucie et Raymond Aubrac, F-63003 Clermont-Ferrand, France;
| | - Stéphane Descamps
- Orthopedics department, University Hospital Clermont-Ferrand, F-63003 Clermont-Ferrand, France;
| | - Jérôme Guicheux
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, F-44042 Nantes, France; (E.M.); (J.G.); (C.S.V.); (L.B.)
- UFR Odontologie, Université de Nantes, F-44042 Nantes, France
- Rhumatology department, CHU Nantes, PHU4 OTONN, F-44042 Nantes, France
| | - Claire S. Vinatier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, F-44042 Nantes, France; (E.M.); (J.G.); (C.S.V.); (L.B.)
- UFR Odontologie, Université de Nantes, F-44042 Nantes, France
- Rhumatology department, CHU Nantes, PHU4 OTONN, F-44042 Nantes, France
| | - Laurent Beck
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, F-44042 Nantes, France; (E.M.); (J.G.); (C.S.V.); (L.B.)
- UFR Odontologie, Université de Nantes, F-44042 Nantes, France
- Rhumatology department, CHU Nantes, PHU4 OTONN, F-44042 Nantes, France
| | - Nathalie Meunier
- CHU Clermont-Ferrand, Centre de Recherche en Nutrition Humaine Auvergne, 58 rue Montalembert, F-63000 Clermont-Ferrand, France; (N.M.); (A.B.)
| | - Adeline Blot
- CHU Clermont-Ferrand, Centre de Recherche en Nutrition Humaine Auvergne, 58 rue Montalembert, F-63000 Clermont-Ferrand, France; (N.M.); (A.B.)
| | - Yohann Wittrant
- Clermont Auvergne University, INRA, UNH, 63000 Clermont-Ferrand, France; (F.W.); (H.G.); (L.B.-W.)
- INRAE, UMR 1019, UNH, 63122 Saint-Genès Champanelle, France
- Correspondence: ; Tel.: +33-(0)6-8229-7271
| |
Collapse
|
26
|
Mobasheri A, Lambert C, Henrotin Y. Coll2-1 and Coll2-1NO2 as exemplars of collagen extracellular matrix turnover - biomarkers to facilitate the treatment of osteoarthritis? Expert Rev Mol Diagn 2019; 19:803-812. [PMID: 31327279 DOI: 10.1080/14737159.2019.1646641] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Osteoarthritis (OA) is the most common form of arthritis. However, there are no structure or disease-modifying OA drugs (DMOADs). Introducing personalized healthcare to patients and health-care practitioners is a high priority for the management of arthritic and musculoskeletal diseases. However, there are no biomarker tools that can be used for patient stratification, disease management, and drug development. Biomarkers are capable of diagnosing and prognosing some arthritic and musculoskeletal diseases. Cartilage-based biomarkers have the potential to be used in this context to guide the precision treatment of OA. Areas covered: The aim of this review is to focus on the pre-clinical and clinical utility of the Coll2-1 and Coll2-1NO2 biomarkers as unique cartilage-based biomarkers that can guide the development of new treatments for OA. This expert report will begin with a background to collagens and their important biomechanical roles in the musculoskeletal system, but particularly cartilage, before exploring the data and scientific evidence to support the utility of Coll2-1 and Coll2-1NO2 as unique biomarkers. Expert opinion: This review summarises the authors' expert view on the pre-clinical and clinical utility of the Coll2-1 and Coll2-1NO2 biomarkers and their potential for use as drug development tools.
Collapse
Affiliation(s)
- Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine , Vilnius , Lithuania.,Centre for Sport, Exercise and Osteoarthritis Versus Arthritis, Queen's Medical Centre , Nottingham , UK.,European Commission, The D-BOARD FP7 Consortium.,The APPROACH IMI Consortium.,Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu , Oulu , Finland
| | - Cecile Lambert
- Bone and Cartilage Research Unit, Arthropole Liège, Institute of Pathology, University of Liège , Liège , Belgium
| | - Yves Henrotin
- European Commission, The D-BOARD FP7 Consortium.,The APPROACH IMI Consortium.,Bone and Cartilage Research Unit, Arthropole Liège, Institute of Pathology, University of Liège , Liège , Belgium
| |
Collapse
|